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FOREWORD 

 
 
 
This  toxicological profile  is prepared in accordance with guidelines* developed by the Agency for  Toxic  
Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA).  The  
original guidelines were published in the  Federal Register  on April 17, 1987.  Each profile will  be revised 
and republished as necessary.  
 
The ATSDR  toxicological  profile succinctly characterizes the toxicologic and  adverse health effects 
information for  these  toxic  substances described therein.  Each peer-reviewed  profile identifies and 
reviews the key literature that describes a substance's toxicologic properties.  Other pertinent  literature is  
also  presented, but  is described in  less detail than the key studies.   The profile is not intended  to be an  
exhaustive document; however, more comprehensive sources of specialty information are referenced.  
 
The focus of the profiles is  on health and toxicologic information;  therefore, each toxicological profile  
begins with a public health  statement that  describes,  in  nontechnical language, a substance's relevant  
toxicological  properties.  Following the public health  statement is information concerning levels of  
significant human exposure and, where known, significant health effects.  The adequacy of information to 
determine a  substance's health  effects is described in a health effects summary.  Data needs that  are of  
significance  to protection of public  health are identified by ATSDR.  
 
 Each  profile includes the following:  
 
 (A)  The examination, summary, and interpretation of  available toxicologic information  and  

epidemiologic evaluations  on a toxic substance  to ascertain the  levels  of significant human 
exposure for  the substance and the associated acute, subacute, and chronic health  effects;  

 
 (B)  A determination of whether adequate information  on the health effects of  each substance 

is available or in the process of development to  determine levels of exposure that  present  a 
significant  risk to human health of  acute, subacute, and chronic health effects; and  

 
 (C)  Where appropriate, identification of toxicologic testing needed to identify the types or  

levels of exposure that may present  significant risk of adverse health effects in humans.  
 
The principal audiences for the toxicological profiles are health professionals at  the Federal, State, and 
local levels; interested private  sector  organizations and groups; and members of the public.   
 
This profile reflects ATSDR’s assessment of all relevant toxicologic testing and information that  has been  
peer-reviewed.  Staffs of the Centers for Disease Control and  Prevention  and other Federal  scientists have 
also  reviewed the profile.  In addition, this profile has been peer-reviewed by a nongovernmental panel  
and was made available for public review.  Final  responsibility for the contents  and views expressed  in  
this toxicological profile resides with ATSDR.  
 

 
Patrick N. Breysse, Ph.D.,  CIH
 
  

Director, National Center for Environmental Health and 
 
 
Agency for Toxic Substances and Disease Registry 
 
 

Centers for Disease Control and Prevention 
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*Legislative Background  
 
The toxicological profiles are developed under the Comprehensive Environmental Response, 
Compensation, and Liability Act of 1980, as  amended (CERCLA or Superfund).  CERCLA section 
104(i)(1) directs the Administrator  of ATSDR to “…effectuate and implement the health  related  
authorities” of the statute.  This includes  the  preparation of  toxicological profiles for  hazardous  
substances most commonly found at  facilities on the CERCLA National Priorities  List  and that pose the  
most significant potential  threat to human health, as determined by ATSDR and the EPA.  Section  
104(i)(3) of CERCLA, as amended, directs the Administrator of ATSDR  to prepare a toxicological profile  
for each substance on the list.  In addition, ATSDR has the authority to prepare  toxicological profiles for  
substances not found at sites on the National Priorities  List, in an effort  to “…establish and maintain 
inventory of  literature, research, and studies on the health effects of toxic substances” under CERCLA  
Section 104(i)(1)(B), to respond to requests  for  consultation under section 104(i)(4), and as otherwise  
necessary to support the site-specific response actions  conducted by ATSDR.  
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QUICK REFERENCE FOR HEALTH CARE PROVIDERS 

Toxicological Profiles are a unique compilation of toxicological information on a given hazardous 
substance.  Each profile reflects a comprehensive and extensive evaluation, summary, and interpretation 
of available toxicologic and epidemiologic information on a substance.  Health care providers treating 
patients potentially exposed to hazardous substances will find the following information helpful for fast 
answers to often-asked questions. 

Primary Chapters/Sections of Interest 

Chapter 1: Public Health Statement: The Public Health Statement can be a useful tool for educating 
patients about possible exposure to a hazardous substance.  It explains a substance’s relevant 
toxicologic properties in a nontechnical, question-and-answer format, and it includes a review of 
the general health effects observed following exposure. 

Chapter 2:  Relevance to Public Health: The Relevance to Public Health Section evaluates, interprets, 
and assesses the significance of toxicity data to human health. 

Chapter 3:  Health Effects: Specific health effects of a given hazardous compound are reported by type 
of health effect (death, systemic, immunologic, reproductive), by route of exposure, and by length 
of exposure (acute, intermediate, and chronic).  In addition, both human and animal studies are 
reported in this section. 
NOTE: Not all health effects reported in this section are necessarily observed in the clinical 
setting.  Please refer to the Public Health Statement to identify general health effects observed 
following exposure. 

Pediatrics:  Four new sections have been added to each Toxicological Profile to address child health 
issues: 
Chapter 1 How Can (Chemical X) Affect Children?
 
Chapter 1 How Can Families Reduce the Risk of Exposure to (Chemical X)?
 
Section 3.7 Children’s Susceptibility
 
Section 6.6 Exposures of Children
 

Other Sections of Interest: 
Section 3.8 Biomarkers of Exposure and Effect 
Section 3.11 Methods for Reducing Toxic Effects 

ATSDR Information Center 
Phone: 1-800-CDC-INFO (800-232-4636) or 1-888-232-6348 (TTY) 
Internet: http://www.atsdr.cdc.gov 

The following additional material is available online at www.atsdr.cdc.gov: 

Case Studies in Environmental Medicine—Case Studies are self-instructional publications designed to 
increase primary care provider’s knowledge of a hazardous substance in the environment and to 
aid in the evaluation of potentially exposed patients.  

Managing Hazardous Materials Incidents is a three-volume set of recommendations for on-scene 
(prehospital) and hospital medical management of patients exposed during a hazardous materials 

http:www.atsdr.cdc.gov
http:http://www.atsdr.cdc.gov
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incident.  Volumes I and II are planning guides to assist first responders and hospital emergency 
department personnel in planning for incidents that involve hazardous materials.  Volume III— 
Medical Management Guidelines for Acute Chemical Exposures—is a guide for health care 
professionals treating patients exposed to hazardous materials. 

Fact Sheets (ToxFAQs™) provide answers to frequently asked questions about toxic substances. 

Other Agencies and Organizations 

The National Center for Environmental Health (NCEH) focuses on preventing or controlling disease, 
injury, and disability related to the interactions between people and their environment outside the 
workplace.  Contact:  NCEH, Mailstop F-29, 4770 Buford Highway, NE, Atlanta, 
GA 30341-3724 • Phone: 770-488-7000 • FAX: 770-488-7015. 

The National Institute for Occupational Safety and Health (NIOSH) conducts research on occupational 
diseases and injuries, responds to requests for assistance by investigating problems of health and 
safety in the workplace, recommends standards to the Occupational Safety and Health 
Administration (OSHA) and the Mine Safety and Health Administration (MSHA), and trains 
professionals in occupational safety and health.  Contact: NIOSH, 395 E Street, S.W., Suite 9200, 
Patriots Plaza Building, Washington, DC 20201 • Phone: (202) 245-0625 or 1-800-CDC-INFO 
(800-232-4636). 

The National Institute of Environmental Health Sciences (NIEHS) is the principal federal agency for 
biomedical research on the effects of chemical, physical, and biologic environmental agents on 
human health and well-being.  Contact:  NIEHS, PO Box 12233, 104 T.W. Alexander Drive, 
Research Triangle Park, NC 27709 • Phone: 919-541-3212. 

Publically Available Information 

The Association of Occupational and Environmental Clinics (AOEC) has developed a network of clinics 
in the United States to provide expertise in occupational and environmental issues.  Contact: 
AOEC, 1010 Vermont Avenue, NW, #513, Washington, DC 20005 • Phone: 202-347-4976 
• FAX:  202-347-4950 • e-mail: AOEC@AOEC.ORG • Web Page:  http://www.aoec.org/. 

The American College of Occupational and Environmental Medicine (ACOEM) is an association of 
physicians and other health care providers specializing in the field of occupational and 
environmental medicine.  Contact:  ACOEM, 25 Northwest Point Boulevard, Suite 700, Elk 
Grove Village, IL 60007-1030 • Phone:  847-818-1800 • FAX:  847-818-9266. 

The American College of Medical Toxicology (ACMT) is a nonprofit association of physicians with 
recognized expertise in medical toxicology.  Contact: ACMT, 10645 North Tatum Boulevard, 
Suite 200-111, Phoenix AZ 85028 • Phone:  844-226-8333 • FAX:  844-226-8333 • Web Page: 
http://www.acmt.net. 

The Pediatric Environmental Health Specialty Units (PEHSUs) is an interconnected system of specialists 
who respond to questions from public health professionals, clinicians, policy makers, and the 
public about the impact of environmental factors on the health of children and reproductive-aged 
adults.  Contact information for regional centers can be found at http://pehsu.net/findhelp.html. 

http://pehsu.net/findhelp.html
http:http://www.acmt.net
http:http://www.aoec.org
mailto:AOEC@AOEC.ORG
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The American Association of Poison Control Centers (AAPCC) provide support on the prevention and 
treatment of poison exposures.  Contact:  AAPCC, 515 King Street, Suite 510, Alexandria VA 
22314 • Phone:  701-894-1858 • Poison Help Line: 1-800-222-1222. 
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THE PROFILE HAS UNDERGONE THE FOLLOWING ATSDR INTERNAL REVIEWS: 

1.	 Health Effects Review. The Health Effects Review Committee examines the health effects 
chapter of each profile for consistency and accuracy in interpreting health effects and classifying 
end points. 

2.	 Minimal Risk Level Review.  The Minimal Risk Level Workgroup considers issues relevant to 
substance-specific Minimal Risk Levels (MRLs), reviews the health effects database of each 
profile, and makes recommendations for derivation of MRLs. 

3.	 Data Needs Review. The Environmental Toxicology Branch reviews data needs sections to 
assure consistency across profiles and adherence to instructions in the Guidance. 

4.	 Green Border Review.  Green Border review assures the consistency with ATSDR policy. 
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PEER REVIEW
 

A peer review panel was assembled for polybrominated diphenyl ethers. The panel consisted of the 
following members: 

Dr. Stuart Harrad, Division of Environmental Health and Risk Management, School of 
Geography, Earth, and Environmental Sciences, University of Birmingham, Edgbaston, 
Birmingham, United Kingdom; 

2. 	 Dr. James R. Olson, Jr., Department of Chemistry, University at Buffalo, State University of New 
York, Buffalo, New York; and 

3. 	 Dr. Christopher Metcalfe, Metcalfe C. Environmental and Resource Studies, Trent University, 
1600 West Bank Drive, Peterborough, Ontario, Canada. 

These experts collectively have knowledge of polybrominated diphenyl ether’s physical and chemical 
properties, toxicokinetics, key health end points, mechanisms of action, human and animal exposure, and 
quantification of risk to humans.  All reviewers were selected in conformity with the conditions for peer 
review specified in Section 104(I)(13) of the Comprehensive Environmental Response, Compensation, 
and Liability Act, as amended. 

Scientists from the Agency for Toxic Substances and Disease Registry (ATSDR) have reviewed the peer 
reviewers' comments and determined which comments will be included in the profile.  A listing of the 
peer reviewers' comments not incorporated in the profile, with a brief explanation of the rationale for their 
exclusion, exists as part of the administrative record for this compound.  

The citation of the peer review panel should not be understood to imply its approval of the profile's final 
content.  The responsibility for the content of this profile lies with the ATSDR. 

1.	 
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1 PBDEs 

1. PUBLIC HEALTH STATEMENT FOR POLYBROMINATED 
DIPHENYL ETHERS (PBDEs) 

This Public Health Statement summarizes the Division of Toxicology and Human Health Science’s 

findings on PBDEs, tells you about them, the effects of exposure, and describes what you can do to limit 

that exposure. 

The U.S. Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in the 

nation. These sites make up the National Priorities List (NPL) and are sites targeted for long-term federal 

clean-up activities.  U.S. EPA has not found PBDEs in any of the 1,832 current or former NPL sites. The 

total number of NPL sites evaluated for PBDEs is not known.  But the possibility remains that as more 

sites are evaluated, sites with PBDEs may be identified.  This information is important because these 

future sites may be sources of exposure, and exposure to PBDEs may be harmful. 

If you are exposed to PBDEs, many factors determine whether you’ll be harmed.  These include how 

much you are exposed to (dose), how long you are exposed (duration), and how you are exposed (route of 

exposure).  You must also consider the other chemicals you are exposed to and your age, sex, diet, family 

traits, lifestyle, and state of health. 

WHAT ARE PBDEs? 

PBDEs are flame-retardant chemicals that were added to a variety of consumer products to make them 

difficult to burn. These substances are not single chemical compounds, but rather mixtures of several 

brominated substances. The entire family of PBDEs consists of 209 possible substances that are referred 

to as congeners.  

There were three important commercial PBDE mixtures (i.e., penta-, octa-, and deca- bromodiphenyl 

ethers [BDEs]).  DecaBDE’s main use was for electronic enclosures, such as television cabinets. 

OctaBDE was largely used in plastics for business equipment. PentaBDE was principally used in foam 

for cushioning in upholstery.  PentaBDE and octaBDE mixtures were voluntarily withdrawn from the 

U.S. marketplace by their manufacturers at the end of 2004 and decaBDE was not to be manufactured or 

imported into the United States after December 31, 2013.  In 2003, the European Union (EU) passed a 

Directive to ban the marketing and use of penta- and octaBDE that took effect in 2004. In 2008, the use 

of decaBDE was restricted by a EU’s Restriction of Hazardous Substances (RoHS) Directive. 



   
 

   
 
 

 
 
 
 
 

 

    
 

      

    

       

  

 

    

      

    

     

 

   

   

 

   
 

         

   

   

 

     

    

     

       

      

    

  

  

  

       

     

    

2 PBDEs 

1.  PUBLIC HEALTH STATEMENT 

WHAT HAPPENS TO PBDEs WHEN THEY ENTER THE ENVIRONMENT? 

PBDEs can be released into the air, water, and soil at places where they are produced or used.  Despite the 

phase out of penta-, octa-, and decaBDE, vast amounts of consumer products still contain PBDEs, and 

these products are intended to be used for several more years. Some of these products include older 

televisions, computers, and furniture containing polyurethane foam.  

PBDEs have very low water solubility, and when these substances are released to water, they typically 

bind to sediment.  PBDEs in consumer items put in landfills may leach through the soil into groundwater. 

This is not likely to be a problem, however, because these substances generally bind strongly to soil 

particles, and therefore, do not move easily through soil layers. 

Soils and sediments are major sinks for PBDEs.  Various food items, including fish, meat, and dairy 

products, have been shown to contain low concentrations of PBDEs. 

HOW MIGHT I BE EXPOSED TO PBDEs? 

Humans can be exposed to PBDEs in a wide variety of ways, including eating contaminated foods or 

contaminated dusts/soils, breathing in contaminated air, or having skin contact with contaminated soil/ 

dust/commercial products. 

The primary route of exposure to PBDEs for the general population of the United States is from ingestion 

of contaminated dust in indoor environments, including both personal residences and work-place 

environments. PBDEs have been detected in residential house dust, which you can breathe in or swallow 

in low concentrations. This can occur because PBDEs are physically mixed into consumer products from 

which they have the potential to escape into the environment when conditions are ideal. Ingestion of 

house dust (and to a lesser degree skin exposure to house dust) accounts for between 80 and 90% of total 

PBDE exposures of the general population.  The remaining exposure to PBDEs in the United States is 

from food ingestion.  You may be exposed to PBDEs through ingestion of contaminated foods, 

particularly those with high fat content, such as fatty fish.  In breastfeeding infants, breast milk may be a 

major source of PBDE exposure because PBDEs can accumulate in breast milk.  Due to the chemical 

nature of PBDEs, they have not been detected in water to any significant extent; therefore, drinking water 

is not expected to be a major route of exposure to PBDEs.  While exposure to dust appears to be the major 



   
 

   
 
 

 
 
 
 
 

  

  

 

      

   

   

 

   

    

  

  

   

 

   
 

    

   

  

   

 

 

 

 

 

 

 

  

   

   

  

 

















 





 











 


 


 


 

3 PBDEs 

1.  PUBLIC HEALTH STATEMENT 

exposure pathway for the general population of North American residents, PBDE exposure through 

dietary routes appears to be more important for European communities. 

PBDEs have been detected in air samples, indicating that people can also be exposed by inhalation. 

Consumer products such as computer and electronic equipment (e.g., televisions) treated with PBDEs can 

continue to release these substances to air over time. 

PBDEs can enter soil from discarded products (e.g., in landfills).  Biosolids may also contain PBDEs; 

therefore, they may be inadvertently released to soils from the use of biosolids that are applied to add 

nutrients to farmlands.  If you touch soil containing PBDEs, a small amount of PBDEs may pass through 

your skin into the bloodstream; ingestion of soil can lead to higher PBDE exposure.  This route may be 

especially important for children who display a lot of hand to mouth activity. 

HOW CAN PBDEs ENTER AND LEAVE MY BODY? 

PBDEs can enter your body from food, air, water, or soil. The ways that PBDEs might enter and leave 


your body depend on the chemical structures of the congener components.  The higher-brominated 


PBDEs, particularly decaBDE, act somewhat differently in the body than do lower-brominated PBDEs.  


If you breathe air that contains PBDEs, or swallow food, water, soil, or dust contaminated with PBDEs, 


the lower-brominated congeners are more likely than decaBDE to enter your body through your lungs and 


stomach and pass into the bloodstream.
 

Once PBDEs are in your body, the congeners might partially change into breakdown products called 


metabolites.
 

PBDEs and their metabolites can leave your body, mainly in the feces and a very small amount in urine.  


DecaBDE, with an apparent half-time of 15 days, tends to be eliminated from your body faster than 


lower-brominated PBDEs, with apparent half-times as high as 94 days.  Lower brominated PBDEs can 


stay in your body for many years, stored mainly in body fat.  DecaBDE also accumulates in body fat, but
 

to a lesser degree.  Both lower-brominated PBDEs and decaBDE can concentrate in breast milk fat and
 

can enter the bodies of children through breastfeeding.  Lower-brominated PBDEs and decaBDE also can
 

enter the bodies of unborn babies through the placenta.
 



   
 

   
 
 

 
 
 
 
 

    
 

    

    

   

  

   

 

  

  

  

  

 

  

 

     

    

  

 

   

     

 

   

  

 

    

   

    

 

  

    

 

4 PBDEs 

1. PUBLIC HEALTH STATEMENT

HOW CAN PBDEs AFFECT MY HEALTH? 

Nothing definite is known about the health effects of PBDEs in people.  The majority of information 

regarding toxicity of PBDEs and their breakdown products (metabolites) is from animal studies; however, 

several recent studies have evaluated associations between PBDE concentrations in human tissues (e.g., 

blood, breast milk) and various health effects.  Due to differences in how decaBDE is absorbed and stored 

in your body, decaBDE is expected to be less toxic than lower-brominated PBDEs.  

Rats and mice that ingested small amounts of lower-brominated PBDEs during early development had 

neurobehavioral changes and damage to their reproductive systems as adults.  Altered neurobehavior was 

also observed in rats and mice that ingested decaBDE during early development, but at doses higher than 

observed for lower-brominated PBDEs.  Adult rats and mice that ingested moderate amounts of lower

brominated PBDEs for short periods of time had mainly thyroid and liver effects.  Additional findings 

from short-term animal studies suggest that some PBDEs might impair the immune system.  Animals 

exposed to PBDEs by skin contact showed signs of skin irritation only if they had been scratched. 

As with short-term exposure, rats and mice that ingested PBDEs for longer periods during early 

development also showed neurobehavioral changes; again, effects occurred at higher doses with 

decaBDE.  Evidence from human studies is also suggestive of an association between PBDE exposure 

and altered neurodevelopment.  Adult rats and mice that ingested small amounts of lower-brominated 

PBDEs over several weeks or months developed effects in the male reproductive system, thyroid, and 

liver.  Adult animals that ingested small amounts of decaBDE over several weeks or months developed 

effects in the pancreas (diabetes), nervous system, immune system, and reproductive system.  Evidence 

for PBDE-mediated effects from human studies in systems other than the developing nervous system is 

inconclusive or non-existent. 

We don’t know if PBDEs can cause cancer in people, although liver tumors developed in rats and mice 

that ate extremely large amounts of decaBDE throughout their lifetime.  Lower-brominated PBDEs have 

not yet been tested for cancer in animals.  

The International Agency for Research on Cancer (IARC) has classified PBDE as a Group 3 carcinogen 

(not classifiable as to its carcinogenicity to humans) based on inadequate evidence of carcinogenicity in 

humans and inadequate or limited evidence in experimental animals. The EPA assigns the cancer 

category Group D (not classifiable as to human carcinogenicity) to mono-, di-, tri-, tetra-, penta-, hexa-, 
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1.  PUBLIC HEALTH STATEMENT 

octa-, and nonaBDEs and reports “inadequate information” to classify the specific congeners 

2,2’,4,4’-tetraBDE, 2,2’,4,4’,5-pentaBDE, and 2,2’,4,4’,5,5’-hexaBDE.  However, EPA assigns a 

classification of “suggestive evidence of carcinogenic potential” for decaBDE.  The Department of Health 

and Human Services has not classified PBDEs as carcinogens.  The American Conference of 

Governmental Industrial Hygienists (ACGIH) has no data regarding cancer classifications for PBDEs. 

See Chapters 2 and 3 for more information on health effects of PBDEs. 

HOW CAN PBDEs AFFECT CHILDREN? 

This section discusses potential health effects of PBDE exposure in humans from when they’re first 

conceived to 18 years of age. 

Studies indicate that infants and toddlers have higher exposures to PBDEs compared to older children or 

adults. The most likely way that infants might be exposed to PBDEs is from breast milk containing 

PBDEs, although fetuses in the womb could also be exposed.  Toddlers and older children are exposed to 

PBDEs in generally the same way as are adults, mainly by ingesting contaminated household dust and 

food.  However, soil/dust ingestion in small children (age 1−5 years) is much higher than in older children 

and adults.  Because of their smaller weight, children’s intake of PBDEs per kilogram (or pound) of body 

weight may be greater than that of adults.  Children who live near hazardous waste sites might 

accidentally eat some PBDEs by putting dirty hands or other soil/dirt covered objects in their mouths, or 

through eating without washing their hands.  Some children also eat dirt on purpose.  It is also possible 

that children could be exposed to PBDEs following transport of the chemical on clothing from the 

parent’s workplace to the home. 

As indicated above, young children can be exposed to PBDEs both before birth and from breast milk.  

Both lower-brominated PBDEs and decaBDE have been found in breast milk, and they can be transferred 

to babies and young children.  In general, however, any risks from exposures in mother’s milk are 

outweighed by the benefits of breastfeeding.  You should consult your health care provider if you have 

any concerns about PBDEs and breastfeeding.  Since the fetus and child are still developing, effects of 

PBDEs might be more significant if exposure occurs during the periods before and soon after birth. 

Evidence suggests that fetuses and young children are more susceptible to PBDEs than adults.  Subtle 

behavioral changes have been observed in animals exposed to PBDEs within the first 2 weeks of life, and 

results from human studies are suggestive of an effect of PBDEs on neurodevelopment in children, 



   
 

   
 
 

 
 
 
 
 

 

    

  

  

  

     

     

    

  

 

 

 

  

 

  
 

   

  

 

 

  

   

  

 

  

   

  

 

 
 

 

 

 

6 PBDEs 

1.  PUBLIC HEALTH STATEMENT 

including impaired cognitive development (comprehension, memory), impaired motor skills, increased 

impulsivity, and decreased attention.  One study reported that early PBDE exposure was a risk factor for 

the development of Attention Deficit Hyperactivity Disorder (ADHD); however, another study did not 

find a link between PBDE exposure and ADHD.  One study investigating potential associations between 

early PBDE exposure and autism did not find a link between maternal PBDE serum levels and autistic 

behaviors in 4–5-year old children.  One possible explanation for the observed behavioral effects might be 

related to changes in the thyroid, because development of the nervous system is dependent on thyroid 

hormones.  Damage to developing reproductive organs and immune suppression have also been observed 

in animals exposed to PBDEs during development.  It is unknown if these effects occur in human 

children. 

PBDEs have not caused birth defects in animals or impaired the ability for rats or mice to become 

pregnant or stay pregnant. 

HOW CAN FAMILIES REDUCE THE RISK OF EXPOSURE TO PBDEs? 

If your doctor finds that you have been exposed to significant amounts of PBDEs, ask whether your 

children might also be exposed.  Your doctor might need to ask your state health department to 

investigate. 

Ingestion and dermal contact with indoor dust containing PBDEs is the major exposure pathway to 

residents of the United States.  Dust containing PBDEs can collect on your hands and be ingested through 

hand-to-mouth activities; regular hand washing may decrease PBDE exposure from this route. 

Additionally, PBDE exposure may be decreased by regular vacuuming and cleaning of air ducts and 

filters to reduce indoor dust levels. 

Since many older consumer products such as televisions, computers, and furniture containing 

polyurethane foam contain PBDEs, replacing older products with newer ones that do not contain these 

substances may decrease residential PBDE exposure. 

ARE THERE MEDICAL TESTS TO DETERMINE WHETHER I HAVE BEEN EXPOSED TO 
PBDEs? 

PBDEs and their breakdown products (metabolites) can be measured in human blood, hair, and breast 

milk.  However, the detection of PBDEs or their metabolites cannot predict the kind of health effects that 
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1.  PUBLIC HEALTH STATEMENT 

might develop from that exposure.  Because PBDEs and their metabolites either leave the body or are 

distributed to body fat fairly rapidly, the tests need to be conducted within days if an acute, high-level 

exposure is suspected.  

For more information on the different substances formed by PBDE breakdown and on tests to detect these 

substances in the body, see Chapters 3 and 7. 

WHAT RECOMMENDATIONS HAS THE FEDERAL GOVERNMENT MADE TO PROTECT 
HUMAN HEALTH? 

The federal government develops regulations and recommendations to protect public health.  Regulations 

can be enforced by law.  Federal agencies that develop regulations for toxic substances include the 

Environmental Protection Agency (EPA), the Occupational Safety and Health Administration (OSHA), 

and the Food and Drug Administration (FDA).  Recommendations provide valuable guidelines to protect 

public health but cannot be enforced by law.  Federal organizations that develop recommendations for 

toxic substances include the Agency for Toxic Substances and Disease Registry (ATSDR) and the 

National Institute for Occupational Safety and Health (NIOSH). 

Regulations and recommendations can be expressed as “not-to-exceed” levels; that is, levels of a toxic 

substance in air, water, soil, or food that do not exceed a critical value usually based on levels that affect 

animals; levels are then adjusted to help protect humans.  Sometimes these not-to-exceed levels differ 

among federal organizations.  Different organizations use different exposure times (an 8-hour workday or 

a 24-hour day), different animal studies, or emphasize some factors over others, depending on their 

mission. 

Recommendations and regulations are also updated periodically as more information becomes available. 

For the most current information, check with the federal agency or organization that issued the regulation 

or recommendation. 

EPA requires that companies that transport, store, or dispose of monobrominated diphenyl ether 

(monoBDE) (or diphenyl ether with one bromine attached to the structure, represented by Chemical 

Abstracts Service [CAS] Registry Number 101-55-3; Resource Conservation and Recovery Act [RCRA] 

waste number U030) follow the rules and regulations of the federal hazardous waste management 

program because it has been listed (U-list) as a hazardous waste due to toxicity concerns.  EPA also limits 

the amount of monoBDE put into publicly owned waste water treatment plants.  To minimize exposure of 
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1.  PUBLIC HEALTH STATEMENT 

people to monoBDE, EPA requires that industry tell the National Response Center each time 100 pounds 

or more of monoBDE have been released to the environment. 

OSHA has not set permissible exposure limits (PELs) to protect workers against adverse health effects 

resulting from exposure to PBDEs.  NIOSH has not recommended guidelines for worker exposure limits. 

WHERE CAN I GET MORE INFORMATION? 

If you have any questions or concerns, please contact your community or state health or environmental 

quality department, or contact ATSDR at the address and phone number below.  ATSDR can also provide 

publically available information regarding medical specialists with expertise and experience recognizing, 

evaluating, treating, and managing patients exposed to hazardous substances. 

•	 Call the toll-free information and technical assistance number at
 
1-800-CDCINFO (1-800-232-4636) or
 

•	 Write to:
 
Agency for Toxic Substances and Disease Registry
 
Division of Toxicology and Human Health Sciences
 
1600 Clifton Road NE
 
Mailstop F-57
 
Atlanta, GA 30329-4027
 

Toxicological profiles and other information are available on ATSDR’s web site: 

http://www.atsdr.cdc.gov. 

http:http://www.atsdr.cdc.gov


   
 
 
 
 

 
 
 
 
 

 
 

    
 

 

  

   

  

  

   

 

    

    

   

 

 
  

 

    

  

   

   

 

   

 

  

   

  

   

  


 

	

	 
 

9 PBDEs 

2. RELEVANCE TO PUBLIC HEALTH
 

2.1  	 BACKGROUND AND ENVIRONMENTAL EXPOSURES TO PBDEs IN THE UNITED 
STATES 

PBDEs are classes of structurally similar brominated hydrocarbons in which 2–10 bromine atoms are 

attached to the molecular structure (i.e., diphenyl ether).  Monobrominated structures (i.e., one bromine 

atom attached to the molecule) are often included when describing PBDEs.  There are 209 different 

molecular combinations, or congeners, that are possible for PBDEs, although only a limited number exist 

in commercial mixtures.  Based on the number of bromine substituents, there are 10 homologous groups 

of PBDE congeners (monobrominated through decabrominated), with each homologous group containing 

one or more isomers.  The mono-, di-, tri-, tetra-, penta-, hexa-, hepta-, octa-, nona-, and decabromo

congeners can exist in 3, 12, 24, 42, 46, 42, 24, 12, 3, and 1 isomers, respectively.  The general chemical 

structure of PBDEs is shown below: 

2 2'O 

BrnBrm 

1' 3' 

4' 
5' 

6' 

13 

4 
5 

6 

where m + n = 1 to 10 

Due to the ether linkage and the position and number of bromine atoms, there are important three-

dimensional differences in the structures of PBDEs that can influence the molecules’ receptor interactions 

and toxicological properties as discussed in Section 3.5, Mechanisms of Action.  In general, PBDEs are 

not expected to have the same array of three-dimensional conformations as either polybrominated 

biphenyls (PBBs) or polychlorinated biphenyls (PCBs). 

PBDEs are brominated organic compounds that were used as flame retardant additives in plastics, textiles, 

and other materials.  As additives, they are physically mixed into product applications, rather than 

chemically bound.  Therefore, they have the potential to migrate from the plastic matrix into the 

environment when conditions are ideal.  Production of PBDEs began in the 1970s and has continued until 

recently.  PentaBDE and octaBDE mixtures were voluntarily withdrawn from the U.S. marketplace by 

their manufacturers at the end of 2004; however, the manufacture and use of decaBDE continued past that 

date.  In December of 2009, the two remaining U.S. producers of decaBDE and the largest U.S. importer 
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of this product announced commitments to phase out manufacture and importation of decaBDE for most 

uses in the United States by December 31, 2012, and to end manufacture and import for all uses by the 

end of 2013. 

PBDEs are persistent in the environment and most congeners can be considered bioaccumulative.  The 

fully brominated congener, BDE 209, has a lower tendency to bioconcentrate due to its molecular 

dimensions; however, numerous studies have detected this substance in tissues of birds, mammals, and 

fish (see Section 6.4.4). 

Monitoring and body-burden data indicate that PBDEs are ubiquitous in the environment and that the 

general population is exposed to these substances through their past use as flame retardants.  A study that 

examined stored blood samples from 1973 (prior to the use of PBDEs as flame retardants) showed 

virtually no detections of these substances in human blood; however, varying concentrations of many 

PBDE congeners were detected in all blood samples collected in 2003 from 39 residents in Mississippi 

and 10 residents in New York City, illustrating the widespread exposure to PBDEs since their inception.  

Body burden data have consistently shown the residents of North America have higher concentrations of 

PBDEs in blood than people residing in Europe, likely due to differences in past production and use of 

commercial formulas. 

House dust was identified as a major source of exposure to PBDEs by a systematic study of American 

exposure routes.  In the United States, concentration levels found in soil, house dust, and air tended to be 

greater in indoor samples compared to outdoor samples.  The EPA calculated the adult intake dose of total 

PBDEs to be 7.1 ng/kg body weight/day.  It estimated children’s intakes as 47.2 ng/kg body weight/day 

for 1–5 year olds, 13.0 ng/kg body weight/day for 6–11 year olds, and 8.3 ng/kg body weight/day for 12– 

19 year olds.  The much higher dose for children aged 1−5 years was largely due to higher soil/dust 

ingestion in this age group. Exposure to indoor dust was the predominant exposure pathway for PBDEs 

in these calculations. It was estimated that 90% of the intake resulted from house dust inhalation or 

dermal exposure.  This does not include special populations such as infants that are primarily exposed 

through breastfeeding.  PBDE concentrations were generally lower in house dust samples collected 

outside of the United States compared with dust samples collected within the United States.  The specific 

PBDE congeners detected in house dust and food vary; BDE 209 is more commonly detected within 

indoor environments where exposure is more likely to occur through intake of contaminated dust and air.  

PBDE contamination of food is more likely a result of past emissions or ongoing emissions from 

dumpsites and older products that still contain pentaBDE, which is mainly composed of the congeners 
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BDE 47 and BDE 99. Ingestion of PBDEs through the diet appears to be the predominant pathway for 

European communities. In China, the decaBDE congener, BDE 209, was the most abundant congener 

detected in both maternal and cord blood samples where industrial production of BDE 209 may result in 

exposure. 

2.2  SUMMARY OF HEALTH EFFECTS 

Information is available on the potential health effects of formerly used commercial PBDE mixtures 

(pentaBDE, octaBDE, and decaBDE) as well as several individual PBDE congeners.  As subsequently 

discussed, the toxicity of decaBDE is generally less pronounced than for lower-brominated PBDEs 

following acute and repeated-dose exposures.  This difference in toxicity may be related to differences in 

pharmacokinetics, resulting in lower bioavailability of decaBDE (see Sections 2.3 and 3.4 for more 

details).  

The preponderance of health effects information on PBDEs is from studies of orally exposed laboratory 

animals and human studies in which the main exposure route is unknown, but expected to be oral.  As 

summarized below and detailed in Chapter 3 (Health Effects), the main targets of concern following 

PBDE exposure in humans are the developing nervous and reproductive systems, the developing and 

mature endocrine system, the liver, and the male reproductive system.  Other potential targets are the 

female reproductive system, the adult nervous system, and the developing and adult immune system; 

however, evidence for these end points is limited.  In other systems/organs, available data provide no 

consistent evidence for exposure-related effects (respiratory, cardiovascular, gastrointestinal, 

hematological, renal, dermal, or ocular effects); therefore, effects in these systems are considered unlikely 

to occur following PBDE exposure.  

Developmental Effects. 

Neurodevelopment. Numerous epidemiological studies have reported results suggestive of an effect of 

PBDE on neurodevelopment in children.  PBDE concentrations in cord blood, maternal or infant serum, 

and/or breast milk have been correlated with cognitive score and adaptive behavior deficits in infants; 

mental and physical development deficits in infants/toddlers at ages 12, 24, and 36 months; language and 

social developmental score deficits in toddlers at 24 months; increased impulsivity in toddlers at 24– 

36 months; poor social competence and attention deficit hyperactivity disorder (ADHD) or increased 

attention problems in 4-year-old children; impaired fine motor coordination, verbal memory and 
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comprehension, and sustained attention in 5–7-year-old children; and poor attention and executive 

function deficits in 9–12-year-old children.  In one birth cohort, no associations were observed between 

maternal serum PBDEs and neonatal behavior in 5-week-old infants or autistic behaviors at 4–5-year-old 

children; however, children from the same cohort showed associations between maternal serum PBDEs 

and decreased IQ and increased hyperactivity at 5 years of age and executive function deficits at 5– 

8 years of age.  Pre- and perinatal studies in animals also consistently reported neurodevelopmental 

effects following exposure to lower-brominated PBDEs and decaBDE at doses ≥0.06 and 

≥2.22 mg/kg/day, respectively, including neurobehavioral alterations, delayed ontogeny of reflexes, 

ultrastructural changes in the hippocampus, altered nicotinic receptor density, altered electrophysiology, 

and altered gene and protein expression levels.  

Based on human and animal data, the developing nervous system is a target of concern for both lower

brominated PBDEs and decaBDE. 

Endocrine System Development. In infants, developmental exposure to PBDEs and infant serum or cord 

blood thyroxine (T4) levels were either negatively associated or not associated.  Associations between 

developmental PBDE exposure and infant serum or cord blood triiodothyronine (T3) and thyroid 

stimulating hormone (TSH) were similarly inconsistent.  In animals, numerous studies have reported 

decreased serum T4 and/or T3 levels in pups after gestational and lactational exposure to penta- or 

tetraBDE at doses as low as 0.3 mg/kg/day in rats and 452 mg/kg/day in mice. Significant reductions in 

serum T3 levels were also observed in offspring following gestational and lactational exposure to 

decaBDE at 146 mg/kg/day in rats and 1,500 mg/kg/day in mice, although no changes were observed in 

serum T4 or TSH.  A dose-related decrease in serum T4 was observed in neonatal male mice exposed to 

decaBDE doses of 6–20 mg/kg/day from postnatal day (PND) 2 to 15, but no change was observed in 

neonatal females.  

While human data are inconsistent, they suggest that PBDEs can interact with thyroid hormone 

homeostasis in infants and children. These data, along with available animal studies, indicate that the 

developing thyroid is a target of concern for PBDE exposure, especially lower-brominated PBDEs.  

Reproductive System Development. Male reproductive effects significantly associated with PBDE 

exposure in infants included congenital cryptorchidism (undescended testes), decreased cord serum total 

testosterone (but not free testosterone, estradiol [E2], aromatase index, sex hormone binding globulin, or 

Anti-Müllerian hormone), increased serum levels of the sex hormones, E2, free E2, and inhibin B (but not 
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testosterone, luteinizing hormone [LH], follicle-stimulating hormone [FSH], or sex hormone binding 

globulin) at 3 months of age, and increased testes volume in boys at 18 months of age.  In contrast, no 

relationships were observed between maternal PBDE exposure and hypospadias (abnormal location of the 

urinary tract opening) in male offspring, PBDE concentrations in children’s adipose tissue and 

cryptorchidism, or various measures of sexual maturation in female offspring.  However, serum PBDE 

levels in 6–8-year-old females were significantly associated with delayed onset of puberty in a 

longitudinal cohort of U.S. girls. 

In animal studies, reproductive effects were observed in adult F1 offspring of dams exposed to a single 

dose of pentaBDE at 0.06 mg/kg on gestation day (GD) 6, including reductions in testicular weight, 

sperm/spermatid number, and daily sperm production in males and a decreased number of secondary 

follicles and ultrastructural changes in the ovaries in females (although F1 fertility when mated to an 

unexposed animal was not impaired).  In animals exposed pre- or perinatally to decaBDE, reproductive 

effects were observed in adult male offspring of dams exposed to decaBDE doses of 10–1,500 mg/kg/day 

from GD 0 to 17, including testicular lesions, decreased anogenital distance (AGD), and altered sperm 

parameters.  In contrast, no exposure-related changes in AGD, onset of puberty, or reproductive organ 

weight and histology were reported in offspring of dams exposed to decaBDE at doses up to 

1,000 mg/kg/day during gestation and lactation or doses up to 20 mg/kg/day from PND 2 to 15.  No 

exposure-related changes in reproductive development were reported in female offspring of dams exposed 

to decaBDE at doses up to 1,000 mg/kg/day during gestation and lactation or doses up to 20 mg/kg/day 

from PND 2 to 15. 

Based on limited human and adequate animal data, it is possible that oral PBDE exposure during 

development may adversely affect the developing reproductive system, particularly the male reproductive 

system.  However, data are too limited to adequately determine whether or not PBDE exposure in infants 

and children will lead to altered reproductive performance as adults. 

Immune System Development. In offspring of rat dams exposed to pentaBDE at doses up to 

25 mg/kg/day via gavage for 70 days prior to mating through PND 21, a significant dose-related trend 

was observed in the incidence of apoptotic lymphocytes and tingible macrophages in the thymus of 

PND 43 males, but not females. In PND 28 offspring of mouse dams exposed to decaBDE at doses 

≥260 mg/kg/day from GD 10 to PND 21, pulmonary viral titers of respiratory syncytial virus (RSV) 

(measured 5 days post-infection) were significantly increased. These animal data suggest that oral PBDE 
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exposure during development may lead to immunosuppression; however, data are too limited to 

adequately assess the immunotoxic potential of PBDE exposure in infants and children. 

Embryotoxicity, Fetotoxicity, and Physical Growth and Development. No human studies have evaluated 

associations between embryotoxicity or fetotoxicity and PBDE exposure.  One study reported a 

significant increased risk for preterm birth in women with high serum PBDE concentrations, compared 

with low PBDE concentrations; however, other studies did not observe a significant association between 

gestational length and PBDE concentrations. Evidence for altered physical growth and development from 

human studies is inconsistent, with some studies reporting associations between PBDE concentrations in 

maternal/cord serum, breast milk, or placental tissue and decreased birth weight, length, chest 

circumference, head circumference, and/or body mass index (BMI), some reporting no associations, and a 

limited number reporting increased birth weight, length, and/or head circumference. Available data from 

animal studies indicate that PBDEs are not embryotoxic or fetotoxic at PBDE doses below doses that 

elicited maternal toxicity, although occasional observations of reduced pup weight were reported. 

Based on animal studies, it is unlikely that oral PBDE exposure will cause embryotoxicity or fetotoxicity 

in humans; however, human and animal data indicate that PBDE exposure could potentially lead to low 

birth weight or other impacts on physical development. 

Endocrine Effects. 

Thyroid. Numerous studies have been performed to evaluate the relationship between concentrations of 

PBDE in body tissues and circulating thyroid hormone levels in human populations.  While these studies 

have demonstrated that PBDE can perturb the human endocrine system and affect hormone levels, the 

specific findings are not consistent across studies.  For example, even limiting the discussion to studies 

that evaluated both PBDE concentrations and thyroid hormone levels in serum samples collected only 

from adult men, studies have reported positive associations with T4, negative associations with T4, and no 

association with T4. Similar inconsistencies were found in studies in pregnant women, with studies 

reporting a positive associations with T4, no association with T4, or negative associations with T4.  Results 

were similarly inconsistent regarding the association between PBDE concentrations and serum T3 and 

TSH. 

In contrast to inconsistencies observed in human studies, altered serum thyroid hormone levels have been 

consistently reported in laboratory animals exposed to lower-brominated PBDEs.  Reduced serum T4 has 
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been reported in animals following acute or intermediate exposure to lower-brominated PBDEs at doses 

as low as 0.8 mg/kg/day.  At higher doses (≥30 mg/kg/day), some studies also report reduced serum T3 

and/or increased serum TSH; however, other studies reported no significant changes in serum T3 and/or 

TSH levels in rats exposed to doses up to 300 mg/kg/day.  In rat dams, reduced serum T4 has been 

observed following exposure to lower-brominated PBDEs at doses as low as 0.06 mg/kg/day during 

gestation or gestation plus lactation.  In mouse dams, no exposure-related changes were observed 

following exposure to pentaBDE at 452 mg/kg/day from GD 4 to PND 17.  Exposure to pentaBDE at 

doses up to 120 mg/kg/day during gestation or gestation plus lactation did not significantly alter maternal 

serum T3 and/or TSH in most studies; however, a study reported reduced maternal serum T3 after 

exposure to pentaBDE at 30 mg/kg/day via dosed cookies from GD 1 to PND 21. 

Histopathological changes in the thyroid (e.g., follicular cell hyperplasia, increased epithelial 

thickness/height, altered morphology of epithelium, cellular debris, degeneration) have been observed in 

intermediate-duration studies of lower-brominated BDEs at doses as low as 20 mg/kg/day in rats, 

0.45 mg/kg/day in mice, and 0.06 mg/kg/day in mink.  Increased thyroid weights were reported in rats 

exposed to doses of penta- or octaBDE as low as 50 mg/kg/day for 90 days; however, no exposure-related 

changes in thyroid weights were observed in rats exposed to doses of penta- or octaBDE up to 

200 mg/kg/day for 15–28 days or in F0 or F1 mink exposed to dietary pentaBDE at doses up to 

0.31 mg/kg/day in one-generation studies (4 weeks pre-mating through postnatal week [PNW] 6 or 33).  

In acute studies, no exposure-related changes in thyroid weight or histology were observed in rats 

exposed to penta- or tetraBDE doses up to 36 mg/kg/day for 14 days 

Unlike the lower-brominated PBDEs, serum T4 levels were not altered in rats exposed to decaBDE at 

doses up to 600 mg/kg/day for 4–90 days.  Some studies reported reduced serum T3 levels in rats exposed 

to decaBDE at doses as low as 50 mg/kg/day for 28–90 days, but another 90-day study reported no 

change in serum T3 levels in rats exposed to decaBDE at doses up to 100 mg/kg/day. Serum TSH was 

reduced in male rats exposed to decaBDE at doses ≥300 mg/kg/day for 33 days. At higher doses 

(≥950 mg/kg/day), significant reductions in serum T4 and T3 were observed in male mice exposed for 

35 days and pregnant mice exposed from GD 7 to 9.  

In chronic studies of decaBDE, thyroid follicular cell hyperplasia was observed in male mice exposed to 

≥3,200 mg/kg/day for 103 weeks; no histopathological changes in the thyroid were observed at doses up 

to 7,780 mg/kg/day in female mice, 2,240 mg/kg/day in male rats, or 2,550 mg/kg/day in female rats.  In 

intermediate-duration studies, dose-related increases in thyroid hyperplasia were reported for male rats 
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exposed to a low-purity decaBDE compound at ≥80 mg/kg/day for 30 days, but hyperplasia was not 

observed in rats or mice exposed to high-purity decaBDE at doses up 8,000 or 9,500 mg/kg/day, 

respectively, for 13 weeks or in rat dams exposed to doses up to 146 mg/kg/day from GD 10 to PND 21.  

However, multiple areas of degenerated follicular epithelium and slight attenuation of the follicular 

epithelium were observed in the thyroid glands of young male rats exposed to decaBDE at doses 

≥300 mg/kg/day for 33 days.  No changes in thyroid weight were observed in rats exposed to decaBDE at 

doses up to 90 mg/kg/day for 28 days, but increased thyroid weights were reported in rat dams exposed to 

≥2 mg/kg/day from GD 10 to PND 21 and young male rats exposed to 600 mg/kg/day for 33 days. 

While human data are inconsistent, they suggest that PBDEs can interact with thyroid hormone 

homeostasis. These data, along with available animal studies, indicate that the thyroid is a target of 

concern for PBDE exposure, especially lower-brominated PBDEs. 

Pancreas. An analysis of cross-sectional National Health and Nutrition Examination Survey (NHANES) 

data showed a significant increase in the risk of diabetes associated with serum concentrations of BDE 

153 (but not BDE 28, BDE 47, BDE 99, or BDE 100), although the risk was higher with exposure to 50– 

75th percentile BDE 153 concentrations than >75th percentile BDE 153 concentrations. Serum BDE 153 

concentrations (but not BDE 28, BDE 47, BDE 85, BDE 99, BDE 100, or BDE 154) were also shown to 

be significantly associated with increased odds of developing gestational diabetes in a cohort of 

258 pregnant women.  However, other cross-sectional and prospective studies found no relationship 

between serum PBDE concentrations and diabetes in an adult cohort from Wisconsin, an elderly cohort in 

Finland, or an elderly cohort in Sweden. 

An intermediate-duration study evaluated insulin-regulation and pancreatic morphology in rats following 

exposure to decaBDE at 0, 0.05, 1, or 20 mg/kg/day daily via gavage in corn oil for 8 weeks.  Serum 

insulin was significantly decreased by 50–60% at 1 and 20 mg/kg/day, and glucose levels were 

concomitantly increased by 12, 18, and 21% at 0.05, 1, and 20 mg/kg/day.  Consistent with the insulin 

findings, morphological changes were seen in the pancreas at 1 and 20 mg/kg/day (blurred boundaries 

among pancreatic islet cells; quantitative data not reported).  Additionally, microarray analysis indicated 

that type I diabetes mellitus (T1DM) canonical pathways were significantly enriched following decaBDE 

exposure. Subsequently, gene act network and gene coexpression network found that some major 

histocompatibility complex molecules and TNF-α were involved in the T1DM pathway.  Only one other 

animal study evaluated the pancreas following decaBDE exposure.  In rats exposed to decaBDE via 

gavage for 28 days at doses of 0, 0.27, 0.82, 2.47, 7.4, 22.2, 66.7, or 200 mg/kg/day, slight or moderate 
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insulitis was observed in the Langerhan’s islets of the “majority of samples,” but findings were not 

exposure-related.  Similarly, no exposure-related effects were observed for serum glucose levels.  The 

only other study evaluating serum glucose levels after decaBDE exposure instead reported reduced serum 

glucose levels in male rats exposed to 20 mg/kg/day of a dietary PBDE mixture containing 52.1% 

pentaBDE (DE-71), 44.2% decaBDE (BDE 209), and 0.4% octaBDE (DE-79) for 70 days.  The observed 

decreased glucose levels could be due to the pentaBDE component, as male rats exposed to pentaBDE at 

doses of 0.27–200 mg/kg/day for 28 days also showed decreased glucose levels; the study authors did not 

report the lowest dose at which glucose levels were significantly lower in male rats, but they reported a 

BMD10RD of 179.55 mg/kg/day and a BMDL10RD of 66.7 mg/kg/day.  

Limited human evidence is inconclusive regarding potential associations between diabetes and PBDE 

exposure; however, considering the animal data, the pancreas may be a target of concern for oral PBDE 

exposure.  

Hepatic Effects. Liver effects have been reported in adult, pregnant, and developing animals exposed 

to lower-brominated PBDEs.  Histopathological effects in the liver (hepatocellular hypertrophy, necrosis, 

and vacuolation) were consistently observed in animals exposed to lower-brominated PBDEs for 15– 

90 days at doses ≥0.45 mg/kg/day, regardless of life-stage.  In acute exposure studies, fatty degeneration 

of the liver was observed following a single pentaBDE dose of 2,000 mg/kg or repeated pentaBDE doses 

of 200 mg/kg/day for 7 or 14 days.  Increased liver weight was also observed in animals exposed to 

lower-brominated PBDEs for 1–14 days at doses ≥8 mg/kg/day and 15–90 days at doses ≥1.2 mg/kg/day.  

In studies that evaluated hepatic enzyme induction (e.g., elevated ethoxyresorufin o-deethylase [EROD], 

methoxyresorufin o-deethylase [MROD], pentoxy-resorufin o-deethylase [PROD], and uridine 

diphosphoglucuronyl transferase [UDPGT] activity), significantly increased enzyme activities were 

observed in animals following acute or intermediate-duration exposure to doses ≥3 or ≥0.06 mg/kg/day, 

respectively, and were always observed at doses at or below the dose causing elevated liver weights in the 

same study.  No studies evaluating liver effects following chronic exposure to lower-brominated PBDEs 

were located. 

Evidence for hepatic toxicity following exposure to decaBDE is less consistent than evidence for lower

brominated PBDEs.  There is no evidence of hepatic toxicity following acute exposure to decaBDE at 

doses up to 1,000 mg/kg/day for 4–14 days.  In intermediate-duration studies, slight to moderate 

hepatocellular hypertrophy was observed in rats exposed to decaBDE at 60 mg/kg/day for 28 days, in 

pregnant rats exposed to 300 mg/kg/day for 21 days, and in mice exposed to 9,400 mg/kg/day for 
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28 days; however, other studies did not report exposure-related changes in liver histology following 

exposure to decaBDE at doses up to 9,500 mg/kg/day for 3–13 weeks.  In an older study using an impure 

decaBDE compound containing lower-brominated congeners (77% decaBDE, 22% nonaBDE, 0.8% 

octaBDE), centrilobular cytoplasmic enlargement and vacuolation, as well as increased liver weight, were 

observed in male rats exposed to dietary doses of ≥80 and 800 mg/kg/day, respectively, for 30 days.  

Increased liver weights were also reported in rats exposed to doses ≥1 mg/kg/day for 8 weeks and mice 

exposed to 9,400 mg/kg/day for 28 days, but other intermediate-duration studies reported no exposure-

related changes in liver weights at doses of 1,000 mg/kg/day for 21–90 days.  In chronic studies, exposure 

to decaBDE for 103 weeks caused liver lesions that included neoplastic nodules in rats at 

≥1,120 mg/kg/day, thrombosis and degeneration in rats at 2,240 mg/kg/day, and centrilobular hypertrophy 

and granulomas in mice at ≥3,200 mg/kg/day. 

Developing animals appear to be more susceptible to liver damage following exposure to decaBDE than 

adult animals. Transient histopathological changes (diffuse liver cell hypertrophy with increased 

cytoplasmic eosinophilia) and elevated liver weights were observed in male and female rat offspring 

exposed to decaBDE from GD 10 to PND 21 at ≥2 and 146 mg/kg/day, respectively.  Fatty degeneration, 

elevated liver weights, and elevated liver enzymes were observed in young male rats exposed to decaBDE 

at ≥300 mg/kg/day from PND 10 to 42.  In mice, decaBDE exposure from GD 0 to 17 caused acute cell 

swelling of hepatocytes associated with pressure occlusion of hepatic sinusoids and elevated liver 

enzymes in PND 71 male offspring at ≥10 mg/kg/day; however, liver weight was unaltered at doses up to 

600 mg/kg/day.  

No studies are available on hepatic effects of PBDEs in humans.  Based on the evidence in animals, 

PBDEs are potentially hepatotoxic in humans, especially lower-brominated PBDEs. 

Male Reproductive Effects. Several studies have found results suggestive of reproductive effects in 

men associated with exposure to PBDE, including significant inverse correlations between serum 

concentrations of BDE 153 (hexaBDE) and sperm concentration and testis size in young adult Japanese 

males, significantly reduced sperm mobility in association with increased serum PBDE concentrations 

(BDE 47, BDE 100, and total) in Canadian men recruited at a fertility clinic, and altered parameters of 

semen quality associated with selected BDEs in men participating in a prospective cohort study in 

Michigan and Texas.  Although a number of studies have evaluated the potential effects of PBDE 

exposure on male reproductive hormone levels, these studies collectively do not show consistent effects 

associated with PBDE exposure.  
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Reproductive effects have been reported in male rodents following intermediate-duration exposure to the 

lower-brominated PBDE congener tetraBDE, including decreased serum testosterone at 

≥0.001 mg/kg/day, histopathological changes in rat or mouse testes (increased epithelial thickness, 

multinucleated giant cells, vacuolar spaces, apoptosis, germ cell loss) at doses ≥0.03 or 

≥0.045 mg/kg/day, and decreased sperm production in rats at 1 mg/kg/day.  No dose-related changes were 

observed in testicular weight or sperm morphology, motility, or capacitation at doses up to 30 mg/kg/day.  

For other lower-brominated PBDEs (pentaBDE, octaBDE), no exposure-related effects were observed in 

serum testosterone levels at doses up to 60 mg/kg/day for 15–70 days, sperm parameters at doses up to 

20 mg/kg/day for 20 days, or male reproductive histology or organ weight at doses up to 750 mg/kg/day 

for 38–90 days.  However, in acute studies, serum testosterone levels were significantly decreased by 

~40–45% in male rats 45 days after a single gavage exposure to pentaBDE at doses ≥0.6 mg/kg and dose-

related decreases in androgen-dependent tissue weights (prostate, seminal vesicle, Cowper’s gland, gland 

penis, levator ani bulbo cavernosus) were observed in castrated rats exposed to pentaBDE at doses 

≥30 mg/kg/day for 9 days (Herschberger assay). 

Studies of decaBDE have been more limited. Decreased relative testes and epididymides weights, 

degenerative changes in the seminiferous tubules, reduced sperm count and viability, and reduced serum 

testosterone were reported in male mice exposed to decaBDE at 950 mg/kg/day via gavage for 35 days, 

compared with controls; no exposure-related effects were observed at 750 mg/kg/day.  In contrast, no 

changes in sperm count, motility, or morphology were observed in rats or mice exposed to decaBDE at 

doses up to 60 or 1,500 mg/kg/day for 28–50 days; however, exposure-related decreases were observed in 

one sperm velocity measure (lateral head amplitude) in mice exposed to ≥500 mg/kg/day.  A dose-related 

decrease in epididymis weight and a dose-related increase in seminal vesicle/coagulation gland weight 

were observed in rats exposed to 1.7–60 mg/kg/day for 28 days; however, the lowest doses at which the 

effects were observed were not reported.  No testicular weight changes were observed at doses up to 

60 mg/kg/day.  In other intermediate-duration studies, no exposure-related changes in organ weight were 

reported for male reproductive organs in rats or mice exposed to decaBDE doses up to 800 or 

1,500 mg/kg/day.  Histopathological changes in male reproductive tissues have not been reported in rats 

or mice exposed to decaBDE at doses up to 2,550 or 7,780 mg/kg/day, respectively, for 103 weeks.  

Findings were negative in a one-generation study that exposed male and female rats to an impure 

decaBDE compound containing lower-brominated congeners (77% decaBDE, 22% nonaBDE, 0.8% 

octaBDE) for 60 days prior to mating through PND 21.  
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Based on the evidence in humans and animals, lower-brominated PBDEs are potentially toxic to the male 

reproductive system in humans.  Available data for decaBDE provide very limited evidence of male 

reproductive damage. 

Female Reproductive Effects. Evidence for reproductive effects in women associated with 

exposure to PBDEs is inconsistent.  Increased length of menstrual periods (prior to pregnancy) was 

associated with increased breast milk concentrations of PBDEs in a study of 46 Taiwanese women, and 

with plasma levels of BDE 47 and BDE 153 in a study of 42 Cree women of James Bay, Canada, but not 

in a smaller study with 20 Taiwanese women or in 223 Californian women.  Age at menarche was not 

associated with PBDE concentrations in breast milk; however, an analysis of cross-sectional data from a 

sample of 271 adolescent girls (NHANES) found that higher serum PBDE concentrations were associated 

with younger age of menarche.  Decreased fecundability (i.e., increases in time to pregnancy between 

stopping contraception and becoming pregnant) was significantly associated with increased serum 

concentrations of BDE 47, BDE 99, BDE 100, and BDE 153 (and their sum) in 223 Californian women; 

however, fecundability was not significantly related to serum PBDE concentrations in a cohort of 

501 Michigan and Texas couples followed prospectively for 1 year after discontinuing contraception for 

the purpose of becoming pregnant.  A study of 65 women from Boston undergoing in vitro fertilization 

found no association between serum PBDE concentrations and risk of implantation failure, but did find a 

significantly increased risk of failure associated with increased (i.e., above median) concentrations of 

BDE 153 (but not other congeners or total PBDE) in follicular fluid.  PBDEs were not associated with 

Polycystic Ovary Syndrome or with diagnosis of uterine fibroids. 

In one-generation animal studies, no exposure-related changes were observed in reproductive end points 

(number of pregnancies, gestation length, number, size, or sex ratio of litters) in rats or mice exposed to 

lower-brominated PBDEs at doses up to 25 or 1 mg/kg/day, respectively.  Similarly, in gestation plus 

lactation studies, no exposure-related effects on litter parameters (successful delivery of litters, gestation 

length, litter size, sex ratio, number of live pups) were observed in rats or mice exposed to lower

brominated PBDEs at doses up to 32 or 10 mg/kg/day, respectively, during gestation and lactation only.  

The number of litters surviving until PND 8 was significantly decreased following exposure to tetraBDE 

at 0.1 mg/kg/day from pre-mating day 28 through PND 21 in one study; however, reduced pup survival 

was not reported in other studies.  In a one-generation study in mink, females exposed to pentaBDE at 

doses ≥0.25 mg/kg/day from pre-mating day 28 through PNW 6 did not whelp.  It is not clear in one study 

whether mink exposed to 0.25 mg/kg/day never became pregnant or had complete litter loss.  However, 

another study reported that female mink exposed to 0.31 mg/kg/day had no exposure-related changes in 
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mating success; rather, sows showed complete litter loss with 70% showing clear postimplantation loss. 

In one-generation and intermediate-duration studies, no changes in reproductive organ weight or 

histology were observed in female rats, mice, or mink exposed to lower-brominated PBDEs at doses up to 

750, 0.45, or 0.31 mg/kg/day, respectively.  One acute study reported increased paired ovary weight after 

exposure to tetraBDE at 0.14 mg/kg on GD 6; however, no changes in reproductive organ weight or 

histology were observed in female rats acutely exposed to pentaBDE at doses up to 300 mg/kg/day. 

In female mice exposed to dietary tetraBDE for 28 days, serum testosterone and E2 were significantly 

increased at 0.45 mg/kg/day; no other study reported altered reproductive hormones in females. 

Information on reproductive effects of decaBDE is limited. Findings were negative in a one-generation 

study that exposed male and female rats to an impure decaBDE compound contaminated with lower

brominated congeners (77% decaBDE, 22% nonaBDE, 0.8% octaBDE) for 60 days prior to mating 

through PND 21. In a gestational exposure study in mice (GDs 7–9), significant increases were observed 

in the percentage of postimplantation loss per litter and resorptions per litter in dams exposed to ≥750 and 

≥1,500 mg/kg/day, respectively.  Additionally, the percentage of live fetuses per litter was significantly 

decreased by 10% in dams exposed to 2,000 mg/kg/day. Histological changes in the ovaries (atrophic 

changes, decreased number of follicles, and increased fibrotic tissue) were observe in female rats exposed 

to decaBDE at 300 mg/kg/day from 3 weeks of age, through mating to untreated males, gestation, and 

lactation (~11 weeks); F0 reproductive success was not reported.  In other studies, no histopathological 

changes in female reproductive organs were observed in rats or mice following intermediate- or chronic-

duration exposure to decaBDE at doses up to 8,000 or 9,500 mg/kg/day, respectively. 

Based on inconsistent data in humans and animals, it is unclear whether PBDEs affect the female 

reproductive system in adults. 

Adult Neurological Effects. While neurobehavioral development is a potential effect of concern for 

PBDE exposure in humans, available human data are too limited to determine if PBDE exposure is 

neurotoxic in adults or adolescents.  No association was found between serum PBDE concentrations and 

neuropsychological function assessed by 34 tests of cognitive and motor function, affective state, and 

olfactory function in a study population of 144 volunteers (67 males and 77 females) between the ages of 

55 and 74 years who lived for at least 25 years in the upper Hudson valley of New York State.  In 

515 secondary students from Belgium (mean age 14.9 years), serum PBDE concentrations were not 

associated with most aspects of neurological performance measured in a battery of neurological tests; 
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however, there was a significant deterioration in performance in the finger tapping test with increasing 

PBDE level, suggesting an effect of PBDE on motor activity. 

Evidence for neurological effects of lower-brominated PBDEs in adult animals is limited.  In repeat-

exposure neurobehavioral studies, impaired learning and memory were observed in male rats exposed to 

tetraBDE at ≥0.1 mg/kg/day for 30 days and impaired attention and inhibitory control were observed in 

male mice exposed to pentaBDE at 26.2 mg/kg/day for 125 days. No exposure-related neurobehavioral 

changes were observed in rats exposed to pentaBDE at doses ≤17.5 mg/kg/day for 90–125 days or male 

rats exposed once to pentaBDE doses up to 1.2 mg/kg/day.  No exposure-related changes in brain weight 

and/or histology were observed in animals exposed to lower-brominated PBDEs at doses up to 

750 mg/kg/day. 

Evidence for neurological effects of decaBDE in adult animals is extremely limited. Decreased anxiety 

behavior in the elevated-plus maze was observed in male mice exposed to decaBDE for 15 days; 

however, no exposure-related changes were observed in anxiety behaviors in the light/dark test, in 

learning or memory in the Morris water maze, or in general neurological behaviors assessed using a 

functional observation battery.  In another study, no changes were observed in open-field behavior of 

male rats exposed to decaBDE at doses up to 50 mg/kg/day via gavage for 90 days.  No changes in brain 

weight were observed in rats or mice exposed to decaBDE at doses up to 90 or 160 mg/kg/day, 

respectively, for 15–60 days. No overt signs of neurotoxicity were observed in rats and mice exposed to 

decaBDE in estimated dietary doses as high as 16,000–19,000 mg/kg/day for 14 days, 8,000– 

9,000 mg/kg/day for 13 weeks, or 2,550–7,780 mg/kg/day for 103 weeks.  Although the high doses and 

extended exposure durations provided opportunities for the induction and/or development of clinical 

signs, the study is limited by lack of testing for subtle behavioral changes and neurodevelopmental 

effects. 

Based on available data in humans and animals, it is unclear whether PBDEs affect the adult nervous 

system. 

Immunological and Lymphoreticular Effects. Limited human data regarding potential 

immunotoxic effects of PBDEs are available. A significant negative association was found between 

serum concentrations of lower-brominated PBDE and number of circulating lymphocytes in a subset of a 

cohort of 33 adolescent children from the Netherlands.  No effects on pokeweed mitogen-stimulated DNA 

proliferation or IgG immunoglobulin synthesis were found in human lymphocytes exposed to lower
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brominated PBDEs in vitro. Studies of Swedish subjects reported a significantly negative association 

between serum levels of BDE 47 and levels of protein complement 3, but not with levels of multiple 

inflammatory markers.  In a study of Chinese children, serum levels of BDE 28 and 209 were associated 

with an increased risk of asthma. 

There is limited evidence for impaired immune function in animals following exposure to lower

brominated PBDEs; however, comprehensive immunological evaluations have not been performed on any 

congener or previously used commercial mixture.  The plaque-forming splenic cell antibody response to 

injected sheep red blood cells was significantly reduced in mice exposed to 72 mg/kg/day pentaBDE for 

14 days; single doses as high as 500 mg/kg had no effect.  In the same study, exposure to up to 

72 mg/kg/day had no effect on natural killer cell (NKC) activity. In vitro production of IgG 

immunoglobulin from pokeweed mitogen-stimulated splenocytes was reduced in mice exposed to 

36 mg/kg/day pentaBDE for 14 days.  Other 14-day studies in mice found no changes in NKC activity to 

murine YAC-1 target cells at pentaBDE doses up to 72 mg/kg/day or numbers of splenic and thymic 

lymphocyte subsets at pentaBDE doses up to 36 mg/kg/day, although 18 mg/kg/day of tetraBDE caused 

significantly reduced numbers of total lymphocytes and CD4+, CD8+, and CD45R+ subtypes in spleen.  

In the only intermediate-duration study evaluating immune function, no dose-related changes were 

observed in antibody-mediated immunity to keyhole limpet hemocyanin (KLH) or phytohemagglutinin 

(PHA) skin response in mink exposed to pentaBDE at doses up to 0.78 mg/kg/day for 9 weeks. 

Histopathological changes in the spleen (hyperplasia, germinal center development) were reported in 

some studies following intermediate-duration exposure to lower-brominated PBDEs at doses as low as 

0.63 mg/kg/day in mink and at 0.45 mg/kg/day in mice. In other studies, no exposure-related changes 

were observed in spleen, thymus, lymph node, and/or bone marrow tissue histology in rats exposed to 

lower-brominated PBDEs at doses up to 750 mg/kg/day for 28–90 days.  Additionally, no exposure-

related changes were observed in the histology of the spleen, thymus, Peyer’s patches, or mesenteric 

lymph nodes in rat dams exposed to pentaBDE at doses up to 25 mg/kg/day via gavage for 70 days prior 

to mating through PND 21 (~21 weeks). 

Exposure to decaBDE at 1,800 mg/kg/day for 28 days did not cause increased pulmonary viral titers of 

RSV (measured 5 days post-infection) in mice.  In rat dams exposed to 300 mg/kg/day from 21 days prior 

to mating through PND 21, altered T-lymphocyte cell population distribution in the thymus and a 

significantly reduced response to in vitro PHA exposure in cultured lymphocytes were observed.  In 

another study, no dose-related changes were reported for T-cell, B-cell, or macrophage population 
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distribution in the spleen of rats exposed to decaBDE at doses up to 60 mg/kg/day via gavage for 28 days.  

In a high-dose study, female mice exposed to decaBDE at 800 mg/kg every other day showed impaired 

CD4 T-cell function from 4 to 10 months of exposure, compared with controls.  

Chronic ingestion of decaBDE caused splenic lesions (hematopoiesis, fibrosis, lymphoid hyperplasia) in 

rats exposed to ≥1,200 mg/kg/day for 103 weeks.  After exposure for 13 weeks, histopathological 

examinations of spleen, thymus, lymph node, and/or bone marrow tissues showed no effects in rats or 

mice exposed to decaBDE at doses up 8,000 or 9,500 mg/kg/day.  In rat dams exposed to decaBDE at 

300 mg/kg/day for 21 days prior to mating through PND 21, lesions of the thymus (thickened thymus 

capsule, decreased lymphoid tissue in the cortex with adipose tissue replacement, increased medulla size, 

and obscured corticomedullary junction) and spleen (decreased size and number of lymphoid nodules, 

thinner lymphatic sheath around arteries, and fibrotic tissue with macrophages in the medulla) were 

observed. 

Evidence from animals suggests that PBDE exposure may cause immune suppression, but data are limited 

and inconsistent.  Additionally, comprehensive immunological evaluations have not been performed and 

human data are extremely limited.  Therefore, currently available information is insufficient to adequately 

characterize the human immunotoxic potential of PBDEs. 

Cancer. In human case-control epidemiological studies, no clear associations have been found between 

non-Hodgkin’s lymphoma risk and exposure to BDE 47 in a group of Swedish men and women including 

19 cases and 27 controls, testicular cancer risk and serum PBDE (sum of BDE 47, BDE 99, and 

BDE 153) in a small group of Swedish men and women including 58 cases and 58 controls, breast cancer 

risk and adipose concentrations of PBDE (BDE 47, BDE 99, BDE 100, BDE 153, BDE 154, and their 

sum) in a group of women from the San Francisco Bay area of California including 78 cases and 

56 controls, breast cancer and BDE 47 in serum in native Alaskan women, thyroid cancer and serum 

PBDE (BDE 47, BDE 99, BDE 100, BDE 153, and their sum) in participants in a large multicenter 

clinical trial in the United States that included 104 cases and 208 controls, or prostate cancer and serum 

levels of BDE 47 in a study involving 208 prostate cancer incident cases and 268 controls in Singaporean 

males.  In a study examining the association between exocrine pancreatic cancer risk and PBDE 

concentrations in adipose tissue (sum of BDE 28, BDE 47, BDE 66, BDE 100, BDE 99, BDE 85, 

BDE 154, BDE 153, BDE 138, and BDE 183) in a group of Swedish men and women, PBDE 

concentrations were significantly higher in the 21 cases compared with the 59 controls.  Case-control 

analysis found that the risk of pancreatic cancer was not significantly increased with lipid PBDE using 
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median concentration in controls as a cut-off after adjustment for age, sex, and BMI at tissue sampling; 

however, the increase in risk was significant when the BMI adjustment was performed for the year before 

tissue sampling (body weight 1 year before tissue sampling obtained by questionnaire). 

For most PBDEs, including pentaBDE and octaBDE, animal studies of carcinogenic effects are not 

available; cancer data on PBDEs in animals are limited to results of studies on commercial decaBDE 

products.  In a bioassay conducted by the National Toxicology Program (NTP), male and female rats were 

exposed to high purity commercial decaBDE (lots that were 96 or 94–97% pure) in the diet in low doses 

of 1,120 and 1,200 mg/kg/day, respectively, and high doses of 2,240 and 2,550 mg/kg/day, respectively, 

for 103 weeks.  Male and female mice were similarly exposed to low doses of 3,200 and 

3,760 mg/kg/day, respectively, and high doses of 6,650 and 7,780 mg/kg/day, respectively.  Incidences of 

neoplastic nodules in the liver were significantly increased in the male and female rats, although the term 

neoplastic nodule is poorly defined and understood, and is no longer used by NTP to characterize 

hepatoproliferative lesions in rats.  Incidences of hepatocellular adenoma or carcinoma (combined) were 

significantly increased in the male mice.  Slightly elevated incidences of thyroid gland follicular cell 

adenoma or carcinoma (combined) were additionally observed in exposed male mice, although the 

increases were not statistically significant.  Carcinogenicity was also evaluated in rats that were exposed 

to 0.01, 0.1, or 1.0 mg/kg/day dietary doses of a 77.4% decaBDE mixture (containing 21.8% nonaBDE 

and 0.8% octaBDE) for approximately 2 years.  No exposure-related neoplastic changes were found, but 

the power of this study to detect carcinogenic effects is limited by the very low dose levels in comparison 

to those tested in the NTP bioassay. 

The EPA hazard descriptor for decaBDE is “suggestive evidence of carcinogenic potential” based on: 

(1) no studies of cancer in humans exposed to decaBDE; (2) a statistically significant increase in 

incidence of neoplastic nodules and a slight increase in incidence of carcinomas (not statistically 

significant) in the liver of low- and high-dose male rats and high-dose female rats; (3) a significantly 

increased incidence of hepatocellular adenoma or carcinoma (combined) in male mice at the low dose and 

marginally increased incidence at the high dose; (4) a nonsignificantly increased incidence of 

hepatocellular adenoma or carcinoma (combined) in female mice; (5) a slightly greater (but statistically 

not significant) incidence of thyroid gland adenomas or carcinomas (combined) in dosed male and female 

mice; (6) a significantly increased incidence in male mice, at both doses, of follicular cell hyperplasia, 

considered by many as a precursor to thyroid tumors; and (7) an apparent absence of genotoxic potential.  

DecaBDE has been classified as a Group 3 carcinogen (not classifiable as to its carcinogenicity to 

humans) by the International Agency for Research on Cancer (IARC) based on inadequate evidence of 
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carcinogenicity in humans and inadequate or limited evidence in experimental animals.  The EPA assigns 

the cancer category Group D (not classifiable as to human carcinogenicity) to mono-, di-, tri-, tetra-, 

penta-, hexa-, octa-, and nonaBDEs and reports “inadequate information” to classify the specific 

congeners 2,2’,4,4’-tetraBDE, 2,2’,4,4’,5-pentaBDE, and 2,2’,4,4’,5,5’-hexaBDE. The Department of 

Health and Human Services has not evaluated PBDEs for carcinogenicity. ACGIH has no data regarding 

cancer classifications for PBDEs. 

2.3  MINIMAL RISK LEVELS (MRLs) 

Estimates of exposure levels posing minimal risk to humans (MRLs) have been made for PBDEs. An 

MRL is defined as an estimate of daily human exposure to a substance that is likely to be without an 

appreciable risk of adverse effects (noncarcinogenic) over a specified duration of exposure. MRLs are 

derived when reliable and sufficient data exist to identify the target organ(s) of effect or the most sensitive 

health effect(s) for a specific duration within a given route of exposure. MRLs are based on 

noncancerous health effects only and do not consider carcinogenic effects.  MRLs can be derived for 

acute, intermediate, and chronic duration exposures for inhalation and oral routes.  Appropriate 

methodology does not exist to develop MRLs for dermal exposure. 

Although methods have been established to derive these levels (Barnes and Dourson 1988; EPA 1990), 

uncertainties are associated with these techniques.  Furthermore, ATSDR acknowledges additional 

uncertainties inherent in the application of the procedures to derive less than lifetime MRLs.  As an 

example, acute inhalation MRLs may not be protective for health effects that are delayed in development 

or are acquired following repeated acute insults, such as hypersensitivity reactions, asthma, or chronic 

bronchitis.  As these kinds of health effects data become available and methods to assess levels of 

significant human exposure improve, these MRLs will be revised. 

People are environmentally exposed to PBDE mixtures of different congeneric composition than 

previously used commercial PBDE products.  Although the toxicity or potency of environmental mixtures 

of congeners consequently may be greater or less than that of the commercial PBDE mixtures or 

individual congeners, there are insufficient mixture toxicity data on which to directly base MRLs for 

environmental PBDEs.  Due to the likelihoods that (1) multiple mechanisms (aryl hydrocarbon receptor 

[AhR]-receptor-dependent mechanisms, AhR-independent mechanisms, or both) may be involved in 

health effects induced by PBDEs, (2) different PBDE congeners may produce effects by different 

mechanisms, and (3) humans are exposed to complex mixtures of interacting PBDEs with differing 
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biological activities, as well as to the lack of a suitable approach for quantitatively evaluating joint toxic 

action from concurrent exposures to PBDEs, PBBs, PCBs, chlorinated dibenzo-p-dioxins (CDDs), and/or 

chlorinated dibenzofurans (CDFs) in the environment, data from previously used commercial PBDE 

mixtures and individual congeners were reviewed to develop MRLs for assessing health risks from 

environmental exposures to PBDEs. 

Separate MRLs were derived for lower-brominated PBDEs and decaBDE based on important differences 

in pharmacokinetics and toxicity of decaBDE compared to lower-brominated PBDEs. The most recent 

and best available estimates of oral absorption efficiencies for PBDE congeners indicate a range of 10– 

26% for decaBDE (BDE 209) and 70–85% for tetraBDE (BDE 47), pentaBDE (BDE 99, BDE 100), and 

hexaBDE (BDE 153, BDE 154) (Chen et al. 2006; Hakk et al. 2002a, 2002b, 2009; Morck and Klasson 

Wehler 2001; Morck et al. 2003; Örn and Klasson-Wehler 1998; Riu et al. 2008; Sandholm et al. 2003; 

Sanders et al. 2006a, 2006b; Staskal et al. 2005).  Consistent with the higher absorption efficiencies of the 

lower-brominated congers, the animal toxicity database indicates that toxic effects occur at lower doses 

following exposure to lower-brominated PBDEs than following exposure to decaBDE.  For example, the 

acute exposure levels required to cause neurobehavioral effects in mice are higher for decaBDE 

(≥2.22 mg/kg) than penta-, tetra-, and hexaBDE (≥0.8, ≥1, and ≥0.45 mg/kg, respectively) (Eriksson et al. 

2001; Gee and Moser 2008; Johansson et al. 2008; Sand et al. 2004; Viberg et al. 2003a, 2003b, 2004a, 

2004b).  

Inhalation MRLs 

Lower-brominated BDEs. Derivation of an acute-duration MRL for lower-brominated BDEs is not 

recommended at this time due to insufficient information.  The inhalation database for acute-duration 

exposure to PBDEs is essentially limited to a single 14-day unpublished industry-sponsored study of 

octaBDE in rats (Great Lakes Chemical Corporation 1978).  In this study, groups of five male and five 

female Charles River CD rats were whole-body exposed to dust of an unspecified commercial octaBDE 

mixture in mean analytical concentrations of 0, 0.6, 3.7, 23.9, or 165.2 mg/m3 for 8 hours/day for 

14 consecutive days. The average mass median aerodynamic diameter (MMAD) and geometric standard 

deviation (GSD) of the particles were 3.5 µm and 2, respectively.  Study end points included clinical 

signs (including observations for respiratory distress and nasal and ocular irritation), body weight and 

food consumption, hematology (5 indices), blood chemistry (5 indices, thyroid hormones not assessed), 

urinalysis (10 indices), organ weights (5 organs including thyroid/parathyroid), gross pathology, and 

histology (21 tissues including nasal turbinates, trachea, lungs, and thyroid).  The clinical laboratory tests 
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were limited to rats in the control and two highest dose groups.  The histological exams were limited to 

the control and highest dose groups, except for the liver, which was examined in all groups.  Signs of 

increased respiration rate (rapid breathing) were observed by the end of each exposure period in rats 

exposed to ≥24 mg/m3; this effect always disappeared by the following morning.  Liver weight was 

significantly increased and hepatic lesions occurred in rats exposed to ≥3.7 mg/m3. At 3.7 mg/m3, the 

liver lesions consisted of very slight to slight, focal to multifocal cytoplasmic enlargement of the 

hepatocytes, accompanied by focal acidophilic degeneration of individual to small groups of cells. The 

liver lesions were similar in the higher dose groups except that the hepatocyte enlargement was multifocal 

to diffuse in distribution, and there were focal, small to large areas of hepatocellular necrosis present to a 

very slight to marked degree.  There were no exposure-related histological changes in other tissues. 

As detailed above, hepatocellular hypertrophy accompanied by some degenerative hepatocellular changes 

was found following exposure to octaBDE at concentrations ≥3.7 mg/m3 for 14 days (Great Lakes 

Chemical Corporation 1978).  However, this study is limited by small animal numbers and incomplete 

evaluation of other end points at lower doses.  Additionally, a well-designed 13-week study (Great Lakes 

Chemical Corporation 2000) found hepatocellular hypertrophy at a higher minimum effect level 

(16 mg/m3) than the 14-day study, but no degenerative liver changes. The available information indicates 

that there is insufficient evidence for considering the hepatic changes as adverse acute effects. More 

importantly, exposure to ≥16 mg/m3 caused changes in serum levels of thyroid hormones (decreased T3, 

increased TSH) in the 13-week study.  Thyroid hormone levels were not determined in the 14-day study.  

Therefore, due to the lack thyroid hormone data in the 14-day study, as well as the lack of any clear 

lowest-observed-adverse-effect levels (LOAELs) for the other end points in the 14-day study, particularly 

at exposures levels below the LOAEL for thyroid effects in the 13-week study, the data are inadequate to 

derive an MRL for acute-duration exposure. 

•	 An MRL of 0.006 mg/m3 has been derived for intermediate-duration inhalation exposure (15– 
364 days) to lower-brominated BDEs. 

The intermediate-duration inhalation MRL is based on a no-observed-adverse-effect level (NOAEL) of 

1.1 mg/m3 for changes in thyroid hormones in rats that were intermittently exposed to octaBDE for 

13 weeks (Great Lakes Chemical Corporation 2000).  Calculation of the MRL is detailed below. 

The inhalation database for intermediate-duration exposure to PBDEs consists of one well-conducted 

13-week study (Great Lakes Chemical Corporation 2000).  This is an unpublished industry-sponsored 

study in which a commercial octaBDE product (bromine content 78.7%) was administered to groups of 
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10 male and 10 female Crl:CD(SD)IGS BR rats, via nose-only inhalation as a dust aerosol, in measured 

concentrations of 0 (air only), 1.1, 16, or 202 mg/m3 for 6 hours/day, 5 days/week, for 13 weeks.  The 

mean MMADs in the low to high exposure groups were 2.0, 2.7, and 2.8 μm, and the corresponding mean 

GSDs were 3.37, 3.72, and 3.01.  Clinical and physical signs, body weight, food consumption, and 

survival were evaluated throughout the study.  Ophthalmic, hematology (11 indices), serum chemistry 

(18 indices), and serum thyroid hormone (TSH, total T3, and total T4) evaluations were performed near 

the end of the exposure period.  Urine analyses were not conducted.  Comprehensive necropsies, organ 

weight measurements, and histological examinations (including respiratory tract and thyroid) were 

performed following exposure termination.  

Hepatic, nasal, lung, thyroid, and ovarian effects were observed (Great Lakes Chemical Corporation 

2000). The liver was affected in both sexes as shown by dose-related increases in centrilobular 

hepatocellular hypertrophy at ≥16 mg/m3 and liver weight (absolute and relative) at 202 mg/m3. Total 

incidences of centrilobular hepatocellular hypertrophy in the 0, 1.1, 16, and 202 mg/m3 groups were 1/10, 

0/10, 3/10, and 10/10, respectively, in males and 0/10, 0/10, 3/10, and 6/10, respectively, in females; 

severity was predominantly minimal in affected animals from all groups.  The incidence of nasal goblet 

cell lesions was increased at 202 mg/m3, but showed no clear dose-related trends for increasing incidence 

or severity.  Total incidences of nasal goblet cell hypertrophy were slightly increased in nasal level II of 

both sexes at ≥1.1 mg/m3; respective incidences in the 0, 1.1, 16, and 202 mg/m3 exposure groups were 

4/10 (all minimal), 9/10 (7 minimal, 2 mild), 6/10 (all minimal), and 10/10 (9 minimal, 1 mild) in males, 

and 2/10 (all minimal), 6/10 (all minimal), 4/10 (all minimal), and 8/10 (all minimal) in females.  Nasal 

goblet cell hypertrophy was also slightly increased in nasal level IV in males at 202 mg/m3 (4/10, 0/10, 

1/10, and 8/10, all minimal severity, not increased in females).  Histological changes in the lungs included 

alveolar histiocytosis and chronic active inflammation that were only clearly increased in incidence at 

202 mg/m3. Total incidences of alveolar histiocytosis at 0, 1.1, 16, and 202 mg/m3 were 3/10, 5/10, 5/10, 

and 10/10, respectively, in males, and 0/10, 5/10, 2/10, and 10/10, respectively, in females. 

Corresponding total incidences of chronic active lung inflammation were 0/10, 0/10, 2/10, and 10/10 in 

males, and 0/10, 1/10, 1/10, and 10/10 in females. The severity of both lesion types tended to increase 

from minimal at lower doses to mild/moderate at 202 mg/m3. Gross lung changes also occurred in both 

sexes at 202 mg/m3; these included lung firmness and white discoloration and/or enlargement in the 

bronchial and/or mediastinal lymph nodes.  The lymph node effects correlated with the histological 

finding of granulomatous inflammation.  There were no exposure-related gross or histopathological 

changes in the spleen, bone marrow, thymus, or other tissues, including thyroid. Thyroid hormone 

assessments, however, showed exposure-related decreases in mean thyroxine (total T4) at ≥16 mg/m3 in 
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both sexes, and increases in TSH at ≥16 mg/m3 in males and 202 mg/m3 in females.  The changes were 

usually statistically significant (p<0.05 or p<0.01) compared to controls and were considered to be 

consistent with chemical-induced hypothyroidism.  There were no serum T3 changes.  Qualitative 

histological evaluations of step sections of ovaries showed an absence of corpora lutea in 3/10 females 

exposed to 202 mg/m3, compared to 0/10 in the control and lower exposure groups.  This 30% incidence 

was interpreted to be a treatment-related effect because an absence of corpora lutea was considered 

unusual in rats at 20 weeks of age. 

Considering the minimal severity of the nasal goblet cell hypertrophy, lack of clear dose-related 

increasing trends for incidences and severity of this nasal effect, clear identification of both a NOAEL 

(1.1 mg/m3) and LOAEL (16 mg/m3) for changes in serum levels of thyroid hormones, and abundant 

evidence for thyroid effects of PBDEs in oral studies, the effects on thyroid hormones are the most 

appropriate basis for estimation of an intermediate-duration inhalation MRL.  The MRL of 0.006 mg/m3 

was derived by dividing the NOAELHEC of 0.53 mg/m3 by an uncertainty factor of 30 (3 for species to 

species extrapolation with dosimetric adjustments and 10 for human variability) and a modifying factor of 

3 (for an incomplete database reflecting a single study in one species).  The NOAELHEC was calculated 

using the following equations: 

NOAELADJ = 1.1 mg/m3 x 6 hours/24 hours x 5 days/7 days = 0.196 mg/m3 

NOAELHEC = NOAELADJ x RDDR = 0.196 mg/m3 x 2.7 = 0.53 mg/m3 

The regional deposited dose ratio (RDDR) for the extrathoracic region was used to extrapolate deposited 

doses in rats to deposited doses in humans. The following parameters were used to calculate the RDDR: 

MMAD of 2.0 μm with a mean GSD (sigma g) of 3.37, default human body weight of 70 kg, and a 

default female F344 rat body weight of 0.18 kg.  Additional information on the derivation of the 

intermediate-duration inhalation MRL for lower-brominated BDEs is provided in Appendix A. 

No MRL was derived for chronic-duration inhalation exposure to lower-brominated BDEs due to a lack 

of chronic studies. 

Decabromodiphenyl Ether.  No MRLs were derived for acute-, intermediate-, or chronic-duration 

inhalation exposure to decaBDE due to a lack of inhalation studies on this PBDE congener. 
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Oral MRLs 

Lower-brominated Diphenyl Ethers 

•	 An MRL of 0.00006 mg/kg/day has been derived for acute-duration oral exposure (14 days or 
less) to lower-brominated diphenyl ethers. 

The acute oral MRL is based on a LOAEL of 0.06 mg/kg/day for endocrine effects in rat dams and 

reproductive and neurobehavioral effects in F1 offspring exposed to 2,2’,4,4’,5-pentaBDE (BDE 99) on 

GD 6 via gavage (Kuriyama et al. 2005, 2007; Talsness et al. 2005).  The MRL was estimated by dividing 

the 0.06 mg/kg LOAEL by an uncertainty factor of 1,000 (10 for use of a LOAEL, 10 for animal to 

human extrapolation, and 10 for human variability).  

In a series of reports, pregnant rats were exposed to BDE 99 at 0, 0.06, or 0.3 mg/kg via gavage on GD 6 

(Kuriyama et al. 2005, 2007; Talsness et al. 2005).  Serum thyroid hormones levels (T3, free-T3, T4, free

T4) were analyzed in dams and pups on PNDs 1, 14, and 22 (Kuriyama et al. 2007).  Male and female 

offspring were evaluated for emergence of physical landmarks and reflexes and for open-field behavior 

on PNDs 36 and 71 (Kuriyama et al. 2005).  Twelve male offspring per dose group were sacrificed at 

PND 140, and the thymus, spleen, liver, testis, epididymis, seminal vesicle, and ventral prostate were 

weighed.  The right testis and caudal epididymis were retained for spermatid and sperm counts and 

morphology, respectively.  Additionally, blood was collected for analysis of testosterone and LH levels 

(Kuriyama et al. 2005).  Similarly, 10 F1 females per group were sacrificed ~PND 90 for histological 

evaluation of the ovary, uterus, and vagina.  Ovarian follicles were counted in 10 ovaries from each 

group, and 1 ovary from 1 female offspring in each group was analyzed by transmission electron 

microscopy (Talsness et al. 2005).  Fertility was assessed in F1 males and females (20/group) mated to 

unexposed partners.  The uterine and F2 fetal weights and the number of implantations, resorptions, and 

fetuses were determined. The F2 fetuses were examined for external anomalies and when present, the 

fetuses were stained and examined for skeletal anomalies (Kuriyama et al. 2005; Talsness et al. 2005).  In 

a separate group of F1 males, male sexual behavior was assessed in 20 males/group at ~PND 160 

(Kuriyama et al. 2005).  

Serum T4 levels were significantly decreased by 23–33% in the 0.06 and 0.3 mg/kg dams, sacrificed on 

PND 1.  No changes were observed in T3, free-T3, or free-T4 at PND 1 or any thyroid hormone levels at 

PND 22 in dams.  In pups, no dose-related changes were observed at PND 1 or 14.  At PND 22, serum T4 

was significantly decreased by 19–22% in F1 males and females and serum free-T4 was significantly 
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decreased by 24% in F1 females exposed to 0.3 mg/kg (Kuriyama et al. 2007).  For F1 development of 

physical landmarks and reflexes, no exposure-related effects were observed for the age at fur 

development or eye opening, testes descent, or the ability to master the rotating rod test.  However, 

significant delays in the eruption of incisors in F1 pups and the development of the cliff-drop aversion 

reflex were observed in F1 males in the 0.3 mg/kg group, compared with controls.  During a 24-hour 

observation of open-field activity, total activity, time spent active, duration of activity per active phase, 

and total activity per active phase were all significantly increased in F1 offspring on PND 36 in the 

0.3 mg/kg group, compared with controls.  On PND 71, the increased total activity and time spent active 

persisted in the 0.3 mg/kg group, and was also significantly increased in the 0.06 mg/kg group.  

In F1 males sacrificed on ~PND 140, no exposure-related changes were observed in body weight, liver 

weight, or thymus weight; however, absolute spleen weight was significantly increased by 9% in the 

0.06 and 0.3 mg/kg groups, and relative spleen weight was significantly increased by 12% in the 

0.06 mg/kg group.  Compared with controls, significantly altered male reproductive organ weights at 

PND 140 included a 10 and 11% decrease in relative testes and epididymis weight, respectively, in the 

0.3 mg/kg group and a 5% decrease in relative epididymis weight in the 0.06 mg/kg group; no significant 

changes were observed in absolute organ weights.  In both dose groups, the number of spermatids and 

sperm and daily sperm production were significantly decreased, compared with controls.  No exposure-

related effects were observed for sperm morphology.  No changes were observed in serum testosterone or 

LH levels.  Despite sperm alterations, no significant exposure-related effects were observed in male 

reproductive function or the majority of male sexual behaviors. The only significantly altered male 

sexual behavior was a 32% decrease in the percent of males with two or more ejaculations.  

In F1 females sacrificed on ~PND 90, no statistically significant, exposure-related histological changes 

were observed at the light microscopic level in the ovary, uterus, or vagina of female offspring, and no 

exposure-related effects were observed in the number of ovarian follicles.  However, multiple 

ultrastructural changes were noted in the ovaries of PND 90 female offspring from dams exposed to 

0.06 or 0.3 mg/kg, including destruction of the surface of the serosal epithelial cells, necrosis, and 

numerous vesicular structures with dense granular material within the cytoplasm.  Additional changes 

observed in the 0.3 mg/kg group included degenerative changes and aggregates of small and large 

vesicles filled with homogeneously dense granular material in the cytoplasm and clumped chromatin 

within the condensed nucleus.  No exposure-related changes were found for F1 female pregnancy rate, 

total implantation sites, implantation sites/dam, F2 fetuses/gravid dam, or total number of live F2 fetuses.  

However, the resorption rates were 12 and 15% in the 0.06 and 0.03 mg/kg groups, respectively, 
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compared with the control rate of 9%.  Statistics were not reported; however, the resorption rates in the 

exposed rats were also reportedly increased compared with historical controls (average control resorption 

rate=5.4%, with rates up to 10% considered to be within normal limits).  In addition, the percentage of 

litters with resorptions was higher in the exposed females, being 47% in the control group and 69% and 

72% in the 0.06 and 0.3 mg/kg groups, respectively.  In F2 pups, mean fetal weight was significantly 

increased (by 5%) in the 0.06 mg/kg group, but not in the 0.3 mg/kg group, compared with controls.  

Three fetuses from different litters in the 0.3 mg/kg/day group showed skeletal anomalies (tail, skull, 

vertebrae); however, this incidence of anomalies in 3/18 litters is not significantly elevated compared with 

the control incidence of 0/19 (Fisher’s exact test, performed for this review). 

Collectively, these studies indicate a LOAEL of 0.06 mg/kg, the lowest dose tested, for endocrine effects 

in F0 dams (decreased serum T4), reproductive effects in F1 adult offspring (impaired spermatogenesis, 

ultrastructural changes in ovaries, increased resorptions in F1 females mated to unexposed males) and 

neurobehavioral effects in F1 adult offspring (increased activity in open field). No NOAEL was 

identified.  

Data from other several acute-duration studies of PBDEs support the selection of the co-critical effects 

observed at the LOAEL of 0.06 mg/kg: 

•	 Numerous studies reported reduced serum T4 levels in adult, nonpregnant mice and rats following 
acute exposure to commercial pentaBDE mixtures (Bromkal 70, Bromkal 70-5 DE, DE-71), the 
commercial octaBDE mixture DE-79, or 2,2’,4,4’-tetraBDE (BDE 47).  Significant reductions of 
19–92% have been reported following gavage exposure at doses ≥10 and ≥0.8 mg/kg/day in rats 
and mice, respectively, for 1–14 days (Darnerud and Sinjari 1996; Fowles et al. 1994; Hallgren 
and Darnerud 1998, 2002; Hallgren et al. 2001; Hoppe and Carey 2007; Richardson et al. 2008; 
Stoker et al. 2004, 2005; Zhou et al. 2001). 

•	 In a companion study to the critical studies described above, pregnant rats (8/group) were 
administered BDE 47 (98% purity) at 0, 0.14, or 0.7 mg/kg via gavage in peanut oil vehicle on 
GD 6 (Talsness et al. 2008).  As observed in pentaBDE-exposed F1 females, ultrastructural 
changes (accumulation of vesicular structures with homogeneously dense granular material in the 
cytoplasm of the stromal cells, large vacuoles) were observed in the ovaries of F1 females from 
both dose groups on PND 100.  No exposure-related changes were observed in F1 female fertility 
or F2 litter parameters.  F1 males were not evaluated for developmental reproductive effects 
following tetraBDE exposure. 

•	 Alterations in open-field activity have been consistently reported in mice exposed to pentaBDE 
(BDE 99) at doses ≥0.8 mg/kg on PND 3 or 10 and evaluated at 2–8 months of age, characterized 
by decreased activity during the first 20-minute period of a 1-hour session, followed by increased 
activity during the third 20-minute period (Eriksson et al. 2002b, 2006; Fischer et al. 2008; Sand 
et al. 2004; Viberg et al. 2002, 2004a, 2004b).  Several other 1-day exposure studies reported 
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similar findings in rats and mice following exposure to various lower-brominated PBDEs. 
Decreased spontaneous activity and/or impaired habituation were observed in rats exposed to 
BDE 99 at 8 mg/kg on PND 10, mice exposed to 2’,4,4’,5,5’-hexaBDE (BDE 153) at 
≥0.45 mg/kg on PND 10, mice exposed to BDE 47 at 10.5 mg/kg on PND 10, mice exposed to 
2,2’,3,4,4’,5’,6-heptaBDE (BDE 183) at 15.2 mg/kg on PND 3, and mice exposed 
2,2’,3,4,4’,5,5’,6-octaBDE (BDE 203) at 16.8 mg/kg on PND 3 or 10 (Eriksson et al. 2001; 
Viberg et al. 2003a, 2005, 2006).  Increased vertical activity was significantly increased at 
4 months, but not at 2 months, in mice exposed to BDE 47 at ≥1 mg/kg on PND 10; no changes 
were observed in horizontal activity or habituation (Gee and Moser 2008).  

Additional information on the derivation of the acute-duration oral MRL for lower-brominated BDEs is 

provided in Appendix A. 

•	 An MRL of 0.000003 mg/kg/day has been derived for intermediate-duration oral exposure (15– 
364 days) to lower-brominated BDEs. 

The intermediate oral MRL is based on a minimal LOAEL of 0.001 mg/kg/day for a 34% reduction in 

serum testosterone in male rats exposed to 2,2’,4,4’-tetraBDE (BDE 47) for 8 weeks via gavage (Zhang et 

al. 2013b). The MRL was estimated by dividing the 0.001 mg/kg/day minimal LOAEL by an uncertainty 

factor of 300 (3 for use of a minimal LOAEL, 10 for animal to human extrapolation, and 10 for human 

variability). 

Groups of 20 male rats were exposed to BDE 47 (≥98.7%) at 0, 0.001, 0.03, or 1 mg/kg/day via gavage in 

corn oil 6 days/week for 8 weeks (Zhang et al. 2013b).  Twenty-four hours after the final treatment, rats 

were sacrificed. Testes were fixed for histological analysis and labeling of apoptotic cells or prepared for 

analysis of sperm production.  Daily sperm production was estimated by dividing the total number of 

mature spermatids per testis by 6.1 (i.e., the days of the seminiferous cycle that the spermatids are present 

in the seminiferous epithelium).  Testicular samples were examined for reactive oxygen species (ROS) 

and mRNA expression of apoptosis related proteins (ser15, ser473, p53, PTEN, AKT, BAD, caspase 3, 

FAS, FASL).  Serum levels of E2, FSH, LH, and testosterone were measured.  Histological examination 

of the testes showed a significant increase in the number of multinucleated giant cells (arising from 

spermatocytes that aborted meiosis) at ≥0.03 mg/kg/day and abundant vacuolar spaces in the seminiferous 

epithelium at 1 mg/kg/day (quantitative data not reported).  Additionally, the number of apoptotic cells 

was significantly increased by 1.9- and 3-fold in the testes of rats from the 0.03 and 1 mg/kg/day groups, 

respectively, and the mRNA levels of several apoptosis genes were elevated in a dose-related manner. 

Daily sperm production was significantly decreased by 23% in the 1 mg/kg/day group, compared with 

controls.  Serum testosterone was significantly decreased by ~34, 53, and 62% in the 0.001, 0.03, and 

1 mg/kg/day groups, respectively, compared with controls.  No exposure-related changes were observed 
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in serum E2, FSH, or LH levels. Testicular ROS levels were significantly elevated at 1 mg/kg/day, 

compared with controls.  A minimal LOAEL of 0.001 mg/kg/day was determined for this study based on 

the 34% decrease in serum testosterone.  The change in testosterone is considered a minimal LOAEL 

because it is unclear if the magnitude of change represents a biologically adverse effect; however, this 

statistically significant reduction in serum testosterone is considered an early indication of damage to the 

male reproductive system, considering the additional effects observed at ≥0.03 mg/kg/day (histological 

lesions in testes, sperm effects). 

One additional rat study and a mouse study report histopathological changes in the testes following 

intermediate-duration exposure to tetraBDE at ≥0.03 mg/kg/day; neither study evaluated serum 

testosterone levels (Huang et al. 2015; Wang et al. 2013).  In the rat study, a NOAEL of 0.001 mg/kg/day 

and a LOAEL of 0.03 mg/kg/day were identified for increased epithelial thickness and spermatocyte 

apoptosis in the testes of males exposed to BDE 47 for 8 weeks via gavage (Huang et al. 2015).  In the 

mouse study, a NOAEL of 0.0015 mg/kg/day and a LOAEL of 0.045 mg/kg/day were identified for germ 

cell loss and increased apoptosis in the testes of males exposed to BDE 47 for 30 days via gavage (Wang 

et al. 2013).  

No other study evaluated testicular histopathology following exposure to BDE 47.  Following 

intermediate exposure to other congeners, no changes in testicular histology were observed in rats 

exposed to commercial pentaBDE mixtures (Bromkal 70-5 DE, DE-71) at gavage doses up to 

250 mg/kg/day for 15–28 days (Becker et al. 2012; Oberg et al. 2010), commercial penta- or octaBDE 

mixtures (DE-71, unspecified octa mixture) at dietary doses up to 750 mg/kg/day for 28–90 days (IRDC 

1976, 1977; WIL Research Laboratories 1984), or a pentaBDE mixture (52.1% pentBDE, 44.2% 

decaBDE, 0.4% octaBDE) at dietary doses up to 20 mg/kg/day for 70 days (Ernest et al. 2012).  However, 

testicular apoptosis was not evaluated in any of these studies.  

No other study evaluated serum testosterone levels following exposure to BDE 47.  However, as observed 

with exposure to BDE 47, acute exposure to 0.06 or 1.2 mg/kg of 2,2’,4,4’,5-pentaBDE (BDE 99) also 

led to a significant 40–45% decrease in serum testosterone levels in rats (Alonso et al. 2010).  No other 

studies evaluated this end point following exposure to single congeners. Other studies evaluating serum 

testosterone levels after intermediate-duration exposure to lower-brominated PBDEs mixtures (DE-71, 

dietary PBDE mixture described above) did not report exposure-related decreases (Becker et al. 2012; 

Ernest et al. 2012; Stoker et al. 2005).  These data suggest that the individual congeners, BDE 47 and 

BDE 99, which have been identified as two of the most abundant congeners for human exposure (Harrad 



   
 

   
 
 

 
 
 
 
 

 

 

 

  
 

    
 

 
    

  
 

  
 

 
 

  

  

 

   

   

  

   

   

   

     

   

   

      

   

  

 

 

 
 

    
  

 

	 

	 

	 

	 

	 

PBDEs	 36 

2. RELEVANCE TO PUBLIC HEALTH 

et al. 2004; Lorber 2008; Wong et al. 2013), may have a greater capacity to alter serum testosterone levels 

than PBDE mixtures. 

One-generation studies of BDE 47 reported developmental effects at ≥0.03 mg/kg/day, including: 

•	 Impaired spatial learning in the Barnes maze in PNW 8 offspring of mouse dams fed tetraBDE
dosed cornflakes from pre-mating day 28 through PND 21 (Koenig et al. 2012). 

•	 Decreased center-field activity in an open field (indicating increased anxiety) in PND 60 female 
offspring from mouse dams fed tetraBDE-dosed cornflakes from pre-mating day 28 through 
PND 21 (Ta et al. 2011). 

•	 Decreased pre-weaning weight, decreased pup vocalizations on PNDs 8–10, and decreased 
sociability on PND 72 in female offspring of mouse dams exposed to tetraBDE via gavage from 
pre-mating day 28 through PND 21 (Woods et al. 2012). 

Additional information on the derivation of the intermediate-duration oral MRL for PBDEs is provided in 

Appendix A. 

A chronic-duration oral MRL was not derived for lower-brominated PBDEs due to insufficient data.  

Only one chronic study of PBDEs other than high-purity decaBDE has been conducted (Kociba et al. 

1975; Norris et al. 1975a).  In this study, Sprague-Dawley rats (25/sex/dose level) were fed a 77.4% pure 

commercial decaBDE mixture (containing 21.8% nonaBDE and 0.8% octaBDE) for approximately 

2 years.  Evaluations that included clinical signs, body weight, food consumption, hematology, clinical 

chemistry, urine indices, and comprehensive histological examinations showed no exposure-related 

effects. The highest NOAEL is 1 mg/kg/day (highest tested dose), but this NOAEL is not appropriate for 

MRL estimation due to insufficient sensitivity of the study.  In particular, using the NOAEL of 

1 mg/kg/day and an uncertainty factor of 100, a chronic oral MRL based on this study would be 5 times 

higher than the 0.002 mg/kg/day intermediate MRL.  A similar pattern was observed for thyroid effects in 

the study used to derive the acute-duration oral MRL (Zhou et al. 2001) as summarized above.  Due to the 

insufficiencies of the chronic data for MRL derivation, the intermediate oral MRL could be used as a 

value for chronic exposure. 

Decabromodiphenyl Ether 

•	 An MRL of 0.01 mg/kg/day has been derived for acute-duration oral exposure (14 days or less) to 
decabromodiphenyl ether 
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The MRL was derived based on a NOAEL of 1.34 mg/kg for neurobehavioral effects in 2–4-month-old 

mice following a single exposure to 2,2’,3,3’,4,4’,5,5’,6,6’-decaBDE (BDE 209) on PND 3 (Buratovic et 

al. 2014; Johansson et al. 2008).  The MRL was estimated by dividing the 1.34 mg/kg NOAEL by an 

uncertainty factor of 100 (10 for animal to human extrapolation and 10 for human variability).  

In the first study (Johansson et al. 2008), neonatal male mice (3–4 litters/group) were exposed to a single 

dose of BDE 209 (98% purity) at 0, 1.34, 2.22, 13.4, or 20.1 mg/kg via gavage in a 20% fat emulsion 

vehicle (1:10 mixture egg lecithin and peanut oil) on PND 3 (Johansson et al. 2008).  Mice were observed 

for clinical signs of toxicity and body weight was measured at PND 3 and PNW 4.  Spontaneous motor 

behavior (locomotion, rearing, total activity) was evaluated in an open field test at 2 months 

(10 mice/group) and at 4 months (16 mice/group).  Motor activity was measured during a 60-minute 

period, divided into three 20-minute intervals.  Nicotine-induced behavior was evaluated at 4 months 

following single subcutaneous injections of 80 µg nicotine/kg (8/group) or 10 mL 0.9% NaCl/kg 

(8/group).  Anxiety was assessed at 4 months using the elevated plus maze.  No clinical signs of toxicity 

or body weight effects were observed.  At 2 months, significantly decreased locomotion, rearing, and total 

activity were observed during the first 20-minute interval of the open field assessment in mice exposed to 

≥2.22 mg/kg, compared with controls.  However, during the third 20-minute interval, when activity 

should decrease due to habituation, locomotion, rearing, and total activity were significantly increased in 

mice exposed to ≥13.4 mg/kg.  None of the end points measured were significantly altered in mice 

exposed to 1.34 mg/kg.  At 4 months, significantly decreased locomotion, rearing, and total activity were 

observed during the first interval of the open field assessment in mice exposed to ≥2.22 mg/kg, compared 

with controls.  During the third interval, significantly increased locomotion, rearing, and total activity 

were observed in mice exposed to ≥2.22 mg/kg.  Additionally, total activity, but not rearing or 

locomotion, was significantly decreased during the first 20-minute interval in the 1.34 mg/kg group; no 

significant changes were observed during the third interval in the 1.34 mg/kg group. Statistical analysis 

shows that habituation ability declined in mice exposed to ≥2.22 mg/kg/day when tested at 4 months of 

age, compared with 2 months of age.  At 4 months, nicotine exposure caused significantly decreased 

activity during the first interval in mice exposed to ≥13.4 mg/kg, compared with saline-injected mice 

from the same decaBDE exposure group.  This finding is the opposite of the expected increase in activity 

due to nicotine exposure, which was observed in controls and lower dose decaBDE groups.  During the 

third interval, mice exposed to ≥13.4 mg/kg and nicotine showed impaired habituation.  No exposure-

related effects were observed in the elevated plus maze assessment. A NOAEL of 1.34 mg/kg and a 

LOAEL of 2.22 mg/kg were determined for the nonhabituating profile (i.e., decreased activity early in the 

test period and increased activity late in the test period). The singular finding of decreased total activity 
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during the first 20-minute interval at 4 months in the 1.34 mg/kg group was not considered sufficient to 

establish a LOAEL of 1.34 mg/kg.  The nonhabituating profile, which is a common effect observed with 

developmental PBDE exposure (Eriksson et al. 2002b, 2006; Fischer et al. 2008; Sand et al. 2004; Viberg 

et al. 2002, 2003a, 2004a, 2004b), was considered to be a stronger basis for a NOAEL/LOAEL 

determination. 

In the second study (Buratovic et al. 2014), neonatal male mice (6 litters/group; 31–40 males and 23– 

34 females per group) were administered 2,2’,3,3’,4,4’,5,5’,6,6’-decaBDE (BDE 209, >95% purity) at 

doses of 0, 1.34, 5.76, or 13.4 mg/kg via gavage in a 20% fat emulsion vehicle (1:10 mixture egg lecithin 

and peanut oil) on PND 3.  Mice were observed for clinical signs of toxicity and body weight changes 

throughout the study (no further details were provided).  Spontaneous motor behavior (locomotion, 

rearing, total activity) was evaluated in an open field at 2 months (18/sex/group).  Motor activity was 

measured during a 60-minute period, divided into three 20-minute intervals.  Directly after spontaneous 

motor evaluation, 9/sex/group were injected with a cholinergic agent (0.25 mg/kg paraoxon in males, 

80 µg/kg nicotine in females), while the other 9/sex/group were injected with 0.9% saline, for evaluation 

of cholinergic-induced locomotion.  At 4 months, spontaneous behavior was assessed again in the saline-

injected animals only (9 males/group at all doses and 9 females/group in the control and high-dose group 

only).  Learning and memory was assessed using the Morris water maze at 5 and 7 months in 13– 

15 males from the 0, 5.76, and 13.4 mg/kg groups only (the same mice were evaluated at each time point).  

In the spontaneous activity assessment, a dose-related decrease in locomotion, rearing, and total activity 

was observed during the first 20 minutes of open field testing in a novel environment at 2 months. 

Decreases were significant at all doses tested in both sexes; however, findings were only dose-related for 

total activity.  However, during the third 20-minute interval, when activity should decrease due to 

habituation, locomotion, rearing, and total activity were significantly increased in males and females at 

≥5.76 mg/kg. At 2 months, cholinergic agents caused decreased activity during the first interval in mice 

exposed to ≥5.76 mg/kg, compared with saline-injected mice from the same decaBDE exposure group. 

This finding is the opposite of the expected increase in activity due to paraoxon or nicotine exposure, 

which was observed in controls and low-dose decaBDE groups.  During the third interval, mice exposed 

to ≥5.76 mg/kg and cholinergic agent showed impaired habituation.  At 4 months, total activity during the 

first 20 minutes was still significantly decreased at all doses in males, and locomotion and rearing were 

significantly decreased in males in the mid- and high-dose groups only; all three parameters were 

significantly decreased in high-dose females (other doses not evaluated).  All three parameters were 

significantly increased in high-dose males and females during the third 20-minute period, indicating 

decreased habituation; locomotion and rearing were also slightly, but significantly, increased in mid-dose 
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males.  In the Morris water maze, initial learning was comparable between exposed and control mice at 

5 and 7 months.  However, latencies to find the escape platform during the reversal learning phase 

(learning to find the escape platform in a new location after initial training) were significantly longer in 

mid- and high-dose males at 5 and 7 months (other exposure groups not assessed). A NOAEL of 

1.34 mg/kg and a LOAEL of 5.76 mg/kg were determined for the nonhabituating profile (i.e., decreased 

activity early in the test period and increased activity late in the test period).  Similar to the Johansson et 

al. (2008) study, the finding of decreased total activity during the first 20-minute interval at 2 and 

4 months in the 1.34 mg/kg group was not considered sufficient to establish a LOAEL of 1.34 mg/kg. 

The nonhabituating profile was considered to be a stronger basis for a NOAEL/LOAEL determination, 

and additional neurological effects (impaired learning, altered response to cholinergic agents) support a 

LOAEL of 5.76 mg/kg. 

A similar study supports the LOAEL of 2.22 mg/kg for altered neurobehavior in developmentally 

exposed mice.  Decreased spontaneous activity and impaired habituation were observed in 2- and 

6-month-old mice exposed to BDE 209 at doses ≥2.22 mg/kg on PND 3, which was the lowest dose tested 

(Viberg et al. 2003b).  These effects were not observed if exposure was on PND 10 or 19 at doses up to 

20.1 mg/kg (Viberg et al. 2003b).  Additionally, decreased spontaneous activity was observed in 

2-month-old rats following exposure to BDE 209 doses ≥6.7 mg/kg on PND 3 (lowest dose tested) 

(Viberg et al. 2007).  At 20.1 mg/kg, impaired habituation and decreased nicotine-induced behavior were 

also observed.  This nonhabituating behavior profile (i.e., decreased activity early in the test period and 

increased activity late in the test period) is consistent with neurobehavioral alterations observed following 

early postnatal exposure to lower-brominated PBDEs and has been reported in adult mice neonatally 

exposed to certain PCB congeners (see the Acute MRL Worksheet for lower-brominated PBDEs for more 

details). 

Additional neurodevelopmental effects observed in mice following acute exposure to BDE 209 from 

PND 2 to 15 at 20 mg/kg/day via micropipette include delayed ontogeny of reflexes, increased 

locomotion in males at PND 70, and learning impairment and impulsivity at 16 months, but not at 

3 months (Rice et al. 2007, 2009). In rats, impaired learning was observed in Morris water maze in 

PND 25 rat offspring of dams exposed to BDE 209 from GD 1 to 14 at doses ≥30 mg/kg/day via gavage 

(Chen et al. 2014). 

Additional information on the derivation of the acute-duration oral MRL for BDE 209 is provided in 

Appendix A. 
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•	 An MRL of 0.0002 mg/kg/day has been derived for intermediate-duration oral exposure (15– 
364 days) to decabromodiphenyl ether. 

The MRL was derived based on a minimal LOAEL of 0.05 mg/kg/day for a 12% increase in serum 

glucose in adult rats exposed to 2,2′,3,3′,4,4′,5,5′,6,6′-decabromodiphenyl ether (BDE 209) for 8 weeks 

via gavage (Zhang et al. 2013a).  The MRL was estimated by dividing the 0.05 mg/kg/day LOAEL by an 

uncertainty factor of 300 (3 for use of a minimal LOAEL, 10 for animal to human extrapolation, and 10 

for human variability). 

Groups of 10 male rats were exposed to BDE 209 at 0, 0.05, 1, or 20 mg/kg/day daily via gavage in corn 

oil for 8 weeks (Zhang et al. 2013a).  Rats were observed for clinical signs of toxicity and body weights 

were measured every 3 days.  Rats were fasted for 24 hours after the final gavage treatment, and then 

sacrificed.  Body weights and heart, spleen, lung, kidney, and liver weights were recorded.  Blood was 

collected for clinical chemistry analysis (serum total cholesterol, triglycerides, glucose, insulin, and 

TNF-α) and determination of plasma markers of oxidative stress (malondialdehyde [MDE], reduced 

glutathione [GSH], and superoxidase dismutatase [SOD]).  Liver samples from three rats in the control 

and low-dose (0.05 mg/kg/day) groups were collected for microarray analysis (Affymetrix GeneChip), 

and gene ontogeny category, pathway, gene-act-network, and gene co-expression analyses were 

conducted.  Quantitative real-time-polymerase chain reaction (qPCR) was performed to quantitate gene 

expression to validate the gene expression data obtained from microarray analysis.  No clinical signs of 

toxicity or body weight effects were observed. The relative liver weight was significantly decreased at 

1 and 20 mg/kg/day by 9% (absolute liver weights were not reported).  No changes were observed in 

relative weights of heart, spleen, lung, or kidney.  No exposure-related changes were reported in serum 

cholesterol or triglyceride levels.  Serum glucose levels were significantly increased by 12, 18, and 21% 

in the 0.05, 1, and 20 mg/kg/day groups, compared with controls.  Serum insulin was significantly 

decreased by 50–60% at 1 and 20 mg/kg/day.  Subsequent to this finding, the pancreas was evaluated 

histologically.  Consistent with the insulin findings, morphological changes were seen at 1 and 

20 mg/kg/day, including blurred boundaries among pancreatic islet cells (quantitative data not reported).  

Plasma SOD activity was significantly decreased in all exposed groups and plasma GSH was significantly 

decreased at 1 and 20 mg/kg/day.  Serum TNF-α was significantly increased at 1 and 20 mg/kg/day. 

Additionally, decaBDE induced 1,257 liver gene transcript changes, and 18 canonical pathways were 

significantly enriched.  Four of them were involved in immune diseases, including autoimmune thyroid 

disease, graft-versus-host disease, allograft rejection, and T1DM.  Subsequently, gene act network and 

gene coexpression network found that some major histocompatibility complex molecules and TNF-α 
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were involved in the T1DM pathway. A minimal LOAEL of 0.05 mg/kg/day was determined for this 

study based on the 12% increase in serum glucose levels.  The change in glucose is considered a minimal 

LOAEL because it is unclear if the magnitude of change represents a biologically adverse effect; 

however, the increase in serum glucose is considered to be part of a spectrum of effects indicative of 

altered insulin homeostasis and toxicity to the pancreas, including decreased serum insulin and 

morphological changes in pancreatic islet cells observed at ≥1 mg/kg/day following decaBDE exposure.  

The relevance of these findings to human health is uncertain.  An analysis of cross-sectional NHANES 

data showed a significant increase in risk of diabetes associated with serum concentrations of BDE 153 

(but not other congeners), although the risk was higher with exposure to 50–75th percentile BDE 153 

concentrations than >75th percentile BDE 153 concentrations (Lim et al. 2008). Serum BDE 153 

concentrations (but not BDE 28, BDE 47, BDE 85, BDE 99, BDE 100, or BDE 154) were also shown to 

be significantly associated with increased odds of developing gestational diabetes in a cohort of 

258 pregnant women (Smarr et al. 2016).  However, other cross-sectional and prospective studies found 

no relationship between serum PBDE concentrations and diabetes in an adult cohort from Wisconsin 

(Turyk et al. 2015), an elderly cohort in Finland (Airaksinen et al. 2011), or an elderly cohort in Sweden 

(Lee et al. 2011). 

Only one other animal study evaluated the pancreas following decaBDE exposure.  In rats exposed to 

BDE 209 via gavage for 28 days at doses of 0, 0.27, 0.82, 2.47, 7.4, 22.2, 66.7, or 200 mg/kg/day, slight 

or moderate insulitis was observed in the Langerhan’s islets of the “majority of samples,” but findings 

were not exposure-related (Van der ven et al. 2008a).  Similarly, no exposure-related effects were 

observed for serum glucose levels (Van der ven et al. 2008a).  The only other study evaluating serum 

glucose levels after decaBDE exposure instead reported reduced serum glucose levels in male rats 

exposed to 20 mg/kg/day of a dietary PBDE mixture containing 52.1% pentaBDE (DE-71), 44.2% 

decaBDE (BDE 209), and 0.4% octaBDE (DE-79) for 70 days (Ernest et al. 2012). The observed 

decreased glucose levels could be due to the pentaBDE component, as male rats exposed to pentaBDE at 

doses of 0.27–200 mg/kg/day for 28 days also showed decreased glucose levels; the study authors did not 

report the lowest dose at which glucose levels were significantly lower in male rats, but they reported a 

BMD10RD of 179.55 mg/kg/day and a BMDL10RD of 66.7 mg/kg/day (Van der ven et al. 2008b).  Other 

effects occurred at doses 4–40-fold higher than the observed pancreatic and related effects: 

•	 A LOAEL of 2 mg/kg/day was identified for transient histopathological effects in the liver of 
male offspring and kidney of female offspring of rat dams exposed to BDE 209 from GD 10 to 
PND 21 (no NOAEL identified) (Fujimoto et al. 2011). 
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•	 A LOAEL of 10 mg/kg/day was identified for hepatocytic swelling in the liver, vacuolization in 
the interstitial cells of testes, and sperm damage in PND 71 male offspring of mouse dams 
exposed to BDE 209 from GD 0 to 17 (no NOAEL identified) (Tseng et al. 2008, 2013). 

•	 A LOAEL of 20 mg/kg-day was identified for decreased anxiety in mice treated with BDE 209 
by daily gavage for 15 days (no NOAEL identified) (Heredia et al. 2012). 

•	 A LOAEL of 20.1 mg/kg/day was identified for altered hippocampal electrophysiology in rats 
exposed to BDE 209 on GD 1 to PND 41, PNDs 1–21, or PNDs 22–41 (no NOAEL identified) 
(Xing et al. 2009). 

Additional information on the derivation of the intermediate-duration oral MRL for decaBDE is provided 

in Appendix A. 

No MRL was derived for chronic-duration oral exposure to decaBDE.  Only one chronic study of high-

purity decaBDE has been conducted.  In this study, F344 rats and B6C3F1 mice (50/sex/group per 

species) were administered a commercial decaBDE product (94–97% pure) in the diet for 103 weeks 

(NTP 1986).  Calculated dietary doses based on body weight and food intake were 0, 1,120, or 

2,240 mg/kg/day for male rats; 0, 1,200, or 2,550 mg/kg/day for female rats; 0, 3,200, or 6,650 mg/kg/day 

for male mice; and 0, 3,760, or 7,780 mg/kg/day for female mice. Animals were examined daily for 

clinical signs.  Body weights and food consumption were measured throughout the study, and 

comprehensive gross and histological examinations were performed on all animals in all dose groups, 

including those that were moribund or died during the study.  No hematology, clinical chemistry, or urine 

indices or thyroid hormone levels were evaluated. Liver degeneration and thrombosis were significantly 

(p<0.05) increased in male rats at 2,240 mg/kg/day; respective incidences in the control, low, and high 

dose groups were 13/50, 19/50, and 22/50 for degeneration and 1/50, 0/50, and 9/50 for thrombosis.  The 

thrombosis was characterized by a near total occlusion of a major hepatic blood vessel by a dense fibrin 

coagulum.  Neoplastic nodules in the liver were significantly increased in a dose-related manner in males 

exposed to doses ≥1,120 mg/kg/day and in females exposed to 2,550 mg/kg/day. However, no treatment-

related increases were observed in the incidence of hepatocellular carcinomas.  Other effects in exposed 

rats included fibrosis of the spleen, lymphoid hyperplasia of the mandibular lymph nodes, and acanthosis 

of the forestomach at 2,240 mg/kg/day.  In mice, histopathological changes occurred in males exposed to 

3,200 mg/kg/day, including centrilobular hypertrophy and granulomas in the liver and follicular cell 

hyperplasia in the thyroid. An MRL was not derived because the lowest tested dose, 1,120 mg/kg/day in 

male rats, is a LOAEL for a liver lesion (neoplastic nodules) that is precancerous and associated with 

thrombosis in the same tissue. 



   
 
 
 
 

 
 
 
 
 

 
 

  
 

   

      

   

  

 

   

 

   

   

   

   

  

   

  

 

  

   

     

   

  

  

     

    

   

    

   

  

   

PBDEs 43 

3. HEALTH EFFECTS 

3.1  INTRODUCTION 

The primary purpose of this chapter is to provide public health officials, physicians, toxicologists, and 

other interested individuals and groups with an overall perspective on the toxicology of PBDEs.  It 

contains descriptions and evaluations of toxicological studies and epidemiological investigations and 

provides conclusions, where possible, on the relevance of toxicity and toxicokinetic data to public health. 

A glossary and list of acronyms, abbreviations, and symbols can be found at the end of this profile. 

PBDEs are classes of brominated hydrocarbons that were previously used as flame retardant additives in 

plastics, textiles, and other materials.  Production of PBDEs began in the 1970s and has continued until 

recently.  PentaBDE and octaBDE mixtures were voluntarily withdrawn from the U.S. marketplace by 

their manufacturers at the end of 2004; however, the manufacture and use of decaBDE continued past that 

date (EPA 2010).  In December of 2009, the two remaining U.S. producers of decaBDE and the largest 

U.S. importer of this product announced commitments to phase out manufacture and importation of 

decaBDE for most uses in the United States by December 31, 2012, and to end manufacture and import 

for all uses by the end of 2013 (EPA 2013j).  Although PBDEs are no longer produced or used, concern 

continues to exist for health effects of PBDEs due to evidence that PBDE congeners have become 

ubiquitously distributed in the environment and are present in tissues and breast milk of the general 

population (EPA 2010; Meijer et al. 2008; Park et al. 2011; Rawn et al. 2014; Schecter et al. 2010).  

PBDEs comprise compounds in which 1–10 bromine atoms are attached to the biphenyl structure in up to 

209 different combinations.  Based on the number of bromine substituents, there are 10 homologous 

groups of PBDEs (monobrominated through decabrominated), each containing one or more isomers.  

PBDEs are structurally similar when viewed in one dimension, differing only in the ether linkage between 

the two phenyl rings in PBDEs, but the oxygen bridge confers three-dimensional conformational 

differences that can influence toxicological properties.  Consequently, on the basis of chemical structure, 

it cannot be assumed that the health effects of PBDE congeners are necessarily similar.  Reviews on the 

health effects and other aspects of PBDEs include those by Bellinger (2013), Darnerud et al. (2001), de 

Boer et al. (2000a), de Wit (2002), Dingemans et al. (2011), EPA (2008a, 2008b, 2008c, 2008d), Gill et 

al. (2004), Hardy (1999, 2002a, 2002b), Hardy et al. (2009), Markowski (2007), McDonald (2002), 

Rahman et al. (2001), Silberhorn et al. (1990), and WHO (2006).  Discussions of health effects are 

divided into lower-brominated congeners and decaBDE due to important differences in pharmacokinetics 

and toxicity of decaBDE compared to lower-brominated PBDEs. Toxicity data for previously used 
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PBDE mixtures as well as individual PBDE congeners are included in this profile, with mixtures being 

categorized by their most prominent congener (see Table 4-3, Physical and Chemical Properties of 

Technical PBDE Mixtures).  Using current health effects evaluation procedures, toxicity data for 

individual congeners may over- or underestimate the actual health risk of PBDE mixtures because 

congeners vary in toxic potency and may be influenced by other congeners in an additive, less-than

additive, or more-than-additive way.  It is also important to recognize that the PBDEs to which people 

may be exposed may be different from the original PBDE source because of possible changes in congener 

composition resulting from differential partitioning and transformation in the environment and/or 

differential biological metabolism and retention. 

3.2  DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE 

To help public health professionals and others address the needs of persons living or working near 

hazardous waste sites, the information in this section is organized first by route of exposure (inhalation, 

oral, and dermal) and then by health effect (death, systemic, immunological, neurological, reproductive, 

developmental, genotoxic, and carcinogenic effects). These data are discussed in terms of three exposure 

periods:  acute (14 days or less), intermediate (15–364 days), and chronic (365 days or more). 

Levels of significant exposure for each route and duration are presented in tables and illustrated in 

figures.  The points in the figures showing no-observed-adverse-effect levels (NOAELs) or lowest-

observed-adverse-effect levels (LOAELs) reflect the actual doses (levels of exposure) used in the studies. 

LOAELs have been classified into "less serious" or "serious" effects. "Serious" effects are those that 

evoke failure in a biological system and can lead to morbidity or mortality (e.g., acute respiratory distress 

or death).  "Less serious" effects are those that are not expected to cause significant dysfunction or death, 

or those whose significance to the organism is not entirely clear.  ATSDR acknowledges that a 

considerable amount of judgment may be required in establishing whether an end point should be 

classified as a NOAEL, "less serious" LOAEL, or "serious" LOAEL, and that in some cases, there will be 

insufficient data to decide whether the effect is indicative of significant dysfunction.  However, the 

Agency has established guidelines and policies that are used to classify these end points.  ATSDR 

believes that there is sufficient merit in this approach to warrant an attempt at distinguishing between 

"less serious" and "serious" effects. The distinction between "less serious" effects and "serious" effects is 

considered to be important because it helps the users of the profiles to identify levels of exposure at which 

major health effects start to appear.  LOAELs or NOAELs should also help in determining whether or not 
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the effects vary with dose and/or duration, and place into perspective the possible significance of these 

effects to human health.  

The significance of the exposure levels shown in the Levels of Significant Exposure (LSE) tables and 

figures may differ depending on the user's perspective.  Public health officials and others concerned with 

appropriate actions to take at hazardous waste sites may want information on levels of exposure 

associated with more subtle effects in humans or animals (LOAELs) or exposure levels below which no 

adverse effects (NOAELs) have been observed.  Estimates of levels posing minimal risk to humans 

(Minimal Risk Levels or MRLs) may be of interest to health professionals and citizens alike. 

A User's Guide has been provided at the end of this profile (see Appendix B).  This guide should aid in 

the interpretation of the tables and figures for Levels of Significant Exposure and the MRLs. 

3.2.1 Inhalation Exposure 

A few studies have examined groups of chemical workers involved in the manufacture and distribution of 

PBDEs (Bahn et al. 1980; Brown et al. 1981; Chanda et al. 1982; Landrigan et al. 1979; Rosenman et al. 

1979; Stross et al. 1981).  These people are believed to have been exposed predominantly by dermal 

contact and inhalation, although the oral route cannot be ruled out.  Results from these studies, therefore, 

are discussed in this section as well as in Section 3.2.3.  The highest NOAEL and all LOAEL values from 

each reliable inhalation study of health effects end points in each species and duration category for 

PBDEs are recorded in Table 3-1 and plotted in Figure 3-1. 

3.2.1.1  Death 

No studies were located regarding death in humans after inhalation exposure to PBDEs. 

No deaths occurred in groups of five male and five female rats that were chamber-exposed to pentaBDE 

aerosol (compound dissolved in corn oil), octaBDE dust, or decaBDE dust in concentrations as high as 

200,000, 60,000, or 48,200 mg/m3, respectively, for 1 hour and observed for the following 14 days (IRDC 

1974, 1975a, 1975b).  Confidence in these studies is limited by a lack of control data.  There was no 

mortality in rats that were exposed to dusts of commercial octaBDE products at concentrations of 

174 mg/m3 for 8 hours/day for 14 consecutive days (Great Lakes Chemical Corporation 1978) or 

≤202 mg/m3 for 6 hours/day, 5 days/week for 13 weeks (Great Lakes Chemical Corporation 2000). 



2063

3.7

24

165

165

165

0.6

3.7

165

165

165

165

3.  H
E

A
LTH

 E
FFE

C
TS


 


 


 


 


 


 


 


 

Table 3-1  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Inhalation 
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Exposure/ 
Duration/

a FrequencyKey to Species (Route)Figure (Strain) 

ACUTE EXPOSURE 
Systemic 
1 Rat 14 d 

8 hr/d(CD) 

System 

Resp 

Cardio
 

Gastro
 

Hemato
 

Hepatic
 

Renal
 

Endocr
 

Ocular
 

Bd Wt
 

LOAEL 

NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

Serious 
(mg/m³) 

3.7 24 (reversible rapid 
breathing) 

165 

165 

165 

0.6 3.7 (hepatocytomegaly and 
focal hepatocellular 
degeneration) 

165 

165 

165 

165 

Reference 
Chemical Form Comments 

Great Lakes Chemical 
Corporation 1978 
OctaBDE (technical) 
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Table 3-1  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Inhalation (continued) 
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a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

INTERMEDIATE EXPOSURE 
Systemic 
2 Rat 

(CD) 
13 wk 
5 d/wk 
6 hr/d 

System 

Resp 

NOAEL 
(mg/m³) 

16 

Less Serious 
(mg/m³) 

202 (alveolar histiocytosis, 
chronic active lung 
inflammation) 

LOAEL 

Serious 
(mg/m³) 

Reference 
Chemical Form 

Great Lakes Chemical 
Corporation 2000 
OctaBDE (technical) 

Comments 

Cardio 202 

Gastro 202 

Hemato 202 

Musc/skel 202 

Hepatic 1.1 16 (centrilobular 
hepatocellular 
hypertrophy) 

Renal 

Endocr 

202 
b 

1.1 16 (decreased serum T4, 
increased serum TSH) 

Dermal 202 

Ocular 202 

Immuno/ Lymphoret 
Bd Wt 202 

3 Rat 
(CD) 

13 wk 
5 d/wk 
6 hr/d 

16 202 (grossly discolored and 
enlarged bronchial and 
mediastinal lymph nodes 
associated with chronic 

Great Lakes Chemical 
Corporation 2000 
OctaBDE (technical) 

active lung inflammation 
and alveolar 
histiocytosis) 
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Table 3-1  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Inhalation (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/

Frequency 
(Route)

System 
NOAEL 
(mg/m³) 

LOAEL 

Reference 
Chemical Form Comments 

Less Serious 
(mg/m³) 

Serious 
(mg/m³) 

P
B

D
E

s
48

Reproductive 
4 Rat 13 wk 16 F 202 F (absence of corpora lutea Great Lakes Chemical5 d/wk(CD) in ovaries) Corporation 20006 hr/d 

OctaBDE (technical) 

a The number corresponds to entries in Figure 3-1. 

b Used to derive an intermediate-duration (15-364 days) inhalation minimal risk level (MRL) of 0.006 mg/m3 for lower brominated diphenyl ethers.  The MRL was derived by 
converting the animal NOAEL of 1.1 mg/m3 to a duration-adjusted human equivalent concentration (NOAELHEC) of 0.53 mg/m3, and dividing by an uncertainty factor of 30 (3 for 
species to species extrapolation with dosimetric adjustments and 10 for human variability) and a modifying factor of 3 (for an incomplete data base). 

Note on chemical form: The chemical form in all studies was a technical octaBDE mixture (exact composition was not reported). 

Bd Wt = body weight; Cardio = cardiovascular; d = day(s); Endocr = endocrine; F = female; Gastro = gastrointestinal; Hemato = hematological; hr = hour(s); Immuno/Lymphoret = 
immunological/lymphoreticular; LOAEL = lowest observed adverse effect level; Musc/skel = muscular/skeletal; NOAEL = no observed adverse effect level; Resp = respiratory; T4 = 
thyroxine; TSH = thyroid stimulating hormone; wk = week(s) 
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	Figure 3-1. Levels of Significant Exposure to Lower Brominated Diphenyl Ethers - Inhalation 
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Figure 3-1. Levels of Significant Exposure to Lower Brominated Diphenyl Ethers - Inhalation (Continued)
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3.2.1.2  Systemic Effects 

Systemic effects that have been observed in humans and animals following inhalation exposure to PBDEs 

are described below. 

Respiratory Effects. No studies were located regarding respiratory effects in humans after inhalation 

exposure to PBDEs. 

Transient signs of respiratory distress that included tachypnea or dyspnea developed in rats that were 

chamber-exposed to pentaBDE aerosol (compound dissolved in corn oil), octaBDE dust, or decaBDE 

dust in very high concentrations of 200,000, 60,000, and 48,200 mg/m3, respectively, for 1 hour (IRDC 

1974, 1975a, 1975b).  Confidence in these effect levels is low due to a small number of tested animals 

and lack of control data.  

One 14-day inhalation study of commercial octaBDE has been conducted.  In this study, rats were 

chamber-exposed to concentrations of 0, 0.6, 3.7, 23.9, or 165.2 mg/m3 as powdered dust for 8 hours/day 

for 14 consecutive days (Great Lakes Chemical Corporation 1978).  Increased respiration rate occurred at 

≥23.9 mg/m3. The rapid breathing pattern developed by the end of each exposure period, always 

disappeared by the following morning, and was not observed at lower exposure concentrations.  

Histological examinations of the control and 165.2 mg/m3 rats (other groups not examined) showed no 

changes in tissues that included nasal turbinates, trachea, lungs, and mediastinal lymph nodes).  

Histological changes in the lungs, but no clearly observed changes in the nasal cavity, were found in a 

study of rats that were nose-only exposed to 0, 1.1, 16, or 202 mg/m3 as dust aerosol for 6 hours/day, 

5 days/week for 13 weeks (Great Lakes Chemical Corporation 2000).  The pulmonary effects included 

alveolar histiocytosis and chronic active inflammation, which occurred in both sexes, and were only 

clearly induced at 202 mg/m3.  Total incidences of alveolar histiocytosis in the 0, 1.1, 16, and 202 mg/m3 

exposure groups were 3/10, 5/10, 5/10, and 10/10 in males, respectively, and 0/10, 5/10, 2/10, and 

10/10 in females, respectively.  Respective total incidences of chronic active lung inflammation were 

0/10, 0/10, 2/10, and 10/10 in males, and 0/10, 1/10, 1/10, and 10/10 in females.  Both lesions were 

predominantly minimal or mild in severity, with moderate severity occurring in a few high-dose animals. 

Additional effects included gross pulmonary changes in both sexes at 202 mg/m3; these included lung 

firmness and white discoloration and/or enlargement in the bronchial and/or mediastinal lymph nodes.  

The gross lymph node changes correlated with the histological granulomatous inflammation.  Effects in 
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nasal tissues were equivocal. Incidences of nasal goblet cell hypertrophy were slightly increased in nasal 

level II of both sexes at ≥1.1 mg/m3, but changes in incidence were not clearly dose-related and there was 

essentially no increase in severity from minimal levels with increasing dose.  Total incidences of goblet 

cell hypertrophy in nasal level II in the 0, 1.1, 16, and 202 mg/m3 exposure groups were 4/10, 9/10, 6/10, 

and 10/10 respectively, in males, and 2/10, 6/10, 4/10, and 8/10, respectively, in females.  Minimal 

severity goblet cell hypertrophy was also slightly increased in nasal level IV in males at 202 mg/m3 (4/10, 

0/10, 1/10, and 8/10), but not in females. 

Cardiovascular Effects. No studies were located regarding cardiovascular effects in humans after 

inhalation exposure to PBDEs. 

No histopathological changes were observed in the heart of rats that were exposed to dusts of commercial 

octaBDE products at concentrations of 174 mg/m3 for 8 hours/day for 14 consecutive days (Great Lakes 

Chemical Corporation 1978), or ≤202 mg/m3 for 6 hours/day, 5 days/week for 13 weeks (Great Lakes 

Chemical Corporation 2000). 

Gastrointestinal Effects. No studies were located regarding gastrointestinal effects in humans after 

inhalation exposure to PBDEs. 

No histopathological changes were observed in the stomach and lower gastrointestinal tract of rats that 

were exposed to dusts of commercial octaBDE products at concentrations of 174 mg/m3 for 8 hours/day 

for 14 consecutive days (Great Lakes Chemical Corporation 1978), or ≤202 mg/m3 for 6 hours/day, 

5 days/week for 13 weeks (Great Lakes Chemical Corporation 2000). 

Hematological Effects. No studies were located regarding hematological effects in humans after 

inhalation exposure to PBDEs. 

No adverse hematological changes occurred in rats that were exposed to 24.4 or 174 mg/m3 of 

commercial octaBDE dust aerosol for 8 hours/day for 14 consecutive days (Great Lakes Chemical 

Corporation 1978).  Evaluation of a limited number of indices (hemoglobin, hematocrit, total erythrocyte 

count, and total and differential leukocyte counts) showed no unusual responses except for an elevation in 

leukocyte numbers. The observed increase in leukocyte counts was considered to be an unusual response 

by the investigators, although it was within the normal range for control rats in their laboratory.  

Comprehensive hematological assessments showed no unusual changes in rats exposed to commercial 
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3. HEALTH EFFECTS 

octaBDE as dust aerosol at concentrations of ≤202 mg/m3 for 6 hours/day, 5 days/week for 13 weeks 

(Great Lakes Chemical Corporation 2000). 

Hepatic Effects. No studies were located regarding hepatic effects in humans after inhalation 

exposure to PBDEs. 

Hepatic effects were observed in a 14-day inhalation study of dusts of commercial octaBDE mixtures.  In 

this study, rats were chamber-exposed to concentrations of 0, 0.6, 3.7, 23.9, or 165.2 mg/m3 as powdered 

dust for 8 hours/day for 14 consecutive days (Great Lakes Chemical Corporation 1978). Increased liver 

weight and hepatic histological changes occurred in rats exposed to concentrations ≥3.7 mg/m3.  At 

3.7 mg/m3, the liver lesions consisted of very slight to slight severity focal to multifocal cytoplasmic 

enlargement of the hepatocytes, accompanied by focal acidophilic degeneration of individual to small 

groups of cells.  The liver lesions were similar in rats exposed to concentrations ≥24.4 mg/m3, except that 

the hepatocyte enlargement was multifocal to diffuse in distribution and accompanied by focal, small to 

large areas of hepatocellular necrosis of very slight to marked degree. 

Similar hepatic changes were found in a study of rats that were nose-only exposed to 0, 1.1, 16, or 

202 mg/m3 commercial octaBDE as dust aerosol for 6 hours/day, 5 days/week for 13 weeks (Great Lakes 

Chemical Corporation 2000).  The liver was affected in both sexes as shown by dose-related increases in 

centrilobular hepatocellular hypertrophy at ≥16 mg/m3 and increased liver weight (absolute and relative) 

at 202 mg/m3.  Respective total incidences of centrilobular hepatocellular hypertrophy (predominantly 

minimal to mild) in the 0, 1.1, 16, and 202 mg/m3 groups were 1/10, 0/10, 3/10, and 10/10 in males, and 

0/10, 0/10, 3/10, and 6/10 in females.  Serum chemistry evaluations showed no clear effects of exposure.  

Serum cholesterol was significantly increased (66.2% more than controls, p<0.01) in 202 mg/m3 females, 

but the magnitude of the elevation was not considered toxicologically significant.  Some other statistically 

significant serum chemistry alterations (increased mean globulin and total protein, decreased 

albumin/globulin ratio) also occurred in females exposed to 202 mg/m3, but these changes were not 

considered exposure-related due to small magnitudes of changes and lack of similar changes in the males. 

Renal Effects. No studies were located regarding renal effects in humans after inhalation exposure to 

PBDEs. 

No histopathological changes were observed in the kidneys or urinary bladder of rats that were exposed to 

dusts of commercial octaBDE products at concentrations of 174 mg/m3 for 8 hours/day for 14 consecutive 
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days (Great Lakes Chemical Corporation 1978) or ≤202 mg/m3 for 6 hours/day, 5 days/week for 

13 weeks (Great Lakes Chemical Corporation 2000).  Urinalyses were not performed in any of these 

studies. 

Endocrine Effects. There is evidence suggestive of hypothyroidism in a small group of workers who 

were occupationally exposed to decaBDE (Bahn et al. 1980).  In another study, plasma levels of thyroid 

hormones (T3 and free T4) and eight PBDE congeners (tetra- to heptaBDEs) were monitored for 198– 

221 days in three electronic dismantling workers (Pettersson et al. 2002).  The hormones remained within 

normal ranges and there were no correlations between levels of hormones and the plasma concentrations 

of congeners. 

An acute inhalation study of commercial octaBDE dust in rats showed no histopathological changes in the 

thyroids, parathyroids, adrenals, or pituitary following chamber exposure to 174 mg/m3 as powdered dust 

for 8 hours/day for 14 consecutive days (Great Lakes Chemical Corporation 1978).  Rats that were nose-

only exposed to commercial octaBDE at concentrations of 1.1, 16, or 202 mg/m3 for 6 hours/day, 

5 days/week for 13 weeks similarly showed no histological changes in the adrenals, pancreas, 

parathyroids, pituitary, or thyroids (Great Lakes Chemical Corporation 2000). Measurements of serum 

levels of thyroid hormones in the 13-week rat study, however, showed exposure-related decreases in 

mean thyroxine (total T4) in both sexes exposed at ≥16 mg/m3, and increases in TSH in males exposed at 

≥16 mg/m3 and in females exposed at 202 mg/m3.  The changes were usually statistically significant 

(p<0.05 or p<0.01) compared to controls and were considered by the investigators to be consistent with 

chemical-induced hypothyroidism.  There were no serum T3 changes, thyroid-attributable clinical signs or 

body weight effects, or gross or histopathological changes in the thyroid.  The 1.1 mg/m3 LOAEL for 

thyroid effects was used as the basis for the intermediate-duration MRL for inhalation exposure to 

octaBDE, as indicated in the footnote to Table 3-1 and discussed in Chapter 2 and Appendix A. 

Dermal Effects. No studies were located regarding dermal effects in humans after inhalation exposure 

to PBDEs. 

No gross or histological changes in the skin were observed in rats that were nose-only exposed to 

commercial octaBDE as dust aerosol at concentrations of ≤202 mg/m3 for 6 hours/day, 5 days/week for 

13 weeks (Great Lakes Chemical Corporation 2000). 
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Ocular Effects. No studies were located regarding ocular effects in humans after inhalation exposure 

to PBDEs. 

Transient signs of ocular irritation that included eye squint, erythema, and/or ocular discharge were 

observed in rats that were chamber-exposed to pentaBDE aerosol (compound dissolved in corn oil), 

octaBDE dust, or decaBDE dust in concentrations of 2,000, 2,000, and 48,200 mg/m3, respectively, for 

1 hour (IRDC 1974, 1975a, 1975b).  Confidence in these effect levels is low due to a small number of 

tested animals and lack of control data. 

No histopathological changes were observed in eyes of rats that were chamber-exposed to ≤174 mg/m3 of 

commercial octaBDE as powdered dust for 8 hours/day for 14 consecutive days (Great Lakes Chemical 

Corporation 1978).  Opthalmoscopic and histological examinations showed no ocular effects in rats 

following nose-only exposure to ≤202 mg/m3 of commercial octaBDE dust aerosol for 6 hours/day, 

5 days/week for 13 weeks (Great Lakes Chemical Corporation 2000). 

3.2.1.3  Immunological and Lymphoreticular Effects 

A study conducted in China examined the association between serum levels of four BDEs (28, 47, 66, and 

209), as well as PCBs and organochlorine pesticides, and the prevalence of asthma in children (3–6 years 

old) living in a heavily populated area (Meng et al. 2016).  The study involved 620 cases and 

218 controls. Serum analyses showed significantly higher levels of BDEs in cases than in controls. 

BDE 209 had the highest mean concentration in cases, 4.02 ng/g lipid, compared to 1.73 ng/g lipid in 

controls.  In multivariable-adjusted analyses, the odds ratio (OR) for risk of asthma associated with 1 ng/g 

increase was statistically significant only for BDE 28 (OR 3.63; 95% confidence interval [CI] 1.23– 

10.70).  Strafication of children based on asthma severity showed that BDE 209 was positively correlated 

with the severity of the condition (OR 1.40; 95% CI 1.14–1.72).  PCBs and organochlorine pesticide also 

were associated with increased risk of asthma. 

No histopathological changes were observed in the spleen, mesenteric or mediastinal lymph nodes, or 

bone marrow from rats that were exposed to 174 mg/m3 of octaBDE dust for 8 hours/day for 

14 consecutive days (Great Lakes Chemical Corporation 1978). Rats that were nose-only exposed to 

commercial octaBDE at concentrations of 1.1, 16, or 202 mg/m3 as dust aerosol for 6 hours/day, 

5 days/week for 13 weeks similarly showed no effects in bone marrow, spleen, or thymus, although gross 

changes in pulmonary lymph nodes were observed at 202 mg/m3 (Great Lakes Chemical Corporation 

http:1.14�1.72


   
 

    
 
 

 
 
 
 
 

   

  

 

  
 

   

 

    

       

   

 

  

 

 

   
 

   

 

         

   

    

   

  

    

   

  

 

 

  
 

     

 

 

PBDEs 56 

3. HEALTH EFFECTS 

2000). The effects included discolored and/or enlarged bronchial and mediastinal lymph nodes, and 

appeared to be associated with concurrent granulomatous inflammation of the lungs.  

3.2.1.4  Neurological Effects 

No studies were located regarding neurological effects in humans after inhalation exposure to PBDEs. 

No clinical signs of neurotoxicity were observed in rats that were exposed to dusts of commercial 

octaBDE products at concentrations of 174 mg/m3 for 8 hours/day for 14 consecutive days (Great Lakes 

Chemical Corporation 1978) or ≤202 mg/m3 for 6 hours/day, 5 days/week for 13 weeks (Great Lakes 

Chemical Corporation 2000).  Histological examinations of nervous system tissues, performed only in the 

13-week study, showed no effects in the brain (forebrain, midbrain, hindbrain), optic nerve, or a 

peripheral nerve (sciatic). 

3.2.1.5  Reproductive Effects 

No studies were located regarding reproductive effects in humans after inhalation exposure to PBDEs. 

No histopathological changes were observed in testes or ovaries from rats that were exposed to 

commercial octaBDE at concentrations ≤174 mg/m3 as powdered dust for 8 hours/day for 14 consecutive 

days (Great Lakes Chemical Corporation 1978).  A histological effect in the ovaries was found in a study 

of rats that were nose-only exposed to 0, 1.1, 16, or 202 mg/m3 as dust aerosol for 6 hours/day, 

5 days/week for 13 weeks (Great Lakes Chemical Corporation 2000).  Absence of corpora lutea, based on 

qualitative evaluation of step sections of the ovary, was found in 3/10 females at 202 mg/m3, compared to 

0/10 incidences in the control and both lower exposure groups.  The investigators interpreted this 30% 

increase in incidence be treatment-related because an absence of corpora lutea was considered unusual in 

rats at 20 weeks of age.  No gross or histopathological changes were observed in the oviduct, uterus, or 

vagina, or in male reproductive tissues (testes with epididymides and vas deferens). 

3.2.1.6  Developmental Effects 

No studies were located regarding developmental effects in humans or animals after inhalation exposure 

to PBDEs. 
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3.2.1.7  Cancer 

No studies were located regarding cancer in humans or animals after inhalation exposure to PBDEs. 

3.2.2 Oral Exposure 

Human data presented below are primarily from studies that attempted to identify relationships between 

concentrations of PBDE in serum or other tissues and various health outcomes.  Details of PBDE 

exposure in these study populations are typically unknown.  However, exposure is presumed to have been 

primarily by the oral route for those studies presented below. 

The highest NOAEL and all LOAEL values from each reliable study of health effects end points in each 

species and duration category for PBDEs are recorded in Tables 3-2 (lower PBDEs) or 3-3 (decaBDE) 

and plotted in Figures 3-2 (lower PBDEs) or 3-3 (decaBDE). 

3.2.2.1  Death 

Single-dose gavage LD50 values of 5,000 and 6,200 mg/kg were determined for pentaBDE (Saytex 115 

and DE-71, respectively) in rats that were observed for 14 days (British Industrial Biological Research 

Association 1977; Pharmakon Research International Inc. 1984).  Another study found that a single 

5,000 mg/kg dose of pentaBDE caused deaths in four of five rats in the 14 days following treatment, 

whereas doses ≤500 mg/kg caused no mortality (IRDC 1975b). No deaths occurred in rats exposed to 

pentaBDE in estimated dietary doses of ≤90 mg/kg/day for 28 days (IRDC 1976) or ≤100 mg/kg/day for 

90 days (WIL Research Laboratories 1984). 

No deaths occurred in rats that were administered octaBDE by gavage in single doses ≤5,000 mg/kg and 

observed for the following 14 days (IRDC 1975a).  Intermediate-duration dietary studies with octaBDE, 

resulted in no mortality in rats exposed to estimated dietary doses of ≤90 mg/kg/day for 28 days or 

≤750 mg/kg/day for 13 weeks (IRDC 1976, 1977). 

No deaths occurred in rats that were treated with a single gavage dose of ≤5,000 mg/kg of decaBDE or 

≤2,000 mg/kg of 77.4% decaBDE (containing 21.8% nonaBDE and 0.8% octaBDE) and observed for the 

following 14 days (IRDC 1974; Norris et al. 1975a).  No mortality was observed in rats and mice that 

were exposed to decaBDE via diet in estimated doses of ≤16,000 and ≤19,000 mg/kg/day, respectively, 

for 14 days (NTP 1986).  
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

ACUTE EXPOSURE 
Death 
1 Rat 

(Wistar) 
once 
(GO) 

System 
NOAEL 
(mg/kg) 

Less Serious 
(mg/kg) 

LOAEL 

Serious 
(mg/kg) 

6200 (44-day LD50) 

Reference 
Chemical Form 

British Industrial Biological 
Research Association 1977 
PentaBDE (DE-71) 

Comments 

2 Rat 
Spartan 

once 
(GO) 

5000 (4/5 died) IRDC 1975b 
PentaBDE (technical) 

3 Rat 
(Sprague-
Dawley) 

Systemic 
4 Rat 

(Sprague-
Dawley) 

once 
(GO) 

once 
(GO) 

Hepatic 1.2 M 

5000 (14-day LD50) Pharmakon Research 
International Inc. 1984 
PentaBDE (Saytex 115) 

Albina et al. 2010 
PentaBDE (BDE99) 

Renal 0.6 M (phagolysosomes in 
renal tubules) 

5 Rat 
(Sprague-
Dawley) 

once 
(GO) 

Hepatic 1.2 M Alonso et al. 2010 
PentaBDE (BDE99) 

No biologically relevant 
changes in hepatic 
serum chemistry. 

Renal 0.6 M 1.2 M (increased total protein in 
urine) 

Endocr 0.6 M (reduced serum 
testosterone) 

6 Rat 
(CD) 

10 d 
Gd 6-15 
(GO) 

Bd Wt 10 100 (20% reduction in 
maternal body weight 
gain) 

Argus Research Laboratories 
1985a 
PentaBDE (Saytex 115) 

P
B

D
E

s
58
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral (continued) 

P
B

D
E

s
59

a 
Key to Species 
Figure (Strain) 

7 Rat 
(Sprague-
Dawley) 

14 d 
Gd 6-19 
(GO) 

8 Rat 
(Wistar) 

7 d 
1 x/d 
(GO) 

9 Rat 
(Wistar) 

14 d 
1 x/d 
(GO) 

10 Rat 
(Wistar) 

7 d 
1 x/d 

11 Rat 
(Wistar) 

14 d 
1 x/d 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 

Bd Wt 

Hepatic 

Bd Wt 

Hepatic 

Bd Wt 

Hepatic 

Bd Wt 

Hepatic 

Bd Wt 

LOAEL 

NOAEL 
(mg/kg/day) 

Less Serious 
(mg/kg/day) 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

2 F Blanco et al. 2012 
PentaBDE (BDE99) 

8 F 

200 F 

200 F 

40 F 

40 F 

40 F (porphyria) 

8 F (porphyria) 

200 F (fatty degeneration) 

200 F (7% decrease in body 
weight gain) 

Bruchajzer 2011 
PentaBDE (technical) 

Bruchajzer 2011 
PentaBDE (technical) 

Bruchajzer et al. 2010 
PentaBDE (technical) 

40 F 

40 F 

200 F (fatty degeneration) 

200 F (10% decrease in body 
weight gain) 

Bruchajzer et al. 2010 
PentaBDE (technical) 



2156

Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral	 (continued) 

Exposure/ LOAEL 

Reference 
Chemical Form Comments 

Duration/ 
Frequency NOAEL Less Serious Serious 

(Route) 
System (mg/kg) (mg/kg) (mg/kg) 

once Hepatic 200 F 2000 F (fatty degeneration) 5 d observation 200 2000

Bruchajzer et al. 2011 

(GO) PentaBDE (technical) 

Bd Wt 200 F 2000 F (11% decrease in body 
200 weight gain) 

2000

200 F 2000 F (11% decrease in body 
200 weight gain) 

2000

7 d Hepatic 2 F 8 F (porphyria) 1 x/d 2 8

(GO) 

Bruchajzer et al. 2012 
OctaBDE (technical) 

Bd Wt 8 F 40 F (9% decrease in body 
8 weight gain) 

40

14 d Hepatic 8 F 40 F (porphyria) 1 x/d 8 40

(GO) 

Bruchajzer et al. 2012 
OctaBDE (technical) 

Bd Wt 8 F 40 F (5% decrease in body 
8 weight gain) 

40

14 d Hepatic 76.6 M 1 x/d 76.6

(GO) 

Carlson, 1980b 
OctaBDE (technical) 

14 d Hepatic 56.4 M 1 x/d 56.4

(GO) 

Carlson, 1980b 
PentaBDE (technical) 
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a 
Key to Species 
Figure (Strain) 

12	 Rat 
(Wistar) 

13	 Rat 
(Wistar) 

14	 Rat 
(Wistar) 

15	 Rat 
(Sprague-
Dawley) 

16	 Rat 
(Sprague-
Dawley) 
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18

2180

120

120

2198

6

18

18
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18

18

36
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14

14
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral	 (continued) 

P
B

D
E

s
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a 
Key to 
Figure 

17 

18 

19 

20 

21 

Species 
(Strain) 

Rat 
(Sprague-
Dawley) 

Rat 
(Sprague-
Dawley) 

Rat 
(Sprague-
Dawley) 

Rat 
(Sprague-
Dawley) 

Rat 
(Sprague-
Dawley) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

14 d 
1 x/d 
(GO) 

6 d 
Gd 6.5-11.5 
(GO) 

14 d 
1 x/d 
(G) 

14 d 
1 x/d 
(GO) 

2 wk 
1 x/d 
(GO) 

System 

Endocr 

Endocr 

Bd Wt
	

Endocr
	

Bd Wt
	

Hepatic
	

Endocr
	

Bd Wt
	

Endocr
	

Bd Wt 

Metab 

NOAEL 
(mg/kg/day) 

120 F 

120 F 

6 F 

18 F 

36 F 

14 M 

14 M 

LOAEL 

Less Serious	 Serious 
(mg/kg/day)	 (mg/kg/day) 

18		 (reduced serum T4) 

18 F		 (reduced serum T4, 
reduced T4 protein 
binding) 

18 F		 (reduced liver vitamin A) 

18 F		 (reduced serum T4) 

14 M (reduced serum T4) 

Reference 
Chemical Form 

Darnerud and Sinjari 1996 
PentaBDE (Bromkal 70) 

Ellis-Hutchings et al. 2009 
PentaBDE (DE-71) 

Hallgren and Darnerud 2002 
TetraBDE (BDE47) 

Hallgren et al. 2001 
PentaBDE (Bromkal 70-5DE) 

Hoppe and Carey 2007 
PentaBDE (technical) 

Comments 

No exposure-related 
changes in serum 
thyroid hormone levels. 

No exposure-related 
changes in fat pad 
weight, adipocyte 
number, size, viability, 
lipolysis or glucose 
oxidation. 
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 
(mg/kg) 

Less Serious 
(mg/kg) 

LOAEL 

Serious 
(mg/kg) 

Reference 
Chemical Form Comments 

22 

23 

24 

Rat 
Spartan 

Rat 
Spartan 

Rat 
(Wistar) 

once 
(GO) 

once 
(GO) 

once 
Gd 6 
(GO) 

Bd Wt 

Bd Wt 

Endocr 

5000 

500 

b 
0.06 F (reduced serum T4) 

IRDC 1975a 
OctaBDE (technical) 

IRDC 1975b 
PentaBDE (technical) 

Kuriyama et al. 2007 
PentaBDE (BDE99) 

25 

26 

Rat 
(CD) 

Rat 
(Wistar) 

10 d 
Gd 6-15 
(GO) 

5 d 
Pnd 22-26 
(GO) 

Bd Wt 

Endocr 

Bd Wt 

25 

3 F 

60 F 

30 F (reduced serum T4) 

Life Science Research Israel 
Ltd. (1987) 
OctaBDE (FR-1208) 

Stoker et al. 2004 
PentaBDE (DE-71) 

27 Rat 
(Wistar) 

5 d 
Pnd 23-27 
(GO) 

Endocr 

Bd Wt 

3 M 

60 M 

30 M (reduced serum T4) Stoker et al. 2004 
PentaBDE (DE-71) 

28 Rat 
(Wistar) 

3 d 
1 x/d 
(GO) 

Endocr 

Bd Wt 

30 M 

60 M 

60 M (increased serum LH) Stoker et al. 2005 
PentaBDE (DE-71) 

P
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2299

240

2304

0.7

2073

25

50

2081

10 30

300

2082

3 10

300

2110

18
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral	 (continued) 

P
B

D
E

s
63

a 
Key to Species 
Figure (Strain) 

29	 Rat 
(Wistar) 

30	 Rat 
(Wistar) 

31	 Rat 
(CD) 

32	 Rat 
(Long-
Evans) 

33	 Rat 
(Long-
Evans) 

34	 Mouse 
(C57BL/6N) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

9 d 
1 x/d 
(GO) 

Bd Wt 240 M Stoker et al. 2005 
PentaBDE (DE-71) 

Hershberger Assay 
(castrated rats, 
supplemented with s.c. 
testosterone) 

once 
Gd 6 
(GO) 

Bd Wt 0.7 F Talsness et al. 2008 
TetraBDE (BDE47) 

10 d 
Gd 6-15 
(GO) 

Bd Wt 25 50 (40% reduced maternal 
body weight gain) 

WIL Research Laboratories 
1986 
OctaBDE (DE-79) 

4 d 
1 x/d 
(GO) 

Endocr 

Bd Wt 

10 F 

300 F 

30 F (reduced serum T4) Zhou et al. 2001 
PentaBDE (DE-71) 

4 d 
1 x/d 
(GO) 

Endocr 

Bd Wt 

3 F 

300 F 

10 F (reduced serum T4) Zhou et al. 2001 
OctaBDE (DE-79) 

14 d 
1 x/d 
(GO) 

Endocr 18 (reduced serum T4) Darnerud and Sinjari 1996 
PentaBDE (Bromkal 70) 
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500
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 
(mg/kg) 

Less Serious 
(mg/kg) 

LOAEL 

Serious 
(mg/kg) 

Reference 
Chemical Form Comments 

35 Mouse 
C57BL/6J 

once 
(GO) 

Hepatic 

Endocr 

Bd Wt 

500 F 

100 F 

500 F 

500 F (reduced serum T4) 

Fowles et al. 1994 
PentaBDE (DE-71) 

36 Mouse 
(C57BL/6N) 

14 d 
1 x/d 
(GO) 

Hepatic 

Endocr 

Bd Wt 

72 F 

72 F 

18 F (reduced serum T4) 

Fowles et al. 1994 
PentaBDE (DE-71) 

37 Mouse 
(C57BL/6N) 

14 d 
1 x/d 
(GO) 

Hepatic 

Endocr 

Bd Wt 

18 F 

36 F 

36 F 

18 F 

(reduced liver vitamin A) 

(reduced serum T4) 

Hallgren et al. 2001 
PentaBDE (Bromkal 70-5DE) 

38 Mouse 
(C57BL/6N) 

14 d 
1 x/d 
(GO) 

Endocr 

Bd Wt 18 F 

18 F (reduced serum T4) Hallgren et al. 2001 
TetraBDE (BDE47) 

P
B

D
E

s
64
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10 100

100

2066

36

2067

18

36

2060
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2062

36
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral	 (continued) 

LOAEL 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 
Serious 
(mg/kg/day) 

P
B

D
E

s
65

a 
Key to Species 
Figure (Strain) 

39 Mouse 
(C57BL/6) 

Immuno/ Lymphoret 
40 

41 

42 

43 

Rat 
(Sprague-
Dawley) 

Mouse 
(C57BL/6N) 

Mouse 
(C57BL/6N) 

Mouse 
(C57BL/6N) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

Endocr 10 F 100 F (reduced serum T4) 

Bd Wt 100 F 

36 

18 36		 (reduced in vitro 
production of IgG in 
mitogen- stimulated 
splenocytes) 

500 F 

36 F 72 F		 (reduced antibody 
response to sheep red 
blood cells, decreased 
thymus weight) 

Reference 
Chemical Form 

Richardson et al. 2008 
TetraBDE (BDE47) 

Darnerud and Thuvander 1998 
PentaBDE (Bromkal 70-5DE) 

Darnerud and Thuvander 1998 
PentaBDE (DE-71) 

Fowles et al. 1994 
PentaBDE (DE-71) 

Fowles et al. 1994 
PentaBDE (DE-71) 

Comments 

No exposure-related 
changes in spleen or 
thymus weight, number 
or distribution of 
lymphocyte 
subpopulations, or in 
vitro IgG production. 

No exposure-related 
change in spleen or 
thymus weights or 
antibody respose to 
sheep red blood cells. 

4 d 
1 x/d 
(GO) 

14 d 
1 x/d 
(GO) 

14 d 
1 x/d 
(GO) 

once 
(GO) 

14 d 
1 x/d 
(GO) 
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18

2126

1.2

2120
0.6

2131

2

2296

30 60

2298
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral	 (continued) 

P
B

D
E

s
66

a 
Key to Species 
Figure (Strain) 

44	 Mouse 
(C57BL/6N) 

Neurological 
45 Rat 

(Sprague-
Dawley) 

Reproductive 
46 Rat 

(Sprague-
Dawley) 

47	 Rat 
(Sprague-
Dawley) 

48	 Rat 
(Wistar) 

49	 Rat 
(Wistar) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

14 d 
1 x/d 
(GO) 

18 F Hallgren et al. 2001 
TetraBDE (BDE47) 

once 
(GO) 

1.2 M Belles et al. 2010 
PentaBDE (BDE99) 

once 
(GO) 

0.6 F (decreased serum 
testosterone) 

Alonso et al. 2010 
PentaBDE (BDE99) 

14 d 
Gd 6-19 
(GO) 

2 F Blanco et al. 2012 
PentaBDE (BDE99) 

3 d 
1 x/d 
(GO) 

9 d 
1 x/d 
(GO) 

30 M 60 M (increased serum LH) 

30 M (20% decrease in ventral 
prostate weight) 

Stoker et al. 2005 
PentaBDE (DE-71) 

Stoker et al. 2005 
PentaBDE (DE-71) 

Comments 

No exposure-related 
changes in spleen or 
thymus weight 

No changes in brain 
histology or in 
functional observation 
battery, open-field 
testing, passive 
avoidance test, or 
Morris water maze. 

No treatment-related 
changes in gravid 
uterine weight or 
number of implantation 
or resorptions. 

Hershberger Assay 
(castrated rats, 
supplemented with s.c. 
testosterone) 
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0.7

2232

300

2070

200

2058

10
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral	 (continued) 

P
B

D
E

s
67

a 
Key to Species 
Figure (Strain) 

50	 Rat 
(Wistar) 

51	 Mouse 
(BALB/c) 

Developmental 
52 Rat 

(CD) 

53	 Rat 
(CD) 

54	 Rat 
(Sprague-
Dawley) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 
(mg/kg) 

Less Serious 
(mg/kg) 

LOAEL 

Serious 
(mg/kg) 

Reference 
Chemical Form 

once 
Gd 6 
(GO) 

0.7 F Talsness et al. 2008 
TetraBDE (BDE47) 

3 d 
1 x/d 
(GO) 

300 F Mercado-Feliciano and Bigsby 
2008a 
PentaBDE (DE-71) 

10 d 
Gd 6-15 
(GO) 

200 Argus Research Laboratories 
1985a 
PentaBDE (Saytex 115) 

10 d 
Gd 6-15 
(GO) 

10 25 (increased resorptions 
and reduced fetal body 
weight) 

Argus Research Laboratories 
1985b 
OctaBDE (Saytex 115) 

14 d 
Gd 6-19 
(GO) 

1 2 (delayed ossification, 
liver and heart 
hypertrophy) 

Blanco et al. 2012 
PentaBDE (BDE99) 

Comments 

No dose-related 
changes in ovary 
weight or histology. 

Mice were 
ovariectomized 3 
weeks prior to 
exposure; no change in 
uterus weight or 
uterus/vaginal 
histology. 

No changes in number, 
sex, and weight of 
fetuses, fetal death, 
early and late 
resorptions, gross 
malformations, or 
skeletal or visceral 
abnormalities. 
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

55 Rat 
(Long- Evans) 

7 d 
Pnd 6-12 
(GO) 

30 M (impaired learning in 
visual discrimination task 
at Pnd 30-83) 

Dufault et al. 2005 
PentaBDE (DE-71) 

56 Rat 
(Sprague-
Dawley) 

6 d 
Gd 6.5-11.5 
(GO) 

120 Ellis-Hutchings et al. 2009 
PentaBDE (DE-71) 

No exposure-related 
changes in embryo 
viability, growth, or 
morphology. 

57 Rat 
(Sprague-
Dawley) 

14 d 
Gd 6.5-19.5 
(GO) 

120 Ellis-Hutchings et al. 2009 
PentaBDE (DE-71) 

No exposure-related 
effects on fetal survival, 
growth, or 
malformations. 

58 Rat 
(Sprague-
Dawley) 

once 
Pnd 10 
(GO) 

1 (impaired learning and 
memory at 2 months) 

He et al. 2009 
TetraBDE (BDE47) 

59 Rat 
(Sprague-
Dawley) 

once 
Pnd 10 
(GO) 

1 (impaired learning and 
memory and 23% 
decrease in relative 
uterine weight at 2 
months) 

He et al. 2011 
TetraBDE (BDE47) 

60 Rat 
(Wistar) 

once 
Gd 6 
(GO) 

b 
0.06 (increased activity and 

impaired 
spermatogenesis in adult 
offspring) 

Kuriyama et al. 2005 
PentaBDE (BDE99) 

P
B

D
E

s
68
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral	 (continued) 

P
B

D
E

s
69

a 
Key to Species 
Figure (Strain) 

61	 Rat 
(Wistar) 

62	 Rat 
(CD) 

63	 Rat 
(Wistar) 

64	 Rat 
(Wistar) 

65	 Rat 
(Sprague-
Dawley) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 
(mg/kg) 

Less Serious 
(mg/kg) 

LOAEL 

Serious 
(mg/kg) 

Reference 
Chemical Form Comments 

once 
Gd 6 
(GO) 

0.06 0.3 (reduced serum T4 in 
Pnd 22 offspring) 

Kuriyama et al. 2007 
PentaBDE (BDE99) 

10 d 
Gd 6-15 
(GO) 

2.5 10 (minimal increased 
post-implantation loss) 

Life Science Research Israel 
Ltd. (1987) 
OctaBDE (FR-1208) 

once 
Gd 6 
(GO) 

b 
0.06 F (ultrastructural changes 

in ovaries in F1 females 
at Pnd 90, increased 
resorptions in F1 females 
mated to unexposed 
males) 

Talsness et al. 2005 
PentaBDE (BDE99) 

once 
Gd 6 
(GO) 

0.14 F (reduced number of 
secondary ovarian 
follicles at Pnd 38 and 
ultrastructural changes in 
the ovary at Pnd 100 in 
offspring) 

Talsness et al. 2008 
TetraBDE (BDE47) 

once 
Pnd 10 
(G) 

0.8 M 8 M (decreased spontaneous 
activity, impaired 
habituation) 

Viberg et al. 2005 
PentaBDE (BDE99) 
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2369
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral	 (continued) 

P
B

D
E

s
70

a 
Key to Species 
Figure (Strain) 

66	 Rat 
(CD) 

67	 Rat 
(Long-
Evans) 

68	 Mouse 
(C57BL/6) 

69	 Mouse 
(C57BL/6N) 

70	 Mouse 
(NMRI) 

71	 Mouse 
(NMRI) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

10 d 
Gd 6-15 
(GO) 

25 50 (reduced fetal weight and 
increased skeletal 
variations associated 
with maternal tox) 

WIL Research Laboratories 
1986 
OctaBDE (DE-79) 

14 d 
Gd 6-20 
(GO) 

1 10 (reduced serum T4 in 
fetuses) 

Zhou et al. 2002 
PentaBDE (DE-71) 

once 
Pnd 10 
(GO) 

10 M Costa et al. 2015 
TetraBDE (BDE47) 

No exposure-related 
changes in serum T3 or 
T4. 

once 
Pnd 10 
(G) 

6.8 M (decreased post-tetanic 
and long term potential in 
hippocampal slices at 
Pnd 17-19) 

Dingemans et al. 2007 
TetraBDE (BDE47) 

once 
Pnd 10 
(G) 

0.8 M (altered spontaneous 
activity and habituation at 
2-4 months) 

Eriksson et al. 2001 
PentaBDE (BDE99) 

once 
Pnd 10 
(G) 

0.7 M 10.5 M (altered spontaneous 
activity and habituation at 
2-4 months) 

Eriksson et al. 2001 
TetraBDE (BDE47) 
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral (continued) 

P
B

D
E

s
71

a 
Key to Species 
Figure (Strain) 

72 Mouse 
(NMRI) 

73 Mouse 
(NMRI) 

74 Mouse 
(NMRI) 

75 Mouse 
(NMRI) 

76 Mouse 
(NMRI) 

77 Mouse 
(C57BL/6N) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

once 
Pnd 3 
(G) 

System 
NOAEL 
(mg/kg) 

LOAEL 

Less Serious 
(mg/kg) 

Serious 
(mg/kg) 

8 M (altered spontaneous 
activity and habituation at 
4 months) 

Reference 
Chemical Form 

Eriksson et al. 2002b 
PentaBDE (BDE99) 

Comments 

once 
Pnd 10 
(G) 

8 M (altered spontaneous 
activity and habituation at 
4 months) 

Eriksson et al. 2002b 
PentaBDE (BDE99) 

once 
Pnd 19 
(G) 

8 M Eriksson et al. 2002b 
PentaBDE (BDE99) 

No exposure-related 
alterations in 
spontaneous activity at 
4 months. 

once 
Pnd 10 
(G) 

0.8 M 12 M (altered spontaneous 
activity and habituation at 
4-6 months) 

Eriksson et al. 2006 
PentaBDE (BDE99) 

once 
Pnd 10 
(G) 

0.8 M (decreased activity and 
impaired learning and 
memory during at 2-6 
months) 

Fischer et al. 2008 
PentaBDE (BDE99) 

once 
Pnd 10 
(GO) 

1 M (increased motor activity 
at 4 months) 

Gee and Moser 2008 
TetraBDE (BDE47) 



2197

30

2373
12

2243

0.4
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral (continued) 

P
B

D
E

s
72

a 
Key to Species 
Figure (Strain) 

78 Mouse 
(C57BL/6N) 

79 Mouse 
(NMRI) 

80 Mouse 
(C57BL/6) 

81 Mouse 
(NMRI) 

82 Mouse 
(NMRI) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

once 
Pnd 10 
(GO) 

30 M Gee et al. 2008 
TetraBDE (BDE47) 

No exposure-related 
changes in offspring 
body weight or serum 
T3 or T4 levels. 

once 
Pnd 10 
(GO) 

12 M (decreased spontaneous 
activity and impaired 
habituation at 2 months) 

Hallgren et al. 2015 
PentaBDE (BDE99) 

once 
Pnd 10 
(G) 

0.4 0.8 (decreased total activity 
at 2 months) 

Sand et al. 2004 
PentaBDE (BDE99) 

once 
Pnd 10 
(G) 

8 M (decreased spontaneous 
activity, altered 
habituation, and altered 
response to cholinergic 
agent at 2 months) 

Viberg et al. 2002 
PentaBDE (BDE99) 

once 
Pnd 10 
(G) 

0.45 M (decreased spontaneous 
activity at 6 months) 

Viberg et al. 2003a 
HexaBDE (BDE153) 



83 Mouse 
(C57/BL)

Exposure/ 
Duration/ 

Frequency  (Route)  System 
NOAEL 
(mg/kg) 

LOAEL 

Reference 
Chemical Form Comments 

Less Serious Serious 
(mg/kg) (mg/kg) 

once 
Pnd 10  
(G) 

0.4

0.4 0.8 (decreased spontaneous 
activity and impaired 
habituation at 2-8 
months) 

Viberg et al. 2004a 
PentaBDE (BDE99) 

0.8

once 
Pnd 10 
(G) 

0.4

0.4 M 12 M (decreased spontaneous 
activity, impaired 
habituation, and 
decreased density of 
cholinergic nicotinic 
receptors in 
hippocampus at 4 
months) 

Viberg et al. 2004b 
PentaBDE (BDE99) 

12

once 
Pnd 3 
(G) 

16.8 M (decreased spontaneous 
activity and impaired 
habituation at 2 months) 

Viberg et al. 2006 
OctaBDE (BDE203) 

16.8

once 
Pnd 10 
(G) 

16.8 M (decreased spontaneous 
activity, impaired 
habituation, and impaired 
learning and memory at 
2-3 months) 

Viberg et al. 2006 
OctaBDE (BDE203) 

16.8

once 
Pnd 3 
(G) 

15.2 M (decreased spontaneous 
activity at 2 months) 

Viberg et al. 2006 
HeptaBDE (BDE183) 

15.2

2249

84 Mouse 
(NMRI) 

2250

85 Mouse 
(NMRI) 

2323

86 Mouse 
(NMRI) 

2324

87 Mouse 
(NMRI) 

2339

3.  H
E

A
LTH

 E
FFE

C
TS

Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral (continued) 

P
B

D
E

s
73

a 
Key to Species
Figure (Strain)
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral (continued) 

Exposure/ LOAEL 
Duration/

P
B

D
E

s
74

a FrequencyKey to Species NOAEL Less Serious Serious
(Route)Figure (Strain) System (mg/kg) (mg/kg) (mg/kg) 

88 Mouse once 15.2 MPnd 10(NMRI) 
(G) 

89 Mouse once 18.5 MPnd 3(NMRI) 
(G) 

90 Mouse once 18.5 M (decreased spontaneousPnd 10(NMRI) activity and impaired
(G) habituation at 2 months) 

91 Rabbit 13 d 5 F 15 F (delayed ossification ofGd 7-19(New sternebrae with
Zealand) (GO) decreased maternal 

weight gain) 

INTERMEDIATE EXPOSURE 
Systemic 
92 Rat 5 wk Endocr 1 F 10 F (reduced serum T4Gd 6 - Pnd 21(Sprague- levels)

Dawley) (IN) 

Reference 
Chemical Form 

Viberg et al. 2006 
HeptaBDE (BDE183) 

Viberg et al. 2006 
NonaBDE (BDE206) 

Viberg et al. 2006 
NonaBDE (BDE206) 

Breslin et al. 1989 
OctaBDE (technical) 

Bansal et al. 2014 
PentaBDE (DE-71) 

Comments 

No change in 
spontaneous activity or 
habituation at 2 
months. 

No changes in 
spontaneous motor 
behavior or habituation 
at 2 months. 

Dams were given 
DE-71-dosed vanilla 
wafers. 
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3

30

60
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3

3

30
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25
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral	 (continued) 

P
B

D
E

s
75

a 
Key to 
Figure 

93 

94 

95 

96 

Species 
(Strain) 

Rat 
(Sprague-
Dawley) 

Rat 
(Sprague-
Dawley) 

Rat 
(Sprague-
Dawley) 

Rat 
(Sprague-
Dawley) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

15 d 
1 x/d 
(GO) 

15 d 
1 x/d 
(GO) 

21 wk 
Pmd 70 -
Pnd 42 
(GO) 

6 wk 
Gd 1 - Pnd 21 
(IN) 

System 

Endocr 

Bd Wt
	

Hepatic
	

Endocr
	

Bd Wt
	

Hepatic
	

Renal
	

Endocr
	

Bd Wt
	

Endocr 

Bd Wt 

NOAEL 
(mg/kg/day) 

3 M 

60 M 

3 M 

60 M 

0.5 M 

25 

0.5 M 

25 

3 F 

30 F 

LOAEL 

Less Serious	 Serious 
(mg/kg/day)	 (mg/kg/day) 

30 M (follicular cell hypertrophy 
and hyperplasia in 
thyroid, reduced serum 
T3 and T4, increased 
serum TSH) 

3 M (centrilobular hepatocyte
	
hypertrophy)
	

30 M (decreased serum T3 
and T4, increased serum 
TSH) 

5 M (hepatocellular
	
hypertrophy)
	

5 M (reduced serum T4) 

30 F		 (reduced serum T3 and 
T4) 

Reference 
Chemical Form 

Becker et al. 2012 
PentaBDE (DE-71) 

Becker et al. 2012 
PentaBDE (DE-71) 

Bondy et al. 2011, 2013 
PentaBDE (DE-71) 

Bowers et al. 2015 
PentaBDE (DE-71) 

Comments 

Study 1 (conducted at 
ILS) 

Study 2 (conducted at 
RTI) 

Dams were given 
DE-71-dosed cookies. 
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

97 Rat 
(Wistar) 

21 d 
1 x/d 
(GO) 

Hepatic 

Bd Wt 

8 F (porphyria) 

8 F (decreased body weight 
gain) 

Bruchajzer 2011 
PentaBDE (technical) 

98 Rat 
(Wistar) 

28 d 
1 x/d 
(GO) 

Hepatic 

Bd Wt 

2 F 

2 F 

8 F (porphyria) 

8 F (8% decrease in body 
weight gain) 

Bruchajzer 2011 
PentaBDE (technical) 

99 Rat 
(Wistar) 

21 d 
1 x/d Bd Wt 40 F 200 F (12% decrease in body 

weight gain) 
Bruchajzer et al. 2010 
PentaBDE (technical) 

100 Rat 
(Wistar) 

28 d 
1 x/d Bd Wt 40 F 200 F (14% decrease in body 

weight gain) 
Bruchajzer et al. 2010 
PentaBDE (technical) 

101 Rat 
(Wistar) 

21 d 
1 x/d 
(GO) 

Hepatic 

Bd Wt 

2 F 

8 F 

8 F (porphyria) 

40 F (9% decrease in body 
weight gain) 

Bruchajzer et al. 2012 
OctaBDE (technical) 

P
B
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s
76
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0.015
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

102 Rat 
(Wistar) 

28 d 
1 x/d 
(GO) 

Bd Wt 8 F 40 F (8% decrease in body 
weight gain) 

Bruchajzer et al. 2012 
OctaBDE (technical) 

103 Rat 
(Sprague-
Dawley) 

90 d 
(GO) 

Hepatic 1.77 M Carlson 1980a 
PentaBDE (technical) 

104 Rat 
(Sprague-
Dawley) 

90 d 
(GO) 

Hepatic 14.1 M Carlson 1980a 
PentaBDE (technical) 

105 Rat 
(Sprague-
Dawley) 

90 d 
(GO) 

Hepatic 2.4 M Carlson, 1980a 
OctaBDE (technical) 

106 Rat 
(Sprague-
Dawley) 

90 d 
(GO) 

Hepatic 19.2 M Carlson, 1980a 
OctaBDE (technical) 

107 Rat 
(Sprague-
Dawley) 

90 d 
1 x/d 
(GO) 

Hepatic 

Bd Wt 

0.015 M 

0.015 M 

Daubie et al. 2011 
PentaBDE (BDE99) 

No exposure-related 
changes in hepatic 
clinical chemistry 

108 Rat 
(Long- Evans) 

125 d 
Pnd 1-125 
(F) 

Endocr 

Bd Wt 26.2 M 

17.5 M (reduced serum T4) Driscoll et al. 2009 
PentaBDE (DE-71) 

P
B

D
E

s
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18

18
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral	 (continued) 

P
B

D
E

s
78

a 
Key to Species 
Figure (Strain) 

109	 Rat 
(Wistar) 

110	 Rat 
(Sprague-
Dawley) 

111	 Rat 
(Sprague-
Dawley) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

18 wk 
Gd 6 - Pnw 16 
5-7 d/wk 
(GO) 

33 d 
Gd 6 - Pnd 18 
(GO) 

70 d 
(F) 

LOAEL 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 
Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

Hepatic 50 (hepatocellular 
hypertrophy and 
vacuolization) 

Dunnick et al. 2012 
PentaBDE (DE-71) 

Endocr 50 (thyroid gland follicular 
hypertrophy) 

Bd Wt 50 M 50 F (14% decrease in body 
weight) 

Hepatic 18 F (reduced liver vitamin A) Ellis-Hutchings et al. 2006 
PentaBDE (DE-71) 

Endocr 

Bd Wt 18 F 

18 F (reduced serum T4) 

Hepatic 

Endocr 

20 M 

2 M 20 M (reduced serum T4; 
increased epithelial 
thickness of inner 
follicles and vacuolation 
of the luminal apices of 
epithelial cells in thyroid) 

Ernest et al. 2012 
52.1% penta-, 44.2% deca-, 
0.4% octa-BDE 

No exposure-related 
changes in hepatic 
clinical chemistry. 

Bd Wt 20 M 

Metab 2 M 20 M (reduced serum glucose 
level) 
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2.5

25

2206

14

14

14

2053
9

90

90

90
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9
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90

90
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral (continued) 

P
B

D
E

s
79

a 
Key to Species 
Figure (Strain) 

112 Rat 
(Sprague-
Dawley) 

28 d 
(G) 

113 Rat 
(Sprague-
Dawley) 

4 wk 
1 x/d 
(GO) 

114 Rat 
(CD) 

28 d 
(F) 

115 Rat 
(CD) 

28 d 
(F) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 

Hepatic 

Endocr 

Bd Wt
	

Metab
	

Hepatic
	

Renal
	

Endocr
	

Bd Wt
	

Hepatic
	

Renal
	

Endocr
	

Bd Wt
	

LOAEL 

NOAEL 
(mg/kg/day) 

Less Serious 
(mg/kg/day) 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

2.5 25 (decreased hepatic 
vitamin A content) 

Fattore et al. 2001 
PentaBDE (Bromkal 70-5DE) 

14 M (reduced serum T4) Hoppe and Carey 2007 
PentaBDE (technical) 

14 M 

14 M (increased adipocyte 
lipolysis, decreased 
adipocyte glucose 
oxidation) 

9 (increased liver weight 
and enlarged 
parenchymal cells) 

IRDC 1976 
PentaBDE (technical) 

90 

90 

90 

9 (increased liver weight 
and enlarged 
parenchymal cells) 

IRDC 1976 
OctaBDE (technical) 

90 

90 

90 
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral	 (continued) 

Exposure/ 
Duration/

a 
Key to Species Frequency 
Figure (Strain) (Route) 

P
B

D
E

s
80

116	 Rat 13 wk 
(CD) (F) 

117 Rat		 36 d 
Gd 6 - Pnd 21(Long- Evans) 
(GO) 

System 

Resp 

Cardio 

Gastro 

Hemato 

Hepatic 

Renal 

Endocr 

Dermal 

Ocular 

Bd Wt 

Endocr 

Bd Wt 

LOAEL 

NOAEL 
(mg/kg/day) 

Less Serious 
(mg/kg/day) 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

750 F 

750 F 

IRDC 1977 
OctaBDE (technical) 

750 F 

70 F 750 F (reduced erythrocytes, 
hematocrit and 
hemoglobin) 

5 M (cytomegaly with 
vacuolation and necrosis 
at higher doses) 

50 M 600 M (minimal increase in 
tubular degenerative 
changes) 

7 F 50 M (increased thyroid weight 
with follicular epithelial 
changes at higher doses) 

750 F 

750 F 

70 F 600 M (12% reduced body 
weight gain) 

1.7 F 10.2 F (reduced serum T4) Kodavanti et al. 2010 
PentaBDE (DE-71) 

30.6 F 
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral	 (continued) 

Exposure/ 
Duration/

a 
Key to Species Frequency 
Figure (Strain) (Route) 

P
B

D
E

s
81

118 Rat		 28 d 
1 x/d(Sprague-


Dawley) (GO)
	

119 Rat		 ~11 wk 
Pmd 28 -(Long- Evans) 
Pnd 21 
(IN) 

120 Rat		 20 d 
Pnd 22-41(Wistar) 
(GO) 

System 

Resp 

Cardio
	

Hemato
	

Hepatic
	

Renal 

Bd Wt 

Metab 

Bd Wt 

Endocr 

Bd Wt 

LOAEL 

NOAEL 
(mg/kg/day) 

Less Serious 
(mg/kg/day) 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

250 Oberg et al. 2010 
PentaBDE (Bromkal 70-5DE) 

250 

250 

2.5 25 (centrilobular 
hypertrophy, reduced 
vitamin A content in liver) 

250 

250 

25 250 (hypercalcemia, 
magnesemia, and 
phosphatemia in males; 
hyperatremia and 
hypokalemia in females) 

11.4 F Poon et al. 2011 
PentaBDE (DE-71) 

Rats were given 
pentaBDE-dosed 
vanilla wafers. 

3 F 30 F (reduced serum T4) Stoker et al. 2004 
PentaBDE (DE-71) 

60 F 
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

121 Rat 
(Wistar) 

31 d 
Pnd 23-53 
(GO) 

Endocr 

Bd Wt 60 M 

3 M (reduced serum T4) Stoker et al. 2004 
PentaBDE (DE-71) 

122 Rat 
(Wistar) 

31 d 
Pnd 23-53 
(GO) 

Endocr 

Bd Wt 120 M 

60 M (reduced serum T4) Stoker et al. 2005 
PentaBDE (DE-71) 

P
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral (continued) 

Exposure/ 
Duration/

a 
Key to Species Frequency 
Figure (Strain) (Route) 

123 Rat 
(Wistar) 

28 d 
(G) 

124 Rat 
(Wistar) 

34 d 
Gd 1 - Pnd 14 
(F) 

P
B

D
E

s
83

System 

Resp 

Cardio 

Gastro 

Musc/skel 

Hepatic 

Renal 

Endocr 

Dermal 

Bd Wt 

Metab 

Endocr 

LOAEL 

NOAEL 
(mg/kg/day) 

Less Serious 
(mg/kg/day) 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

200 Van der Ven et al. 2008b 
PentaBDE (DE-71) 

NOAEL values for Bd 
Wt, Hepatic, Endocr, 
and Metab effects are 
BMDL(RD10%) values 
for decreased Bd Wt, 
vitamin A in liver, 
serum T4 and glucose. 

200 

200 

200 

0.05 M 

200 

1.1 M 

200 

9.7 M 

66.7 M 

3.2 F (reduced serum T4) Wang et al. 2011a 
TetraBDE (BDE47) 



125 Rat 

Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral (continued) 

xposure/ LOAEL 
uration/ 

requency NOAEL Less Serious Serious 
(Route) 

System (mg/kg/day) (mg/kg/day) (mg/kg/day) 

Reference 
Chemical Form Comments 

90 d Resp 100 
(F) 100

WIL Research Laboratories 
1984 
PentaBDE (DE-71) 

Cardio 100 
100

Gastro 100 
100

Hemato 100 
100

Musc/skel 100 
100

Hepatic 2 (hypertrophy, mild 
degeneration, and slight 
necrosis) 

2

Renal 100 
100

Endocr 2 10 (reduced serum T4) 
2 10

Dermal 100 
100

Ocular 100 
100

Bd Wt 10 100 (reduced weight gain) 
10 100

30 d Bd Wt 1 M 1 x/d 1

(GO) 

Yan et al. 2012 
TetraBDE (BDE47) 

6 wk Bd Wt 0.2 F Gd 1 - Pnd 21 0.2

Zhao et al. 2014 

(GO) PentaBDE (BDE99) 

(Sprague-
Dawley) 
2048

126 Rat 
(Sprague-
Dawley) 
2361

127 Rat 
(Sprague-
Dawley) 
2383
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a 
Key to Species 
Figure (Strain) 
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral	 (continued) 

P
B

D
E

s
85

a 
Key to 
Figure 

128 

129 

130 

131 

Species 
(Strain) 

Rat 
(Long-
Evans) 

Mouse 
(CD-1) 

Mouse 
(C57BL/6J) 

Mouse 
(BALB/c) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

36 d 
Gd 6 - Pnd 21 
(GO) 

36 d 
Gd 6 - Pnd 21 

70-80 d 
Pmd 28 -
Pnd 21 
(IN) 

28 d 
(F) 

System 

Endocr 

Bd Wt
	

Bd Wt
	

Bd Wt 

Hepatic 

Endocr 

Bd Wt 

NOAEL 
(mg/kg/day) 

10 F 

30 F 

18 F 

1 F 

0.45 F 

LOAEL 

Less Serious	 Serious 
(mg/kg/day)	 (mg/kg/day) 

30 F		 (reduced maternal serum
	
T4)
	

0.45 F (hepatocyte vacuolation, 
pyknotic nuclei in the 
hepatocytes, periportal 
lymphocytic infiltration) 

0.45 F (cellular debris in the 
follicular lumen of thyroid; 
increased serum 
testosterone and E2) 

Reference 
Chemical Form 

Zhou et al. 2002 
PentaBDE (DE-71) 

Branchi et al. 2005 
PentaBDE (BDE99) 

Koenig et al. 2012 
TetraBDE (BDE47) 

Maranghi et al. 2013 
TetraBDE (BDE47) 

Comments 

Administered via 
"self-administration" 
from a modified syringe 
or gavage. 

Mice were fed 1-2 
tetraBDE dosed 
cornflakes. 
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1
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1
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral (continued) 

P
B

D
E

s
86

a 
Key to Species 
Figure (Strain) 

132 Mouse 
(NS) 

6 wk 
5 d/wk 
(GO) 

133 Mouse 
(NMRI) 

29 d 
Gd 4 - Pnd 17 
~every 3 d 
(GO) 

134 Mouse 
(NMRI) 

29 d 
Gd 4 - Pnd 17 
~every 3 d 
(GO) 

135 Mouse 
(C57BL/6J) 

70-80 d 
Pmd 28 -
Pnd 21 
(IN) 

136 Mouse 
(C56BL/6) 

30 d 
(GO) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 

Hepatic 

Bd Wt
	

Metab
	

Endocr
	

Bd Wt
	

Endocr
	

Bd Wt
	

Bd Wt
	

Bd Wt 

LOAEL 

NOAEL 
(mg/kg/day) 

Less Serious 
(mg/kg/day) 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

1 M McIntyre et al. 2015 
TetraBDE (BDE47) 

1 M 

1 M 

452 F Skarman et al. 2005 
PentaBDE (BDE99) 

452 F 

452 F Skarman et al. 2005 
PentaBDE (Bromkal 70-5DE) 

452 F 

1 F Ta et al. 2011 
TetraBDE (BDE47) 

30 M Wang et al. 2013 
TetraBDE (BDE47) 

Comments 

No exposure-related 
changes in glucose 
tolerance, insulin 
resistance, lipogenesis, 
or liver weight or 
histology. 

BDE-99; No change in 
maternal serum T4 
levels. 

Bromkal 70-5DE; no 
change in maternal 
serum T4 levels. 

Dams were fed 
tetraBDE-dosed 
cornflakes. 



Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral	 (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 

LOAEL 

Comments 
Less Serious 

(mg/kg/day) 
Serious 
(mg/kg/day) 

Reference 
Chemical Form 

137	 

138	 

139	 

140	 

Mouse 
(ICR) 

2117

Mouse 
(ICR) 

2379

Mouse 
(ICR) 

2380

Mink 
(NS) 

2231

28 d 
1 x/d 
(GO) 

12 wk 
7 d/wk 
(GO) 

12 wk 
7 d/wk 
(GO) 

9 wk 
(F) 

Hepatic 

Renal 

Bd Wt 

Hepatic 

Bd Wt 

Hepatic 

Bd Wt 

Bd Wt 

1.2

150

150

0.08

1.2 M 

150 M 

150 M 

0.08 M 

1.2

1.2

150

150

0.63

1.2 M (swollen hepatic cells) 

1.2 M (10% decrease in relative 
kidney weight) 

150 M (increased relative liver 
weight, increased serum 
ALT, hepatocyte 
hypertrophy and 
vacuolization and 
inflammatory cell 
infiltration) 

150 M (increased relative liver 
weight, increased serum 
ALT, hepatocyte 
hypertrophy and 
vacuolization and 
inflammatory cell 
infiltration) 

0.63 M (21% decrease in body 
weight) 

Zhang et al. 2014 
DiBDE (BDE15) 

Zhang et al. 2015b 
TetraBDE (BDE47) 

Zhang et al. 2015a 

TetraBDE (BDE47) 

Martin et al. 2007 
PentaBDE (DE-71) 
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral	 (continued) 

P
B

D
E

s
88

Exposure/ LOAEL 
Duration/

a FrequencyKey to Species	 NOAEL Less Serious Serious
(Route)Figure (Strain) 

141	 Mink 
(NS) 

142	 Mink 
(NS) 

Immuno/ Lymphoret 
143	 Rat 

(Sprague-
Dawley) 

144	 Rat 
(CD) 

145	 Rat 
(CD) 

146	 Rat 
(CD) 

System (mg/kg/day) (mg/kg/day)	 (mg/kg/day) 

16-17 wk Bd Wt 0.31 FPmw 4 -
Pnw 6 
(F) 

43-44 wk Bd Wt 0.06Pmw 4 -
Pnw 33 
(F) 

21 wk 25Pmd 70 -
Pnd 42 
(GO) 

28 d 90
(F) 

28 d 90
(F) 

28 d 90
(F) 

Reference 
Chemical Form 

Zhang et al. 2009 
PentaBDE (DE-71) 

Zhang et al. 2009 
PentaBDE (DE-71) 

Bondy et al. 2011, 2013 
PentaBDE (DE-71) 

IRDC 1976 
PentaBDE (technical) 

IRDC 1976 
OctaBDE (technical) 

IRDC 1976 
PentaBDE (technical) 

Comments 

No exposure-related 
changes in spleen or 
thymus weight or 
histology. 

No exposure-related 
changes in spleen 
weight or spleen or 
thymus histology. 

No exposure-related 
changes in spleen 
weight or spleen or 
thymus histology. 

No exposure-related 
changes in spleen 
weight or spleen or 
thymus histology. 



2078

Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral	 (continued) 

es 
n) 

Exposure/ LOAEL 

Reference 
Chemical Form 

Duration/ 
Frequency NOAEL Less Serious Serious 

(Route) 
System (mg/kg/day) (mg/kg/day) (mg/kg/day) 

13 wk 750 F 
(F) 750

IRDC 1977 
OctaBDE (technical) 

ue-
) 

28 d 250 1 x/d 250

(GO) 

Oberg et al. 2010 
PentaBDE (Bromkal 70-5DE)

ue-
90 d 100 
(F) 100

WIL Research Laboratories 
1984 

) PentaBDE (DE-71) 

 
/c) 

28 d 0.45 F (follicular hyperplasia and 
(F) lymphocytic infiltration in 

spleen; lymphocytic 

Maranghi et al. 2013 
TetraBDE (BDE47) 

apoptosis and Hassal's 
bodies in thymus) 

0.45

9 wk 0.08 M 0.63 M (spleen hyperplasia) 
(F) 0.08 0.63

Martin et al. 2007 
PentaBDE (DE-71) 

2256

2049

2227

2230
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a 
Key to Speci
Figure (Strai

147	 Rat 
(CD) 

148	 Rat 
(Sprag
Dawley

149	 Rat 
(Sprag
Dawley

150	 Mouse
(BALB

151	 Mink 
(NS) 

 

Comments 

No exposure-related 
changes in spleen 
weight or spleen or 
thymus histology. 

No exposure-related 
changes in spleen or 
thymus weight or 
histology. 

No exposure-related 
changes in thymus 
weight or spleen or 
thymus histology. 

Immune function was 
not altered (KLH 
antibody induction, 
PHA skin challenge). 
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0.1

2163

0.25

3.  H
E

A
LTH

 E
FFE

C
TS

Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral (continued) 

P
B

D
E

s
90

Exposure/ LOAEL 
Duration/

a FrequencyKey to Species NOAEL Less Serious Serious
(Route)Figure (Strain) System (mg/kg/day) (mg/kg/day) (mg/kg/day) 

Neurological 
152 Rat 90 d 0.015 M1 x/d(Sprague-


Dawley) (GO)
	

153 Rat 125 d 17.5 M 26.2 M (impaired attention andPnd 1-125(Long- Evans) inhibitory control)
(F) 

154 Rat 28 d 2501 x/d(Sprague-

Dawley) (GO)
	

155 Rat 28 d 200
(Wistar) (G) 

156 Rat 30 d 0.1 M (impaired learning and1 x/d(Sprague- memory; decreased
Dawley) (GO) glutamate and receptor 

density in hippocampus) 

157 Mink 19 wk 0.25 FPmd 28 -(NS)
	
Pnw 6
	

(F) 

Reference 
Chemical Form 

Daubie et al. 2011
	

PentaBDE (BDE99)
	

Driscoll et al. 2009
	

PentaBDE (DE-71)
	

Oberg et al. 2010
	

PentaBDE (Bromkal 70-5DE)
	

Van der Ven et al. 2008b
	

PentaBDE (DE-71)
	

Yan et al. 2012
	

TetraBDE (BDE47)
	

Bull et al. 2007
	

PentaBDE (DE-71)
	

Comments 

No exposure-related 
changes in elevated 
plus-maze, open-field, 
or Morris water maze 
test. 

No exposure-related 
changes in brain weight 
or histology. 

No exposure-related 
changes in brain weight 
or histology. 

No maternal 
cholinergic effects were 
observed. 
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral	 (continued) 

P
B

D
E

s
91

a 
Key to Species 
Figure (Strain) 

Reproductive 
158	 Rat 

(Sprague-
Dawley) 

159	 Rat 
(Sprague-
Dawley) 

160	 Rat 
(Sprague-
Dawley) 

161	 Rat 
(Sprague-
Dawley) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

15 d 
1 x/d 
(GO) 

30 M 60 M (67% increase in serum 
prolactin; dose-related 
increase in serum 
testosterone and FSH) 

Becker et al. 2012 
PentaBDE (DE-71) 

15 d 
1 x/d 
(GO) 

60 M Becker et al. 2012 
PentaBDE (DE-71) 

21 wk 
Pmd 70 -
Pnd 42 
(GO) 

25 Bondy et al. 2011, 2013 
PentaBDE (DE-71) 

6 wk 
Gd 1 - Pnd 21 
(IN) 

30 F Bowers et al. 2015 
PentaBDE (DE-71) 

Comments 

Study 1 (conducted at 
ILS) 

Study 2 (conducted at 
RTI); no dose-related 
changes in 
reproductive organ 
weight, histopathology, 
or serum reproductive 
hormone levels. 

No treatment-related 
changes in the number 
of pregnant females, 
litters, or litter size. 

Dams were given 
DE-71-dosed cookies. 
No treatment-related 
changes in no. of 
implants, no. of litters, 
litter size, or sex ratio. 
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral	 (continued) 

Exposure/ LOAEL 

Reference 
Chemical Form 

Duration/ 
Frequency NOAEL Less Serious Serious 

(Route) 
System (mg/kg/day) (mg/kg/day) (mg/kg/day) 

36 d 2 F Gd 6 - Pnd 21 2

Cheng et al. 2009 

(GO) PentaBDE (BDE99) 

70 d 20 M 
(F) 20

Ernest et al. 2012 
52.1% penta-, 44.2% dec
0.4% octa-BDE 

8 wk 0.001 M 0.03 M (increased epithelial 
(GO) 0.001 thickness in testes, 

spermatocyte apoptosis) 

Huang et al. 2015 
TetraBDE (BDE47) 

0.03

28 d 90 
(F) 90

IRDC 1976 
PentaBDE (technical) 

28 d 90 
(F) 90

IRDC 1976 
OctaBDE (technical) 
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a 
Key to Species 
Figure (Strain) 

162	 Rat 
(Sprague-
Dawley) 

163	 Rat 
(Sprague-
Dawley) 

164	 Rat 
(Sprague-
Dawley) 

165	 Rat 
(CD) 

166	 Rat 
(CD) 

a-, 

Comments 

No exposure-related 
changes in number of 
litters, litter size, or sex 
ratio. 

No exposure-related 
changes in 
reproductive organ 
weight, testicular 
histology, or sperm 
parameters. 

No exposure-related 
changes in 
reproductive organ 
weight or histology. 

No exposure-related 
changes in 
reproductive organ 
weight or histology. 
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral (continued) 

P
B

D
E

s
93

Exposure/ LOAEL 
Duration/

a FrequencyKey to Species NOAEL Less Serious Serious
(Route)Figure (Strain) System (mg/kg/day) (mg/kg/day) (mg/kg/day) 

167 Rat 13 wk 600 M
(CD) (F)
	

750 F
	

168 Rat 28 d 2501 x/d(Sprague-

Dawley) (GO)
	

169 Rat ~11 wk 11.4 FPmd 28 -(Long- Evans) 
Pnd 21
	

(IN)
	

170 Rat 20 d 30 F 60 F (delayed vaginalPnd 22-41(Wistar) opening)
(GO) 

171 Rat 31 d 3 M 30 M (delayed preputialPnd 23-53(Wistar) separation)
(GO) 

Reference 
Chemical Form 

IRDC 1977
	

OctaBDE (technical)
	

Oberg et al. 2010
	

PentaBDE (Bromkal 70-5DE)
	

Poon et al. 2011
	

PentaBDE (DE-71)
	

Stoker et al. 2004
	

PentaBDE (DE-71)
	

Stoker et al. 2004
	

PentaBDE (DE-71)
	

Comments 

No exposure-related 
changes in 
reproductive organ 
weight or histology 

No exposure-related 
changes in 
reproductive organ 
weight or histology. 

Rats were given 
pentaBDE-dosed 
vanilla wafers; no 
change in number of 
pregnancies, 
implantation sites, or 
live pups, litter size, or 
sex ratio. 
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral	 (continued) 
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a 
Key to Species 
Figure (Strain) 

172	 Rat 
(Wistar) 

173	 Rat 
(Wistar) 

174	 Rat 
(Sprague-
Dawley) 

175	 Rat 
(Sprague-
Dawley) 

176	 Rat 
(Sprague-
Dawley) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

31 d 
Pnd 23-53 
(GO) 

60 M (delayed PPS, 22-28% 
decrease in prostate and 
seminal vesicle weights) 

Stoker et al. 2005 
PentaBDE (DE-71) 

28 d 
(G) 

9.6 M Van der Ven et al. 2008b 
PentaBDE (DE-71) 

200 F 

90 d 
(F) 

100 WIL Research Laboratories 
1984 
PentaBDE (DE-71) 

8 wk 
6 d/wk 
(GO) 

c 
0.001 M (34% reduction in serum 

testosterone) 
Zhang et al. 2013b 
TetraBDE (BDE47) 

6 wk 
Gd 1 - Pnd 21 
(GO) 

0.2 M Zhao et al. 2014 
PentaBDE (BDE99) 

Comments 

Male NOAEL is a 
BMDL(RD10%) for 
increased % of 
deformed sperm 
heads; no 
exposure-related 
changes in female 
reproductive organ 
weights or histology. 

No exposure-related 
changes in 
reproductive organ 
weight or histology. 

No exposure-related 
changes in gestational 
lengths, litter sizes, sex 
ratio, or live births. 
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral	 (continued) 
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a 
Key to Species 
Figure (Strain) 

177	 Rat 
(Long-
Evans) 

178	 Mouse 
(CD-1) 

179	 Mouse 
(C57BL/6J) 

180	 Mouse 
(BALB/c) 

181	 Mouse 
(BALB/c) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

36 d 
Gd 6 - Pnd 21 
(GO) 

30 F Zhou et al. 2002 
PentaBDE (DE-71) 

36 d 
Gd 6 - Pnd 21 18 F Branchi et al. 2005 

PentaBDE (BDE99) 

70-80 d 
Pmd 28 -
Pnd 21 
(IN) 

1 F Koenig et al. 2012 
TetraBDE (BDE47) 

28 d 
(F) 

0.45 F (increased serum 
testosterone and E2) 

Maranghi et al. 2013 
TetraBDE (BDE47) 

34 d 
1 x/d 
(GO) 

50 F Mercado-Feliciano and Bigsby 
2008a 
PentaBDE (DE-71) 

Comments 

No change in the 
gestation length, litter 
size, or sex ratio 

Administered via 
"self-administration" 
from a modified syringe 
or gavage; No change 
in gestation length, 
litter size, # live pups, 
or sex ratio. 

Mice were fed 1-2 
tetraBDE dosed 
cornflakes; no change 
in the number of 
pregnancies, size of 
litter, or sex ratio of 
pups. 

Mice were 
ovariectomized 3 
weeks prior to 
exposure; no change in 
uterus weight or 
uterus/vaginal 
histology. 
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral	 (continued) 
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a 
Key to Species 
Figure (Strain) 

182	 Mouse 
(NMRI) 

183	 Mouse 
(NMRI) 

184	 Mouse 
(C57BL/6J) 

185	 Mouse 
(C56BL/6) 

186	 Mouse 
(C57BL/6) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

29 d 
Gd 4 - Pnd 17 
~every 3 d 
(GO) 

452 F Skarman et al. 2005 
PentaBDE (BDE99) 

29 d 
Gd 4 - Pnd 17 
~every 3 d 
(GO) 

452 F Skarman et al. 2005 
PentaBDE (Bromkal 70-5DE) 

70-80 d 
Pmd 28 -
Pnd 21 
(IN) 

1 F Ta et al. 2011 
TetraBDE (BDE47) 

30 d 
(GO) 

0.0015 M 0.045 M (germ cell loss and 
apoptosis in testes) 

Wang et al. 2013 
TetraBDE (BDE47) 

10 wk 
Pmd 28 -
Pnd 21 
(GO) 

0.03 F 0.1 F (58% decrease in litters 
surviving until Pnd 8) 

Woods et al. 2012 
TetraBDE (BDE47) 

Comments 

BDE-99; no change in 
maternal serum T4 
levels. 

Bromkal 70-5DE; no 
changes in pregnancy 
rate, gestation length, 
or litter size. 

Dams were fed 
tetraBDE-dosed 
cornflakes; no change 
in gestation length, 
litter size, or sex ratio. 

Females carrying on 
copy of a truncated 
Mecp2 gene were 
mated to unexposed 
wild-type males; LSE 
values are based on 
the wild-type offspring 
only. 
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral	 (continued) 
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a 
Key to Species 
Figure (Strain) 

187	 Mink 
(NS) 

188	 Mink 
(NS) 

Developmental 
189	 Rat 

(Sprague-
Dawley) 

190	 Rat 
(Sprague-
Dawley) 

191	 Rat 
(Sprague-
Dawley) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

19 wk 
Pmd 28 -
Pnw 6 
(F) 

0.05 F 0.25 F (no litters produced) Bull et al. 2007 
PentaBDE (DE-71) 

16-17 wk 
Pmw 4 -
Pnw 6 
(F) 

0.06 F 0.31 F (complete litter loss) Zhang et al. 2009 
PentaBDE (DE-71) 

5 wk 
Gd 6 - Pnd 21 
(IN) 

1 M 10 M (reduced serum T4 in 
Pnd 21 offspring) 

Bansal et al. 2014 
PentaBDE (DE-71) 

Dams were given 
DE-71-dosed vanilla 
wafers. 

36 d 
Gd 6 - Pnd 21 
(GO) 

1 2 (altered neurobehavior, 
decreased hippocampal 
BDNF, and decreased 
serum T3, T4, and free 
T4 in offspring at Pnd 
21-23) 

Blanco et al. 2013 
PentaBDE (BDE99) 

21 wk 
Pmd 70 -
Pnd 42 
(GO) 

0.5 M 5 M (decreased serum T4 in 
male offspring on Pnd 
43) 

Bondy et al. 2011, 2013 
PentaBDE (DE-71) 
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 

LOAEL 

NOAEL 
(mg/kg/day) 

Less Serious 
(mg/kg/day) 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

192 Rat 
(Sprague-
Dawley) 

6 wk 
Gd 1 - Pnd 21 
(IN) 

0.3 3 (reduced serum T3 and 
T4 in Pnd 21 offspring) 

Bowers et al. 2015 
PentaBDE (DE-71) 

Dams were given 
DE-71-dosed cookies. 

193 Rat 
(Sprague-
Dawley) 

36 d 
Gd 6 - Pnd 21 
(GO) 

2 M (delayed appearance of 
reflexes, impaired 
learning/memory at Pnd 
36-37, and oxidative 
stress in the 
hippocampus at Pnd 37) 

Cheng et al. 2009 
PentaBDE (BDE99) 

194 Rat 
(Long- Evans) 

7 d 
Pnd 6-12 
(GO) 

15 M Driscoll et al. 2012 
PentaBDE (DE-71) 

No learning or attention 
deficits at Pnd 40-95. 

195 Rat 
(Sprague-
Dawley) 

33 d 
Gd 6 - Pnd 18 
(GO) 

18 (decreased serum T4 in 
offspring) 

Ellis-Hutchings et al. 2006 
PentaBDE (DE-71) 

Half of the dams in 
each group were 
maintained on a 
vitamin A deficient diet. 

196 Rat 
(Long- Evans) 

36 d 
Gd 6 - Pnd 21 
(GO) 

1.7 10.2 (reduced serum T4 in 
offspring at Pnd 7 and 
14, reduced mammary 
gland development at 
Pnd 21, reduced female 
body weight from Pnd 
29-58) 

Kodavanti et al. 2010 
PentaBDE (DE-71) 
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

197 Rat 
(Long- Evans) 

36 d 
Gd 6 - Pnd 21 
(GO) 

0.96 M 2.85 M (reduced serum T4 in 
male offspring at Pnd 
7-21) 

Miller et al. 2012 
PentaBDE (DE-71) 

198 Rat 
(Long- Evans) 

36 d 
Gd 6 - Pnd 21 
(GO) 

11.2 (reduced serum T4 in 
offspring at Pnd 7-21) 

Miller et al. 2012 
PentaBDE (DE-71) 

199 

200 

Rat 
(Long- Evans) 

~11 wk 
Pmd 28 -
Pnd 21 
(IN) 

Rat 
(Long- Evans) 

36 d 
Gd 6 - Pnd 21 
(GO) 

5.7 (reduced serum T4) 

1.7 M (hypertensive reaction to 
hyperosmotic stress in 
adult male offspring ) 

Poon et al. 2011 
PentaBDE (DE-71) 

Shah et al. 2011 
PentaBDE (DE-71) 

Rats were given 
pentaBDE-dosed 
vanilla wafers. 

201 Rat 
(Long- Evans) 

36 d 
Gd 6 - Pnd 21 
(GO) 

1.7 10.2 (transient reduction in 
serum T4 in offspring at 
Pnd 4 and 21) 

Szabo et al. 2009 
PentaBDE (DE-71) 

202 Rat 
(Wistar) 

34 d 
Gd 1 - Pnd 14 
(F) 

3.2 (reduced serum T4 in 
offspring at Pnd 7 and 
14) 

Wang et al. 2011a 
TetraBDE (BDE47) 
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral	 (continued) 

P
B

D
E

s
100

a 
Key to Species 
Figure (Strain) 

203	 Rat 
(Sprague-
Dawley) 

204	 Rat 
(Long-
Evans) 

205	 Mouse 
(CD-1) 

206	 Mouse 
(CD-1) 

207	 Mouse 
(C57BL/6J) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

6 wk 
Gd 1 - Pnd 21 
(GO) 

0.2 M Zhao et al. 2014 
PentaBDE (BDE99) 

36 d 
Gd 6 - Pnd 21 
(GO) 

1 10 (reduced serum T4 in 
offspring on Pnd 4 and 
14) 

Zhou et al. 2002 
PentaBDE (DE-71) 

36 d 
Gd 6 - Pnd 21 18 M (transient alterations in 

open-field behavior of 
offspring at Pnd 34) 

Branchi et al. 2005 
PentaBDE (BDE99) 

5 wk 
Gd 8 - Pnd 21 
(GO) 

0.2 M Kim et al. 2015 
TetraBDE (BDE47) 

70-80 d 
Pmd 28 -
Pnd 21 
(IN) 

0.03 (impaired learning in 
offspring at Pnw 8) 

Koenig et al. 2012 
TetraBDE (BDE47) 

Comments 

No exposure-related 
changes in reflex 
maturation, motor 
coordination, or spatial 
learning of Pnd 3-36 
offspring; no offspring 
body weight effects. 

Administered via 
"self-administration" 
from a modified syringe 
or gavage; data from 
both groups were 
pooled for 
neurodevelopmental 
endpoints. 

No exposure-related 
changes in offspring 
body weight, motor 
activity at Pnd 21, or 
social interaction at 
Pnd 70. 

Mice were fed 1-2 
tetraBDE dosed 
cornflakes. 
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Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral	 (continued) 
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a 
Key to Species 
Figure (Strain) 

208	 Mouse 
(NMRI) 

209	 Mouse 
(NMRI) 

210	 Mouse 
(C57BL/6J) 

211	 Mouse 
(C57BL/6) 

212	 Mink 
(NS) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

29 d 
Gd 4 - Pnd 17 
~every 3 d 
(GO) 

452 Skarman et al. 2005 
PentaBDE (BDE99) 

29 d 
Gd 4 - Pnd 17 
~every 3 d 
(GO) 

452 (reduced serum T4 in 
offspring at Pnd 11) 

Skarman et al. 2005 
PentaBDE (Bromkal 70-5DE) 

70-80 d 
Pmd 28 -
Pnd 21 
(IN) 

0.03 F (decreased center-field 
activity in open field in 
female offspring at Pnd 
60) 

Ta et al. 2011 
TetraBDE (BDE47) 

10 wk 
Pmd 28 -
Pnd 21 
(GO) 

0.03 F (decreased pre-weaning 
weight; decreased pup 
vocalizations on Pnd 
8-10, decreased 
sociability on Pnd 72) 

Woods et al. 2012 
TetraBDE (BDE47) 

19 wk 
Pmd 28 -
Pnw 6 
(F) 

0.05 Bull et al. 2007 
PentaBDE (DE-71) 

Comments 

BDE-99; no changes in 
offspring body weight 
or serum T4 levels 

Bromkal 70-5DE 

Dams were fed 
tetraBDE-dosed 
cornflakes. 

Females carrying on 
copy of a truncated 
Mecp2 gene were 
mated to unexposed 
wild-type males; LSE 
values are based on 
the wild-type offspring 
only. 

No cholinergic effects 
in 6-week-old offspring. 



Table 3-2  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Oral (continued) 

Exposure/ LOAEL 

a 
Key to 
Figure 

Species 
(Strain) 

Duration/ 
Frequency 

(Route) 
System 

NOAEL 
(mg/kg/day) 

Reference 
Chemical Form Comments 

Less Serious 
(mg/kg/day) 

Serious 
(mg/kg/day) 

213 Mink 
(NS) 

40 wk 
Pmd 28 -
Pnw 27 
(F) 

0.05

0.05 Bull et al. 2007 
PentaBDE (DE-71) 

No cholinergic effects 
in 45-week-old 
offspring. 

2162

214 Mink 
(NS) 

16-17 wk 
Pmw 4 -
Pnw 6 

0.06

0.06 Zhang et al. 2009 
PentaBDE (DE-71) 

No change in body 
weight, organ weights, 
plasma T3/T4, hepatic 

(F) enzyme activity, or 
thyroid histology in 
offspring at weaning 
(Pnw 6). 
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a The number corresponds to entries in Figure 3-2. 

b Three studies were used to derive an acute oral minimal risk level (MRL); concentration divided by an uncertainty factor of 1000 (10 for use of a LOAEL, 10 for animal to human, 
and 10 for human variability), resulting in an MRL of 0.00006 mg/kg/day. 

c Used to derive an intermediate oral minimal risk level (MRL); concentration divided by an uncertainty factor of 300 (3 for use of a minimal LOAEL, 10 for animal to human, 10 for 
human variability), resulting in an MRL of 0.000003 mg/kg/day. 

Note on chemical form: Mixtures are identified by composition or trade name (if reported); otherwise, they are reported as "technical".  Trade names include Bromkal 70, Bromakal 
70-5 DE, DE-71, and Saytex 115 for pentaBDE mixtures and DE-79, FR-1208, and Saytex 111 for octaBDE mixtures. For the studies by Bruchajzer (2011) and Bruchajzer et al. 
(2010, 2011, 2012), the mixtures were made to resemble formerly used commercial mixtures. The pentaBDE mixture was composed of 63.2% pentaBDE, 21.4% tetraBDE, 15.4% 
hexaBDE, and 0.04% heptaBDE; the octaBDE mixture was composed of 65.7% octaBDE, 14.8% heptaBDE, 1.7% hexaBDE, and 17.8% nona- and deca-BDE.  Individual congeners 
are identified by IUPAC number: BDE 15 = 4,4'-diBDE; BDE 47 = 2,2',4,4'-tetraBDE; BDE 99 = 2,2',4,4',5-pentaBDE; BDE 153 = 2,2',4,4',5,5'-hexaBDE; BDE 183 = 
2,2',3,4,4',5',6-heptaBDE; BDE 203 = 2,2',3,4,4',5,5',6-octaBDE; BDE 206 = 2,2',3,3',4,4',5,5',6-nonaBDE 

BDNF = brain derived neurotrophic factor; Bd Wt = body weight; BMDL = benchmark dose lower confidence limit; Cardio = cardiovascular; d = day(s); E2 = estradiol; Endocr = 
endocrine; (F) = feed; F = Female; FSH = follicle stimulating hormone; (G) = gavage; Gastro = gastrointestinal; Gd = gestational day; (GO) = gavage in oil; Hemato = hematological; 
IgG = immunoglobulin G; Immuno/Lymphoret = immunological/lymphoreticular; IN = ingestion; LH = luteinizing hormone; KLH = keyhole limpet hemocyanin; LD50 = lethal dose, 50% 
kill; LOAEL = lowest-observed-adverse-effect level; M = male; Metab = metabolism; Musc/skel = musculoskeletal; NOAEL = no-observed-adverse-effect level; NS = not specified; 
PHA = phytohemagglutinin; Pmd = pre-mating day; Pmw = pre-mating week; Pnd = post-natal day; Pnw = post-natal week; PPS = preputial separation; Resp = respiratory; T3 = 
triiodothyronine; T4 = thyroxine; TSH = thyroid stimulating hormone; x = time(s); wk = week(s) 
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Figure 3-2. Levels of Significant Exposure to Lower Brominated Diphenyl Ethers - Oral 
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Figure 3-2. Levels of Significant Exposure to Lower Brominated Diphenyl Ethers - Oral (Continued)
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Figure 3-2. Levels of Significant Exposure to Lower Brominated Diphenyl Ethers - Oral (Continued)
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Figure 3-2. Levels of Significant Exposure to Lower Brominated Diphenyl Ethers - Oral (Continued) 
Intermediate (15-364 days) 
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Figure 3-2. Levels of Significant Exposure to Lower Brominated Diphenyl Ethers - Oral (Continued) 
Intermediate (15-364 days) 
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Figure 3-2. Levels of Significant Exposure to Lower Brominated Diphenyl Ethers - Oral (Continued)
 
Intermediate (15-364 days)
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Figure 3-2. Levels of Significant Exposure to Lower Brominated Diphenyl Ethers - Oral (Continued)
 
Intermediate (15-364 days)
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Table 3-3  Levels of Significant Exposure to Decabromodiphenyl Ether  - Oral 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

ACUTE EXPOSURE 
Systemic 
1 Rat 

(Wistar) 
7 d 
1 x/d 

System 

Hepatic 

Bd Wt 

NOAEL 
(mg/kg/day) 

1000 F 

1000 F 

Less Serious 
(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

Bruchajzer et al. 2010 
DecaBDE (BDE209) 

Comments 

2 Rat 
(Wistar) 

14 d 
1 x/d Hepatic 

Bd Wt 

1000 F 

1000 F 

Bruchajzer et al. 2010 
DecaBDE (BDE209) 

3 Rat 
(Sprague-
Dawley) 

14 d 
1 x/d 
(GO) 

Hepatic 95.9 M Carlson 1980b 
DecaBDE (technical) 

4 Rat 
Spartan 

once 
(GO) 

Bd Wt 5000 IRDC 1974 
DecaBDE (technical) 

5 Rat 
(Fischer- 344) 

14 d 
1 x/d 
(F) 

Bd Wt 16000 NTP 1986 
DecaBDE (technical, 94-97% 
pure) 

6 Rat 
(Long-
Evans) 

4 d 
1 x/d 
(GO) 

Endocr 100 F Zhou et al. 2001 
DecaBDE (DE-83R) 

No exposure-related 
changes in serum 
thyroid hormone levels. 

Bd Wt 300 F 

7 Mouse 
(C57) 

3 d 
Gd 7-9 
(G) 

Endocr 750 F 1500 F (reduced maternal serum 
T4) 

Chi et al. 2011 
DecaBDE (BDE209) 

8 Mouse 
(B6C3F1) 

14 d 
1 x/d 
(F) 

Bd Wt 19000 NTP 1986 
DecaBDE (technical, 94-97% 
pure) 
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Table 3-3  Levels of Significant Exposure to Decabromodiphenyl Ether  - Oral	 (continued) 

Exposure/ 
Duration/

a 
Key to Species Frequency 
Figure (Strain) (Route) 

System 

Bd Wt 

NOAEL 
(mg/kg/day) 

9800 M 

10 M 

b 
1.34 

150 

b 
1.34 M 

P
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D
E

s
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LOAEL 

Less Serious	 Serious 
(mg/kg/day)	 (mg/kg/day) 

30 M (impaired learning in Pnd
	
25 offspring)
	

6.7 M (decreased spontaneous
	
activity at 2 months)
	

5.76		 (decreased activity and 
impaired habituation at 
2-4 months; impaired 
learning at 5-7 months) 

750		 (10% decrease in fetal
	
weight, 3% increase in
	
post-implantation loss)
	

2.22 M (decreased activity and 
impaired habituation at 2 
and 4 months) 

Reference 
Chemical Form 

Sakamoto et al. 2013 
DecaBDE (BDE209) 

Chen et al. 2014 
DecaBDE (BDE209) 

Viberg et al. 2007 
DecaBDE (BDE209) 

Buratovic et al. 2014 
DecaBDE 

Chi et al. 2011 
DecaBDE (BDE209) 

Johansson et al. 2008 
DecaBDE (BDE209) 

Comments 

No change in liver 
weights were observed. 

Mouse 
(C3H/HeNCrlC 

Developmental 
10 

11 

12 

13 

14 

Rat 
(Sprague-
Dawley) 

Rat 
(Sprague-
Dawley) 

Mouse 
(NMRI) 

Mouse 
(C57) 

Mouse 
(NMRI) 

1 wk 
(F) 

2 wk 
Gd 1-14 
(GO) 

once 
Pnd 3 
(G) 

once 
Pnd 3 
(GO) 

3 d 
Gd 7-9 
(G) 

once 
Pnd 3 
(G) 
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Table 3-3  Levels of Significant Exposure to Decabromodiphenyl Ether  - Oral	 (continued) 

Exposure/ 
Duration/

a 
Key to Species Frequency 
Figure (Strain) (Route) 

P
B
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s
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15 Mouse 14 d 
(C57BL/6J) Pnd 2-15 

(IN) 

16 Mouse		 14 d 
Pnd 2-15(C57BL/6J) 
(IN) 

17 Mouse		 once 
Pnd 3(NMRI) 
(G) 

18 Mouse		 once 
Pnd 10(NMRI) 
(G) 

19 Mouse		 once 
Pnd 19(NMRI) 
(G) 

INTERMEDIATE EXPOSURE 
Systemic 
20 Rat 36 d 

Gd 6 - Pnd 21(Sprague-

Dawley) (GO)
	

LOAEL 

NOAEL Less Serious Serious 
System (mg/kg/day) (mg/kg/day) (mg/kg/day) 

6 20 (delayed ontogeny of 
reflexes in males and 
females, increased 
locomotion in Pnd 70 
males, reduced serum T4 
in Pnd 21 males) 

6 20 (learning impairment and 
impulsivity at 16 months 
of age) 

2.22 M (decreased spontaneous 
activity at 2 and 6 
months) 

20.1 M 

20.1 M 

Bd Wt 1000 F 

Reference 
Chemical Form 

Rice et al. 2007 
DecaBDE (BDE209) 

Rice et al. 2009 
DecaBDE (BDE209) 

Viberg et al. 2003b 
DecaBDE (BDE209) 

Viberg et al. 2003b 
DecaBDE (BDE209) 

Viberg et al. 2003b 
DecaBDE (BDE209) 

Biesemeier et al. 2011 
DecaBDE (BDE209) 

Comments 

Compound 
administered via 
micropipette. 

Compound 
administered via 
micropipette. 

No change in 
spontaneous activity or 
habituation at 2, 4, or 6 
months. 

No change in 
spontaneous activity or 
habituation at 2, 4, or 6 
months. 
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Table 3-3  Levels of Significant Exposure to Decabromodiphenyl Ether  - Oral	 (continued) 

P
B

D
E

s
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a 
Key to Species 
Figure (Strain) 

21	 Rat 
(Wistar) 

22	 Rat 
(Wistar) 

23	 Rat 
(Sprague-
Dawley) 

24	 Rat 
(CD) 

25	 Rat 
(Sprague-
Dawley) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

21 d 
1 x/d 

28 d 
1 x/d 

31 d 
Gd 10 - Pnd 21 
(F) 

28 d 
(F) 

33 d 
(Pnd 10-42) 
1 x/d 
(G) 

System 

Hepatic 

Bd Wt
	

Hepatic
	

Bd Wt
	

Bd Wt 

Hepatic 

Renal 

Endocr 

Bd Wt 

Hepatic 

Endocr 

Bd Wt 

LOAEL 

NOAEL 
(mg/kg/day) 

Less Serious 
(mg/kg/day) 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

1000 F 

1000 F 

Bruchajzer et al. 2010 
DecaBDE (BDE209) 

1000 F 

1000 F 

Bruchajzer et al. 2010 
DecaBDE (BDE209) 

146 F Fujimoto et al. 2011 
DecaBDE (BDE209) 

90 

90 

90 

90 

IRDC 1976 
DecaBDE (technical) 

100 M 300 M (fatty degeneration, 
inflammatory foci) 

Lee et al. 2010 
DecaBDE (BDE209) 

600 M 

100 M (reduced serum T3) 
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Table 3-3  Levels of Significant Exposure to Decabromodiphenyl Ether  - Oral	 (continued) 

Exposure/ 
Duration/

a 
Key to Species Frequency 
Figure (Strain) (Route) 

P
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s
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26 Rat		 ~11wk 
Pmd 21 -(Sprague-
Pnd 21Dawley) 
(GO) 

27	 Rat 13 wk 
(Fischer- 344) (F) 

System 

Hepatic 

Bd Wt 

Resp 

Cardio 

Gastro 

Hemato 

Musc/skel 

Hepatic 

Renal 

Endocr 

Bd Wt 

LOAEL 

NOAEL 
(mg/kg/day) 

Less Serious 
(mg/kg/day) 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

300 F (hepatocyte 
degeneration, 
eosinophilic changes) 

Liu et al. 2012 
DecaBDE (BDE209) 

300 F (12% decrease in 
maternal body weight) 

8000 

8000 

NTP 1986 
DecaBDE (technical, 94-97% 
pure) 

8000 

8000 

8000 

8000 

8000 

8000 

8000 
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Table 3-3  Levels of Significant Exposure to Decabromodiphenyl Ether  - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

28 Rat 
(Wistar) 

28 d 
(G) 

Hemato 

Musc/skel 

Renal 

Endocr 

Bd Wt 

60 

60 

60 

30 F 

60 

60 F (increased serum T3) 

Van der Ven et al. 2008a 
DecaBDE (BDE209) 

29 Rat 
(Sprague-
Dawley) 

90 d 
1 x/d 
(GO) 

Hepatic 100 M Wang et al. 2010 
DecaBDE (BDE209) 

No change in kidney 
weight, clinical 
chemistry parameters, 
or serum thyroid 
hormones. 

Renal 

Endocr 

Bd Wt 

100 M 

100 M 

100 M 

30 Rat 
(Sprague-
Dawley) 

90 d 
1 x/d 
(GO) 

Endocr 50 M Wang et al. 2011b 
DecaBDE (BDE209) 

No exposure-related 
changes in serum 
thyroid hormone levels. 

Bd Wt 50 M 

31 Rat 
(Sprague-
Dawley) 

8 wk 
7 d/wk 
(GO) 

Endocr 
c 

0.05 M (12% increase in serum 
glucose) 

Zhang et al. 2013a 
DecaBDE (BDE209) 

Bd Wt 20 M 
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Table 3-3  Levels of Significant Exposure to Decabromodiphenyl Ether  - Oral (continued) 

P
B

D
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a 
Key to Species 
Figure (Strain) 

32 Mouse 
(Tg2576) 

15 d 
1 x/d 
(GO) 

33 Mouse 
(CD-1) 

15 d 
1 x/d 
(G) 

34 Mouse 
(CD-1) 

30 d 
1 x/d 
(G) 

35 Mouse 
(CD-1) 

60 d 
1 x/d 
(G) 

36 Mouse 13 wk 
(B6C3F1) (F) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 

Bd Wt 

Bd Wt 

Bd Wt 

Bd Wt 

Resp 

Cardio 

Gastro 

Hemato 

Musc/skel 

Hepatic 

Renal 

Endocr 

Bd Wt 

LOAEL 

NOAEL 
(mg/kg/day) 

Less Serious 
(mg/kg/day) 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

20 M Heredia et al. 2012 
DecaBDE (BDE209) 

160 Liang et al. 2010 
DecaBDE (BDE209) 

160 Liang et al. 2010 
DecaBDE (BDE209) 

160 Liang et al. 2010 
DecaBDE (BDE209) 

9500 

9500 

9500 

9500 

9500 

9500 

9500 

9500 

9500 

NTP 1986 
DecaBDE (technical, 94-97% 
pure) 
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Table 3-3  Levels of Significant Exposure to Decabromodiphenyl Ether  - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

37 Mouse 
(C3H/HeNCrlC 

4 wk 
(F) 

Hepatic 9400 M (moderate hepatocellular 
hypertrophy) 

Sakamoto et al. 2013 
DecaBDE (BDE209) 

Bd Wt 9400 M 

38 Mouse 
(Parkes) 

35 d 
(GO) 

Endocr 750 M 950 M (reduced serum T3 and 
T4) 

Sarkar et al. 2015 
DecaBDE (BDE209) 

Bd Wt 950 M 

39 Mouse 
(CD-1) 

50 d 
1 x/d 
(GO) 

Bd Wt 1500 M Tseng et al. 2006 
DecaBDE (BDE209) 

40 Mouse 
(CD-1) 

18 d 
Gd 0-17 
(GO) 

Bd Wt 1500 F Tseng et al. 2008 
DecaBDE (BDE209) 

41 Mouse 
(BALB/c) 

31 d 
Gd 10 - Pnd 21 
(F) 

Bd Wt 260 F Watanabe et al. 2008 
DecaBDE (BDE209) 

42 Mouse 
(BALB/c) 

28 d 
(F) 

Bd Wt 1800 F Watanabe et al. 2010a 
DecaBDE (BDE209) 
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Table 3-3  Levels of Significant Exposure to Decabromodiphenyl Ether  - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

Immuno/ Lymphoret 
43 Rat 

(CD) 
28 d 
(F) 

90 IRDC 1976 
DecaBDE (technical) 

44 Rat 
(Sprague-
Dawley) 

~11wk 
Pmd 21 -
Pnd 21 
(NS) 

300 F (increased spleen weight, 
lesions in spleen and 
thymus, altered T-cell 
distribution, decreased 
serum IgM, IgG, 
decreased lymphocyte 
proliferation) 

Liu et al. 2012 
DecaBDE (BDE209) 

45 

46 

Rat 
(Fischer- 344) 

13 wk 
(F) 

Rat 
(Wistar) 

28 d 
(G) 

8000 

60 M 

NTP 1986 
DecaBDE (technical, 94-97% 
pure) 

Van der Ven et al. 2008a 
DecaBDE (BDE209) 

47 Mouse 
(C57BL/6) 

10 mo 
every other day 
(GO) 

800 F (impaired CD4 T cell 
immune function) 

Feng et al. 2016b 
DecaBDE (BDE209) 
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Comments 

No exposure-related 
changes in spleen 
weight or spleen or 
thymus histology. 

No exposure-related 
changes in spleen or 
thymus weight or 
histology, no change in 
spleen cell 
subpopulations. 
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Table 3-3  Levels of Significant Exposure to Decabromodiphenyl Ether  - Oral	 (continued) 

P
B
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a 
Key to Species 
Figure (Strain) 

48	 Mouse 
(B6C3F1) 

49	 Mouse 
(BALB/c) 

Neurological 
50 Rat 

(Sprague-
Dawley) 

51	 Rat 
(Wistar) 

52	 Mouse 
(Tg2576) 

53	 Mouse 
(CD-1) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

13 wk 
(F) 

28 d 
(F) 

9500 

1800 F 

NTP 1986 
DecaBDE (technical, 94-97% 
pure) 

Watanabe et al. 2010a 
DecaBDE (BDE209) 

90 d 
1 x/d 
(GO) 

50 M Wang et al. 2011b 
DecaBDE (BDE209) 

20 d 
Pnd 22-41 
(G) 

20.1 (decreased synaptic 
potency, short-term 
plasticity, and long-term 
potentiation on Pnd 60) 

Xing et al. 2009 
DecaBDE (BDE209) 

15 d 
1 x/d 
(GO) 

20 M (decreased anxiety 
behaviors) 

Heredia et al. 2012 
DecaBDE (BDE209) 

15 d 
1 x/d 
(G) 

160 Liang et al. 2010 
DecaBDE (BDE209) 

Comments 

No change in 
pulmonary viral load 
after RSV infection 1 
week after exposure 
period. 

No changes in 
open-field behavior. 

No exposure-related 
changes in brain weight 
or AchE activity. 
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Table 3-3  Levels of Significant Exposure to Decabromodiphenyl Ether  - Oral	 (continued) 

P
B

D
E

s
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a 
Key to Species 
Figure (Strain) 

54	 Mouse 
(CD-1) 

55	 Mouse 
(CD-1) 

Reproductive 
56 Rat 

(Sprague-
Dawley) 

57	 Rat 
(Sprague-
Dawley) 

58	 Rat 
(CD) 

59	 Rat 
(Sprague-
Dawley) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

30 d 
1 x/d 
(G) 

160 Liang et al. 2010 
DecaBDE (BDE209) 

60 d 
1 x/d 
(G) 

80 160 (transient reduction in 
brain AchE activity) 

Liang et al. 2010 
DecaBDE (BDE209) 

36 d 
Gd 6 - Pnd 21 
(GO) 

1000 F Biesemeier et al. 2011 
DecaBDE (BDE209) 

32 d 
Gd 10 - Pnd 21 
(F) 

28 d 
(F) 

146 F 

90 

Fujimoto et al. 2011 
DecaBDE (BDE209) 

IRDC 1976 
DecaBDE (technical) 

Pnd 10-42 
1 x/d 
(G) 

600 M Lee et al. 2010 
DecaBDE (BDE209) 

Comments 

No exposure-related 
changes in brain weight 
or AchE activity. 

No treatment-related 
changes in maternal 
toxicity, gestation 
length, or number of 
implantations. 

No change in number 
of implantations, live 
pups, or sex ratio. 

No exposure-related 
changes in 
reproductive organ 
weight or histology. 

No exposure-related 
changes in 
reproductive organ 
weight or testicular 
histology. 
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Table 3-3  Levels of Significant Exposure to Decabromodiphenyl Ether  - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

60 Rat 
(Sprague-
Dawley) 

~11wk 
Pmd 21 -
Pnd 21 
(NS) 

300 F (atrophic and fibrotic 
changes in ovary, 
decreased number of 
ovarian follicles) 

Liu et al. 2012 
DecaBDE (BDE209) 

61 Rat 
(Fischer- 344) 

13 wk 
(F) 

8000 NTP 1986 
DecaBDE (technical, 94-97% 
pure) 

No exposure-related 
changes in 
reproductive organ 
histology. 

62 Mouse 
(B6C3F1) 

13 wk 
(F) 

9500 NTP 1986 
DecaBDE (technical, 94-97% 
pure) 

No exposure-related 
changes in 
reproductive organ 
histology. 

63 Mouse 
(Parkes) 

35 d 
(GO) 

750 M 950 M (13-18% decrease in 
relative testis and 
epididymides weight, 
degenerative changes in 
seminiferous tubules, 
reduced sperm 
count/viability, reduced 
serum testosterone) 

Sarkar et al. 2015 
DecaBDE (BDE209) 

64 Mouse 
(CD-1) 

50 d 
Pnd 21-70 
(GO) 

100 M 500 M (reduced amplitude of 
lateral head velocity of 
sperm; reduced sperm 
mitochondrial membrane 
potential) 

Tseng et al. 2006 
DecaBDE (BDE209) 
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Table 3-3  Levels of Significant Exposure to Decabromodiphenyl Ether  - Oral	 (continued) 

P
B

D
E

s
122

a 
Key to Species 
Figure (Strain) 

65	 Mouse 
(CD-1) 

66	 Mouse 
(BALB/c) 

67	 Mouse 
(BALB/c) 

Developmental 
68 Rat 

(Sprague-
Dawley) 

69	 Rat 
(Sprague-
Dawley) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

18 d 
Gd 0-17 
(GO) 

1500 F Tseng et al. 2008 
DecaBDE (BDE209) 

31 d 
Gd 10 - Pnd 21 
(F) 

260 F Watanabe et al. 2008 
DecaBDE (BDE209) 

31 d 
Gd 10 - Pnd 21 
(F) 

2900 F Watanabe et al. 2010b 
DecaBDE (BDE209) 

36 d 
Gd 6 - Pnd 21 
(GO) 

1000 Biesemeier et al. 2011 
DecaBDE (BDE209) 

32 d 
Gd 10 - Pnd 21 
(F) 

2 (diffuse liver cell 
hypertrophy with 
cytoplasmic eosinophilia 
in male offspring and 
cytoplasmic eosinophilia 
in the cortical proximal 
tubules of the kidney of 
female offspring at Pnd 
20; recovered by Pnw 
11) 

Fujimoto et al. 2011 
DecaBDE (BDE209) 

Comments 

No change in 
gestational length or 
litter size, no change in 
ovary weight. 

No change in the 
number of litters. 

No change in the 
number of litters. 

No treatment-related 
changes in litter size, 
sex ratio, pup survival 
and development, or 
neurobehavior or 
neuropathology of 
offspring. 
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Table 3-3  Levels of Significant Exposure to Decabromodiphenyl Ether  - Oral	 (continued) 

P
B

D
E

s
123

a 
Key to Species 
Figure (Strain) 

70	 Rat 
(Sprague-
Dawley) 

71	 Rat 
(Wistar) 

72	 Rat 
(Wistar) 

73	 Rat 
(Wistar) 

74	 Rat 
(Wistar) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

20 d 
Gd 0-19 
(GO) 

1000 F Hardy et al. 2002 
97.34% deca-, 2.66% nona-
and octa-BDE 

21 d 
Gd 1-21 
(G) 

20.1 Xing et al. 2009 
DecaBDE (BDE209) 

61 d 
Gd 1 - Pnd 41 
(G) 

20.1 (decreased synaptic 
potency, short-term 
plasticity, and long-term 
potentiation in 
hippocampus in Pnd 60 
offspring) 

Xing et al. 2009 
DecaBDE (BDE209) 

21 d 
Pnd 1-21 
(G) 

20.1 (altered long-term 
potentiation in 
hippocampus of Pnd 60 
offspring) 

Xing et al. 2009 
DecaBDE (BDE209) 

19 d 
Pnd 3-21 
(G) 

20.1 (decreased synaptic 
potency, short-term 
plasticity, and long-term 
potentiation in 
hippocampus on Pnd 60) 

Xing et al. 2009 
DecaBDE (BDE209) 

Comments 

No change in 
hippocampal 
eletrophysiological 
readings in Pnd 60 
offspring. 

DecaBDE administered 
to dams Gd 1- Pnd 21 
and to offspring Pnd 
22-41. 

DecaBDE administered 
to dams. 

DecaBDE administered 
to neonates. 
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Table 3-3  Levels of Significant Exposure to Decabromodiphenyl Ether  - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

75 Mouse 
(CD-1) 

18 d 
Gd 0-17 
(GO) 

10 M (hepatocytic swelling in 
male offspring at Pnd 71) 

Tseng et al. 2008 
DecaBDE (BDE209) 

76 Mouse 
(CD-1) 

18 d 
Gd 0-17 
(GO) 

10 M (vacuolization in 
interstitial cells of testes 
and sperm damage in 
male offspring at Pnd 71) 

Tseng et al. 2013 
DecaBDE (BDE209) 

77 Mouse 
(BALB/c) 

31 d 
Gd 10 - Pnd 21 
(F) 

34 260 (15% decrease in pup 
weight on Pnd 21; 
increased viral load in 
lung and IFN-gamma in 
BALF in offspring on Pnd 
33) 

Watanabe et al. 2008 
DecaBDE (BDE209) 

Pups were infected 
with RSV on Pnd 28. 

78 Mouse 
(BALB/c) 

31 d 
Gd 10 - Pnd 21 
(F) 

290 2900 (increased viral load in 
lung and altered cytokine 
expression BALF in 
offspring on Pnd 29-33) 

Watanabe et al. 2010b 
DecaBDE (BDE209) 

Pups were infected 
with RSV on Pnd 28. 

Cancer 
79 Mouse 

(C3H/HeNCrlC 
27 wk 
(F) 

9100 M (CEL: liver neoplastic 
nodules; altered foci) 

Sakamoto et al. 2013 
DecaBDE (BDE209) 

CHRONIC EXPOSURE 
Death 
80 Mouse 

(C57BL/6) 
2 yr 
every other day 
(GO) 

800 F (5/10 died vs. 1/10 
controls) 

Feng et al. 2015 
DecaBDE (BDE209) 
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Table 3-3  Levels of Significant Exposure to Decabromodiphenyl Ether  - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

Systemic 
81 Rat 

(Sprague-
Dawley) 

2 yr 
(F) 

Resp 

Cardio 

1 

1 

Kociba et al. 1975; Norris et al. 
1975a 
77% decaBDE, 22% nonaBDE 

Gastro 1 

Hemato 1 

Musc/skel 1 

Hepatic 1 

Renal 1 

Endocr 1 

Ocular 1 

Bd Wt 1 
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Table 3-3  Levels of Significant Exposure to Decabromodiphenyl Ether  - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

82 Rat 
(Fischer- 344) 

103 wk 
(F) 

Resp 

Cardio 

2550 F 

2550 F 

NTP 1986 
DecaBDE (technical, 94-97% 
pure) 

Gastro 

Hemato 

1120 M 

2550 F 

2240 M (acanthosis) 

Musc/skel 

Hepatic 

2550 F 

1120 M (precancerous neoplastic 
nodules) 

Renal 2550 F 

Endocr 2550 F 

Bd Wt 2550 F 
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Table 3-3  Levels of Significant Exposure to Decabromodiphenyl Ether  - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

83 Mouse 
(B6C3F1) 

103 wk 
(F) 

Resp 

Cardio 

7780 F 

7780 F 

NTP 1986 
DecaBDE (technical, 94-97% 
pure) 

Gastro 3760 F 7780 F (ulcers) 

Hemato 7780 F 

Musc/skel 7780 F 

Hepatic 3200 M (centrilobular hypertrophy 
and granulomas) 

Renal 7780 F 

Endocr 3200 M (follicular cell 
hyperplasia) 

Immuno/ Lymphoret 
84 Rat 

(Sprague-
Dawley) 

2 yr 
(F) 

Bd Wt 7780 F 

1 Kociba et al. 1975; Norris et al. 
1975a 
77% decaBDE, 22% nonaBDE 

No exposure-related 
changes in immune 
tissue histology. 

85 Rat 
(Fischer- 344) 

103 wk 
(F) 

1200 F (splenic hematopoiesis) NTP 1986 
DecaBDE (technical, 94-97% 
pure) 

86 Mouse 
(B6C3F1) 

103 wk 
(F) 

7780 F NTP 1986 
DecaBDE (technical, 94-97% 
pure) 

No exposure-related 
changes in immune 
tissue histology 
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Table 3-3  Levels of Significant Exposure to Decabromodiphenyl Ether  - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) Comments 

Reference 
Chemical Form 

Reproductive 
87 Rat 

(Sprague-
Dawley) 

2 yr 
(F) 

1 M 

1 F 

Kociba et al. 1975; Norris et al. 
1975a 
77% decaBDE, 22% nonaBDE 

88 Rat 
(Fischer- 344) 

103 wk 
(F) 

2240 M 

2550 F 

No exposure-related 
changes in 
reproductive organ 
histology. 

NTP 1986 
DecaBDE (technical, 94-97% 
pure) 

89 Mouse 
(B6C3F1) 

103 wk 
(F) 

6650 M 

7780 F 

No exposure-related 
changes in 
reproductive organ 
histology. 

NTP 1986 
DecaBDE (technical, 94-97% 
pure) 

Cancer 
90 Rat 

(Fischer- 344) 
103 wk 
(F) 

1120 M (CEL: liver neoplastic 
nodules) 

NTP 1986 
DecaBDE (technical, 94-97% 
pure) 
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Table 3-3  Levels of Significant Exposure to Decabromodiphenyl Ether  - Oral (continued) 

Exposure/ LOAEL 

a 
Key to 
Figure 

Species 
(Strain) 

Duration/
Frequency 

(Route)
System 

NOAEL 
(mg/kg/day) 

Reference 
Chemical Form Comments 

Less Serious 
(mg/kg/day) 

Serious 
(mg/kg/day) 

91 Mouse 
(B6C3F1) 

103 wk 
(F) 

3200 M (CEL: hepatocellular 
adenomas and 

NTP 1986 
DecaBDE (technical, 94-97%

carcinomas) pure) 

2028
3200
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a The number corresponds to entries in Figure 3-3. 

b Used to derive an acute oral minimal risk level (MRL); concentration divided by an uncertainty factor of 100 (10 for animal to human, and 10 for human variability), resulting in an 
MRL of 0.01 mg/kg/day. 

c Used to derive an intermediate oral minimal risk level (MRL); concentration divided by an uncertainty factor of 300 (3 for use of a minimal LOAEL,10 for animal to human, 10 for 
human variability), resulting in an MRL of 0.0002 mg/kg/day. 

Note on chemical form: Mixtures are identified by composition or trade name (if reported); otherwise, they are reported as "technical".  Trade names for decaBDE include DE-83R 
(98% decaBDE). The individual congener is identified by by IUPAC number: BDE 209 = 2,2',3,3',4,4',5,5',6,6'-decaBDE. Where study authors report use of decaBDE, without further 
compositional information, it is assumed the pure congener (BDE 209) was used. 

AchE = acetylcholinesterase; BALF = brochoalveolar lavage fluid; Bd Wt = body weight; Cardio = cardiovascular; CEL = cancer effect level; d = day(s); Endocr = endocrine; (F) = 
feed; F = Female; (G) = gavage; Gastro = gastrointestinal; Gd = gestational day; (GO) = gavage in oil; Hemato = hematological; IFN = interferon;  IgG = immunoglobulin G; IgM = 
immunoglobulin M; Immuno/Lymphoret = immunological/lymphoreticular; IN = ingestion ; LOAEL = lowest-observed-adverse-effect level; M = male; Musc/skel = musculoskeletal; 
NOAEL = no-observed-adverse-effect level; NS = not specified; Pmd = pre-mating day; Pnd = post-natal day; Pnw = post-natal week; Resp = respiratory; RSV = respiratory 
syncytial virus; T3 = triiodothyronine; T4 = thyroxine; x = time(s); wk = week(s); yr = year(s) 
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Figure 3-3. Levels of Significant Exposure to Decabromodiphenyl Ether - Oral
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Figure 3-3. Levels of Significant Exposure to Decabromodiphenyl Ether - Oral (Continued)
 
Intermediate (15-364 days)
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Figure 3-3. Levels of Significant Exposure to Decabromodiphenyl Ether - Oral (Continued)
 
Intermediate (15-364 days)
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Figure 3-3. Levels of Significant Exposure to Decabromodiphenyl Ether - Oral (Continued)
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In intermediate-duration dietary studies with decaBDE, there was no exposure-related mortality in rats 

that were exposed to estimated dietary doses of ≤90 mg/kg/day for 28 days (IRDC 1976) or rats and mice 

fed estimated doses of ≤8,000 and ≤9,500 mg/kg/day, respectively, for 13 weeks (NTP 1986).  In chronic 

studies, there were no effects on survival in rats that were fed 0.01–1.0 mg/kg/day of a 77.4% decaBDE 

mixture (containing 21.8% nonaBDE and 0.8% octaBDE) for 2 years (Kociba et al. 1975; Norris et al. 

1975a), or in rats and mice fed decaBDE in estimated doses of ≤2,550 and ≤7,780 mg/kg/day, 

respectively, for 103 weeks (NTP 1986). However, Feng et al. (2015) reported that 5/10 female mice 

died following exposure to decaBDE (98% purity) every other day via gavage for up to 2 years at a dose 

of 800 mg/kg/dose, compared with 1/10 vehicle control mice.  No cause of death or gross or microscopic 

pathology was reported for animals that died.  In surviving mice, various histopathological lesions were 

qualitatively described in the brain, heart, lung, liver, spleen, kidney, and ovaries of exposed animals, but 

incidence data were not provided.  Due to the high mortality and lack of quantitative data, this chronic 

study is not discussed in the Systemic Effects section below. 

The LD50 and LOAEL values for death are recorded in Tables 3-2 (lower BDEs) and 3-3 (decaBDE) and 

plotted in Figures 3-2 (lower BDEs) and 3-3 (decaBDE). 

3.2.2.2  Systemic Effects 

The systemic effects in humans and animals following oral exposure to PBDEs are described below.  The 

highest NOAEL and all LOAEL values from each reliable study for systemic end points in each species 

and duration category are recorded in Tables 3-2 (lower-brominated PBDEs) or 3-3 (decaBDE) and 

plotted in Figures 3-2 (lower-brominated PBDEs) or 3-3 (decaBDE). 

Respiratory Effects. No studies were located regarding respiratory effects in humans after oral 

exposure to PBDEs. Effects of PBDEs on respiratory function have not been studied in orally exposed 

animals. 

No histopathological changes in the respiratory tract or exposure-related changes in lung weight were 

observed in rats exposed to pentaBDE at doses up to 250 mg/kg/day for 28 days via gavage (Oberg et al. 

2010; Van der ven et al. 2008a) or in rats exposed to dietary pentaBDE at doses up to 100 mg/kg/day for 

90 days (WIL Research Laboratories 1984).  Similarly, no changes in respiratory tract histology were 

observed in rats exposed to dietary octaBDE at doses up to 750 mg/kg/day for 13 weeks (IRDC 1977).  
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No exposure-related changes in lung weight were observed in rats exposed to a dietary penta-decaBDE 

mixture (52.1% pentaBDE, 44.2% decaBDE, 0.4% octaBDE) at 20 mg/kg/day for 70 days (Ernest et al. 

2012) or in F0 or F1 rats exposed pentaBDE at 18 mg/kg/day from GD 6 to PND 18 via gavage (Ellis-

Hutchings et al. 2006). 

To determine if PBDE exposure alters vitamin A homeostasis in rats in a manner similar to the related 

PBB compounds (ATSDR 2004), vitamin A levels were measured in lung tissue following exposure to 

pentaBDE at 0, 2.5, 25, or 250 mg/kg/day via gavage (Oberg et al. 2010). No significant changes in lung 

vitamin A levels were observed at any dose. 

No histopathological changes in respiratory tract tissues were found in rats and mice exposed to dietary 

decaBDE at estimated doses of ≤8,000 and ≤9,500 mg/kg/day, respectively, for 13 weeks or estimated 

doses of ≤2,550 and ≤7,780 mg/kg/day, respectively, for 103 weeks (NTP 1986).  Additionally, no 

histopathological changes in respiratory tract tissues were observed in rats that were fed ≤1.0 mg/kg/day 

of a 77.4% decaBDE mixture (containing 21.8% nonaBDE and 0.8% octaBDE) for 2 years (Kociba et al. 

1975; Norris et al. 1975a). 

Based on animal studies, respiratory effects are not likely to occur following oral exposure to PBDEs. 

Cardiovascular Effects. No relationship was found between serum concentrations of tetraBDE 

(BDE 47) and carotid atherosclerosis (carotid artery plaques determined by ultrasound) or stroke in a 

population of 1,016 70-year-old volunteers (50.2% female) from Uppsala, Sweden (Lee et al. 2012; Lind 

et al. 2012).  BDE 47 was detected in the serum of 77.2% of subjects with a median concentration of 

12.6 pg/mL. No associations were observed between serum PBDE levels and gestational hypertension in 

258 pregnant women from the Longitudinal Investigation of Fertility and the Environment (LIFE) cohort 

in Michigan and Texas (Smarr et al. 2016). 

A case control study of 43 children (9–11 years old) from Upstate New York reported an association 

between higher levels of serum PBDEs and greater sympathetic activation during acute psychological 

stress and greater anger (Gump et al. 2014).  Specifically, BDE 28 was associated with greater heart rate, 

lower pre-ejection period, and lower total peripheral resistance.  BDE 47 and BDE 100 were associated 

with significantly lower diastolic blood pressure, and BDE 100 was also associated with a shorter pre

ejection period during acute stress.  Lipid-adjusted mean blood levels of BDEs 28, 47, and 100 were 1.07, 

8.53, and 0.86 ng/g, respectively.  The investigators speculated that PBDE-induced increased levels of 
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calcium/calmodulin-dependent protein kinase II in the hippocampus may mediate the heart’s response to 

β-adrenergic stimulation. 

Effects of PBDE on cardiovascular function have not been studied in orally exposed animals.  

No exposure-related changes in heart histology or weight were observed in rats exposed to pentaBDE at 

doses up to 250 mg/kg/day for 28 days via gavage (Oberg et al. 2010; Van der ven et al. 2008a), dietary 

pentaBDE at doses up to 100 mg/kg/day for 90 days (WIL Research Laboratories 1984), or dietary 

octaBDE at doses up to 750 mg/kg/day for 13 weeks (IRDC 1977).  Additionally, no exposure-related 

changes in heart weight were observed in rats exposed to dietary penta- or octaBDE at doses up to 

90 mg/kg/day for 28 days (IRDC 1976), in rats exposed to a dietary penta-decaBDE mixture (52.1% 

pentaBDE, 44.2% decaBDE, 0.4% octaBDE) at 20 mg/kg/day for 70 days (Ernest et al. 2012), in F0 or 

F1 rats exposed to dietary pentaBDE at doses up to 0.31 mg/kg/day for 4 weeks prior to mating through 

PNW 6 or 33 (Zhang et al. 2009), in F0 or F1 rats exposed pentaBDE at 18 mg/kg/day from GD 6 to 

PND 18 via gavage (Ellis-Hutchings et al. 2006), or in rats exposed to diBDE at 1.2 mg/kg/day for 

28 days via gavage (Zhang et al. 2014). 

No histopathological changes in the heart were found in rats and mice exposed to dietary decaBDE at 

estimated doses of ≤8,000 and ≤9,500 mg/kg/day, respectively, for 13 weeks or estimated doses of 

≤2,550 and ≤7,780 mg/kg/day, respectively, for 103 weeks (NTP 1986).  No exposure-related changes in 

heart histology or weight were observed in rats that were fed ≤1.0 mg/kg/day of a 77.4% decaBDE 

mixture (containing 21.8% nonaBDE and 0.8% octaBDE) for 2 years (Kociba et al. 1975; Norris et al. 

1975a). In addition, no exposure-related changes in heart weight were observed in rats exposed decaBDE 

at doses up to 20 mg/kg/day for 8 weeks via gavage (Zhang et al. 2013a) or to dietary decaBDE at doses 

up to 90 mg/kg/day for 28 days (IRDC 1976). 

Based on human and animal studies, cardiovascular effects are not likely to occur following oral exposure 

to PBDEs. 

Gastrointestinal Effects. No studies were located regarding gastrointestinal effects in humans after 

oral exposure to PBDEs. 

No histopathological changes in the gastrointestinal tract were found in rats exposed to pentaBDE at 

doses up to 200 mg/kg/day for 28 days via gavage (Van der ven et al. 2008b), dietary pentaBDE at doses 
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up to 100 mg/kg/day for 90 days (WIL Research Laboratories 1984), or dietary octaBDE at doses up to 

750 mg/kg/day for 13 weeks (IRDC 1977).  

No histopathological changes in gastrointestinal tract tissues were found in rats and mice fed decaBDE in 

estimated doses of ≤8,000 and ≤9,500 mg/kg/day, respectively, for 13 weeks (NTP 1986).  In chronic 

dietary studies, there was no gastrointestinal tract histopathology in rats that were fed ≤1.0 mg/kg/day of a 

77.4% decaBDE mixture (containing 21.8% nonaBDE and 0.8% octaBDE) for 2 years (Kociba et al. 

1975; Norris et al. 1975a).  Higher dietary doses of decaBDE for 103 weeks caused acanthosis of the 

forestomach in rats exposed to 2,240 mg/kg/day (no effects at ≤1,200 mg/kg/day) and stomach ulcers in 

mice exposed to 7,780 mg/kg/day (no effects at ≤3,760 mg/kg/day) (NTP 1986). 

Based on animal studies, gastrointestinal effects are not likely to occur following oral exposure to PBDEs 

at environmentally-relevant exposure concentrations. 

Hematological Effects. 

Human Studies.  Hematological end points were evaluated in a subset of 18 of a cohort of 33 children 

(18 girls and 15 boys) born in the Amsterdam/Zaandam area of the Netherlands and aged 14–19 years at 

the time of the study (Leijs et al. 2009).  Serum PBDE concentrations (determined as the sum of 

congeners 28, 47, 85, 99, 100, 153, 154, and 183) ranged from 5 to 74 ng/g lipid with a mean of 13.9 ng/g 

lipid.  Serum samples were used to assess hemoglobin, thrombocytes, and white blood cell count and 

differential. The researchers found a negative statistical association (not further described) between 

number of lymphocytes and PBDE concentrations in serum.  Congener-specific analysis showed the main 

contributors to be BDE 183, BDE 154, and BDE 85. Although dioxins and PCBs were also assessed, no 

association with lymphocytes was found for these chemicals. The only other finding for PBDE was a 

positive association between serum hemoglobin and PBDE, primarily due to congeners 85 and 153. A 

Chinese study of 40 subjects exposed to PBDEs in an electronic waste dismantling area reported a 

significantly elevated neutrophil percentage among the workers compared to a group of 15 unexposed 

controls (Xu et al. 2015a).  In addition, exposed subjects had significantly lower percentages of 

monocytes, lymphocytes, hemoglobin, and platelets than controls, while total white cell counts were not 

significantly different between the two groups.  PBDEs assessed included congeners 15, 27, 85, 99, 100, 

153, 154, and 184.  Exposure was likely by multiple routes.  PCBs also were found associated with 

lowered percentages of monocytes and lymphocytes. 
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Animal Studies 

Lower-brominated PBDEs:  Following exposure to dietary octaBDE at 750 mg/kg/day for 13 weeks, 

female rats showed 26, 22, and 22% decreases in erythrocytes, hematocrit, and hemoglobin, respectively; 

male rats showed a 10% decrease in erythrocytes at 600 mg/kg/day (IRDC 1977).  No changes were 

observed in total or differential white blood cell counts (IRDC 1977).  No changes in hematological 

parameters, including erythrocyte count, hemoglobin, hematocrit, full and differential leukocyte count, 

and platelet count, were observed in rats following pentaBDE exposure to dietary doses up to 

100 mg/kg/day for 90 days (WIL Research Laboratories 1984) or gavage up to 250 mg/kg/day for 28 days 

(Oberg et al. 2010). 

In another 28-day study, rats were exposed to pentaBDE at 0, 0.27, 0.82, 2.47, 7.4, 22.2, 66.7, or 

200 mg/kg/day via gavage (Van der ven et al. 2008b). The study authors reported minor dose-related 

changes in white blood cell differentials from femoral shaft bone marrow in male rats (blood hematology 

not evaluated); however, the doses at which these effects were observed were not reported.  Instead, 

results were reported in terms of benchmark dose (BMD) analysis (Van der ven et al. 2008b). 

Statistically significant changes included increased number and percentage of monocytes (maximum 

increase of 69.5 and 66.7%, respectively; BMD/BMDLRD20%=11.2/0.7 and 31.8/3 mg/kg/day, 

respectively) and decreased percentage of eosinophilic granulocytes (maximum decrease of 20%; 

(BMDRD20%=28.6, BMDL not determined).  The study authors also reported a significant, dose-related 

increase in the number and percentage of large unstained cells (maximum increase of 79.7 and 85.1%, 

respectively; BMD/BMDLRD20%=76.3/42.8 and 64.3/9.8 mg/kg/day, respectively), which they indicated 

may represent large or reactive lymphocytes, monocytes, or leukemic blasts (abnormal myeloblasts), 

typically associated with viral disease, leukemia, or endocrine active compounds.  Since results were 

reported in terms of BMD analysis only, data and statistics for individual dose groups were not available 

for independent analysis. No data regarding other standard hematological end points were reported (Van 

der ven et al. 2008b). 

Male mink exposed to dietary pentaBDE at doses of 0.63 or 0.78 mg/kg/day for 9 weeks showed 

significant 13 and 12% decreases in hematocrit, respectively; neither the number of red blood cells nor 

hemoglobin levels were evaluated (Martin et al. 2007).  According to study authors, most of the ranges in 

the differential white blood cell counts fell within that expected for male mink of this age; however, the 

percentage of neutrophils was increased significantly by ~22% at 0.63 mg/kg/day and 37% at 

0.78 mg/kg/day, the percentage of lymphocytes decreased significantly by ~33% at 0.78 mg/kg/day, and 
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the neutrophil:lymphocyte ratio increased significantly by ~90% at 0.78 mg/kg/day (data reported 

graphically) (Martin et al. 2007).  Total white blood cell counts were not reported.  No hematological 

effects were observed at 0.08 mg/kg/day (Martin et al. 2007). The minor hematological changes are of 

uncertain toxicological significance. 

In a poorly-reported study, mouse dams exposed to pentaBDE from GD 6 to PND 21 via gavage did not 

show any hematological effects at doses up to 200 mg/kg/day (Hong et al. 2010).  

DecaBDE:  No hematological changes were observed in rats exposed to ≤60 mg/kg/day of decaBDE via 

gavage for 28 days (Van der ven et al. 2008a).  In dietary studies with decaBDE, no hematological 

changes were found in rats exposed to ≤800 mg/kg/day for 30 days (Norris et al. 1973, 1975a), 

≤8,000 mg/kg/day for 13 weeks (NTP 1986), or ≤2,550 mg/kg/day for 103 weeks (NTP 1986), or in mice 

exposed to ≤9,500 mg/kg/day for 13 weeks or ≤7,780 mg/kg/day for 103 weeks (NTP 1986). There also 

were no hematological effects in rats exposed by diet to ≤1.0 mg/kg/day of a 77.4% decaBDE mixture 

(containing 21.8% nonaBDE and 0.8% octaBDE) for 2 years (Kociba et al. 1975; Norris et al. 1975a). 

In a poorly-reported study, mouse dams exposed to decaBDE from GD 6 to PND 21 via gavage showed 

significant increases in the number of white blood cells and neutrophils at 500 mg/kg/day, compared with 

controls, but not at 2,500 or 12,500 mg/kg/day (Hong et al. 2010).  

Summary.  Minor hematological changes observed in humans and animal are of uncertain toxicological 

significance.  Based on the available information, it is unlikely that adverse effects would occur in the 

human hematological system following oral PBDE exposure. 

Musculoskeletal Effects. No association was found between serum PBDE concentrations (BDE 47, 

BDE 99, BDE 100, BDE 153, BDE 154, BDE 209, and their sum) and bone mineral density (measured by 

x-ray in the forearm) or serum concentrations of biochemical markers of bone metabolism (osteocalcin 

and crosslaps [a peptide of type I collagen]) in a population of 50 post-menopausal Swedish women 

married or previously married to professional fisherman on the east coast of the country and born before 

1954 (Weiss et al. 2006). Median serum ∑PBDE concentration in this population was 3.6 ng/g fat. 

No musculoskeletal changes were seen in rats following exposure to pentaBDE at doses up to 

200 mg/kg/day for 28 days via gavage (Van der ven et al. 2008b) or dietary pentaBDE at doses up to 

100 mg/kg/day for 90 days (WIL Research Laboratories 1984). 
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No changes in bone parameters were observed in rats exposed to decaBDE at doses up to 60 mg/kg/day 

for 28 days via gavage (Van der ven et al. 2008a). Dietary studies with decaBDE found no 

histopathological changes in musculoskeletal tissues in rats exposed to ≤8,000 mg/kg/day for 13 weeks 

(NTP 1986), ≤1.0 mg/kg/day (77.4% containing 21.8% nonaBDE and 0.8% octaBDE) for 2 years 

(Kociba et al. 1975; Norris et al. 1975a), or ≤2,550 mg/kg/day for 103 weeks (NTP 1986), or in mice 

exposed to ≤9,500 mg/kg/day for 13 weeks or ≤7,780 mg/kg/day for 103 weeks (NTP 1986).  

Based on human and animal studies, musculoskeletal effects are not likely to occur following oral 

exposure to PBDEs. 

Hepatic Effects. No studies were located regarding hepatic effects in humans after oral exposure to 

PBDEs. 

Acute-Duration Animal Studies 

Lower-brominated PBDEs:  A series of gavage studies evaluated liver histology following a single 

exposure to pentaBDE doses of 0, 25, 200, or 2,000 mg/kg or repeat exposures to pentaBDE doses of 0, 8, 

40, or 200 mg/kg/day for 7 or 14 days (Bruchajzer et al. 2010, 2011).  Fatty degeneration of the liver was 

observed in female rats following pentaBDE exposure via gavage at 2,000 mg/kg for 1 day (Bruchajzer et 

al. 2011) or 200 mg/kg/day for 7 or 14 days (Bruchajzer et al. 2010).  In the single-exposure study, rats 

from the 2,000 mg/kg group showed steatosis of the microvesicular type, which was most frequently 

observed in the central and intermediate zones of lobules; however, animal incidence numbers were not 

reported (Bruchajzer et al. 2011).  At 4 and 12 hours after pentaBDE administration, these changes were 

noted in no more than 25% of hepatocytes; after 24–120 hours, fatty degeneration embraced 26–75% of 

hepatocytes; and after 120 hours, a mixed type of change (micro- and macrovesicular) was observed 

(Bruchajzer et al. 2011). In the repeated-exposure studies, rats from the 200 mg/kg/day group showed 

steatosis of the microvesicular type in 3–25% of hepatocytes after 7 days and steatosis of the 

microvesicular and mascrovesicular type in 26–75% of hepatocytes in the central and intermediate zones 

of lobules (Bruchazjer et al. 2010).  Again, animal incidence data were not reported.  No exposure-related 

histological changes in the liver were reported for single doses ≤200 mg/kg or repeated doses 

≤40 mg/kg/day (Bruchazjer et al. 2010, 2011).  In the only other study that included histopathological 

examination, histological changes were not observed in male rats 45 days after a single administration of 

pentaBDE at doses up to 1.2 mg/kg (Albina et al. 2010).  
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In the Bruchazjer et al. (2010, 2011) studies, no biologically relevant changes were observed in serum 

clinical chemistry values.  Serum alanine transaminase (ALT) and aspartate transaminase (AST) activity 

levels were slightly increased to 130 and 170–190% of control values following a single gavage exposure 

to 2,000 mg/kg, respectively, after 72–120 hours; no changes were reported for doses ≤200 mg/kg 

(Bruchazjer et al. 2011). The study authors did not report statistics; however, these serum chemistry 

changes are not considered biologically relevant since the magnitude of change, compared with control, is 

<2-fold.  Similarly, no exposure-related changes were observed in serum ALT or AST at doses up to 

200 mg/kg/day for 7 or 14 days (Bruchajzer et al. 2010).  Another 14-day gavage study found no 

exposure-related changes in serum sorbital dehydrogenase (SDH) levels in rats exposed to pentaBDE at 

56.4 mg/kg/day or octaBDE at 76.6 mg/kg/day (equimolar doses) (Carlson 1980b).  In male rats exposed 

once to pentaBDE at doses of 0, 0.6, or 1.2 mg/kg, serum ALT activity was significantly increased by 

~72% in the 1.2 mg/kg group, compared with control, when evaluated 45 days after exposure (Alonso et 

al. 2010).  However, this change is not considered biologically relevant because the magnitude of change, 

compared with control, is <2-fold, the measured ALT activity of 31 U/l was well within reference value 

ranges for adult male rats (20–81 U/l) (Charles River Laboratories 1998), and no changes were observed 

in serum AST, alkaline phosphatase (ALP), or lactate dehydrogenase (LDH) (Alonso et al. 2010). 

Bruchajzer et al. (2010, 2011) also reported altered markers of oxidative stress in the liver following 

exposure to pentaBDE.  Liver malondialdehyde (MDA) levels were significantly elevated after exposure 

to ≥200 mg/kg/day for 1–14 days (Bruchajzer et al. 2010, 2011).  Levels of reduced glutathione (GSH) in 

the liver were not increased following a single exposure; however, GSH concentration was elevated at 

≥40 mg/kg/day after 7 days and ≥8 mg/kg/day after 14 days (Bruchajzer et al. 2010, 2011).  Oxidized 

glutathione (GSSG) was significantly elevated after single exposures to ≥25 mg/kg, but no changes in 

glutathione S-transferase (GST) activity were observed (Bruchajzer et al. 2010). Liver GSSG levels and 

GST activity were not evaluated following 7- or 14-day exposures.  In another study, liver GSH levels 

were significantly decreased and liver SOD activity, GSSG levels, and GSSG/GSH ratio were 

significantly increased in male rats 45 days after a single gavage administration of pentaBDE at 0.6 or 

1.2 mg/kg (Albina et al. 2010). 

In two other studies by Bruchazjer and colleagues (Bruchazjer 2011; Bruchazjer et al. 2012), female rats 

were examined for hepatic porphyria following exposure to pentaBDE at doses of 0, 8, 40, or 

200 mg/kg/day or octaBDE at doses of 0, 2, 8, 40, or 200 mg/kg/day via gavage for 7 or 14 days.  

PentaBDE caused significant dose-related elevations in total porphyrin levels in the liver following 
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exposure to ≥40 mg/kg/day for 7 days (~2–6-fold) or ≥8 mg/kg/day for 14 days (~3–11-fold). Following 

gavage exposure to octaBDE for 7 days, liver concentrations of high carboxylated porphyrins (octa- and 

hepta-) were significantly elevated at 8, 40, and 200 mg/kg/day by ~4-, 4-, and 7-fold, respectively, 

compared with vehicle controls (Bruchajzer et al. 2012).  Lower carboxylated porphyrins were <1% of 

total liver porphyrins measured, and were not further analyzed.  Following exposure to octaBDE for 

14-days, total liver concentrations of high carboxylated porphyrins were increased by ~3-fold in the 

200 mg/kg/day group only, compared with vehicle controls (Bruchajzer et al. 2012).  However, the 

vehicle controls at this duration had an unusually high hepatic porphyrin levels (4-fold increase compared 

with untreated control).  When compared with the untreated controls, porphyrin levels were significantly 

increased by ~2-, 4-, 6-, and 7-fold in the 2, 8, 40, and 200 mg/kg/day groups, respectively, supporting 

that exposure to octaBDE for 14 days causes porphyria as observed in the 7-day study.  These studies also 

measured hepatic delta-aminolevulinate synthase (ALA-S) activity and delta-aminolevilinate dehydratase 

(ALA-D) activity, two enzymes involved in heme biosynthesis.  The results were mixed.  PentaBDE 

exposure caused a significant elevation in ALA-S activity at ≥40 mg/kg/day after 7 or 14 days (ALA-D 

was not measured), while octaBDE exposure caused a significant increase in ALA-S activity at 

≥8 mg/kg/day after 7 days and significant decreases in ALA-S activity at 200 mg/kg/day after 14 days 

and ALA-D activity at ≥40 mg/kg/day after 7 or 14 days (Bruchajzer 2011; Bruchajzer et al. 2012).  

The gavage studies by Bruchajzer and colleagues (Bruchajzer 2011; Bruchajzer et al. 2012) also reported 

elevated liver weights accompanied by hepatic microsomal enzyme induction.  Significant relative liver 

weight increases (data reported graphically) were about ≥30% after a single exposure to pentaBDE at 

≥200 mg/kg (Bruchajzer et al. 2011), ≥13% after exposure to pentaBDE at 8 or 200 mg/kg/day for 7 days 

(Bruchajzer et al. 2010), or ≥25% after exposure to pentaBDE at ≥40 mg/kg/day for 14 days (Bruchazjer 

et al. 2010). Hepatic enzyme induction (e.g., increased CYP1A and CYP2B activity and/or CYP1A1, 

CYP4A, and total cytochrome P450 protein levels) was observed at lower doses: ≥25 mg/kg in the single 

dose study and ≥8 mg/kg/day in the 7- and 14-day studies (Bruchazjer et al. 2010, 2011). 

Consistent with the findings of Bruchazjer and colleagues (Bruchajzer 2011; Bruchajzer et al. 2012), 

elevated liver weights have been reported following acute exposure to penta-, octa-, or tetraBDE in 

several other animal studies.  Significantly increased liver weights were reported in rats and mice exposed 

to penta-, tetra-, or octaBDE via gavage at ≥10 and ≥18 mg/kg/day, respectively, for 1–14 days (Carlson 

1980b; Fowles et al. 1994; Hallgren et al. 2001; Mercado-Feliciano and Bigsby 2008a; Richardson et al. 

2008; Stoker et al. 2004, 2005; Zhou et al. 2001).  However, no exposure-related changes in relative liver 

weight were observed in female rats exposed to tetraBDE at doses up to18 mg/kg/day for 14 days via 
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gavage (Hallgren and Darnerud 2002).  In the studies that evaluated hepatic enzyme induction (e.g., 

elevated EROD, MROD, PROD, and UDPGT activity and/or increased CYP protein levels), significantly 

increased enzyme levels and activities were observed in rats and mice at gavage doses of ≥6 and 

≥3 mg/kg/day, respectively, and were always observed at doses at or below the dose causing elevated 

liver weights in the same study (Carlson 1980b; Fowles et al. 1994; Hallgren and Darnerud 2002; 

Hallgren et al. 2001; Richardson et al. 2008; Stoker et al. 2004; Zhou et al. 2001).  Exposure to a single 

pentaBDE dose of 0.03 or 0.6 mg/kg on GD 6 via gavage caused significant induction of hepatic enzymes 

(EROD, UDPGT) in dams and pups from the 0.6 mg/kg group on PND 22; liver weight was not evaluated 

(Kuriyama et al. 2007).  Collectively, these findings support that elevated liver weight following exposure 

to lower-brominated PBDEs is associated with hepatic enzyme induction. 

Richardson et al. (2008) evaluated genomic changes in mice following exposure to tetraBDE at 0, 3, 10, 

or 100 mg/kg/day for 4 days via gavage.  The mRNA levels of several hepatic enzymes were significantly 

elevated at ≥20 mg/kg/day (Cyp2b10, Ugt1a1, Ugt1a7, Ugt2b2).  In addition, several exposure-related 

changes were observed in hepatic efflux transporter (Mrp3, Mdr1a) and thyroid hormone transporter (Ttr, 

Mct8) mRNA expression levels in hepatic tissue (Richarson et al. 2008). 

To determine if PBDE exposure alters vitamin A homeostasis in a manner similar to the related PBBs 

(ATSDR 2004), hepatic vitamin A levels were measured in mice and rats exposed to pentaBDE at 0, 18, 

or 36 mg/kg/day and mice exposed to tetraBDE at 0 or 18 mg/kg/day for 14 days via gavage (Hallgren et 

al. 2001).  In pentaBDE-exposed animals, hepatic vitamin A levels were significantly decreased by 

24 and 26% in rats in the 18 and 36 mg/kg/day groups, respectively, and 22% in mice in the 

36 mg/kg/day group.  No changes in hepatic vitamin A levels were observed in mice exposed to penta- or 

tetraBDE at 18 mg/kg/day. 

DecaBDE: Unlike the lower-brominated PBDEs, there is no evidence of hepatic toxicity following acute 

exposure to decaBDE.  Exposure to decaBDE at doses up to 1,000 mg/kg/day for 7 or 14 days via gavage 

did not produce liver damage, as indicated by liver histology or clinical chemistry, nor did it produce 

increased liver weight or hepatic enzyme induction in female rats (Bruchajzer et al. 2010).  Carlson 

(1980b) observed no changes in serum SDH activity in rats exposed to decaBDE at 95.9 mg/kg/day for 

14 days via gavage; significantly elevated liver weights were found, but in the absence of hepatic enzyme 

induction.  In a shorter-duration study, exposure to decaBDE at doses up to 100 mg/kg/day for 4 days via 

gavage did not cause changes in liver weight or hepatic enzyme induction in female rats; clinical 

chemistry and histology were not examined (Zhou et al. 2001).  
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Sakamoto et al. (2013) evaluated both liver weight and hepatocyte proliferation in female rats following 

exposure to decaBDE at 980 mg/kg/day for 1 week.  Consistent with other studies, no exposure-related 

findings in absolute or relative liver weight were observed.  Additionally, no exposure-related changes in 

hepatocyte proliferation were observed, as evaluated by labeling indices of proliferating cell nuclear 

antigen (PCNA) in paraffin-embedded liver sections. 

Intermediate-Duration Animal Studies 

Lower-brominated PBDEs:  Histopathological effects in the liver have been consistently observed in 

animals exposed to lower-brominated PBDEs for 15–90 days at doses as low as 2 mg/kg/day. 

Hepatocytomegaly (hepatocyte hypertrophy) was observed in rats exposed to dietary pentaBDE at doses 

≥2 mg/kg/day (lowest dose tested) for 13 weeks (WIL Research Laboratories 1984).  The 

hepatocytomegaly was dose-related with respect to severity (some affected hepatocytes at higher doses 

had vacuoles that likely contained lipid) and was not completely reversible, as it was still evident in 

≥10 mg/kg/day males and 100 mg/kg/day females at 24 weeks postexposure in lessened severity and 

incidence.  Females exposed to 2 or 100 mg/kg/day pentaBDE for 90 days also had an increased 

incidence of degeneration and necrosis of individual liver parenchymal cells at 24 weeks postexposure; 

the investigators concluded that this may represent the final loss of previously damaged cells and 

probably should be considered compound-related (WIL Research Laboratories 1984).  Similarly, dietary 

exposure to octaBDE at 0, 100, 1,000, or 10,000 ppm (0, 5, 50, or 600 mg/kg/day in males and 0, 7, 70, or 

750 mg/kg/day in females) for 13 weeks caused liver lesions in 40% of males at 5 mg/kg/day and 100% 

of both sexes at ≥50–70 mg/kg/day (IRDC 1977).  The lesions were dose-related in severity as well as 

incidence and characterized by cytomegaly, change in hepatocytic cytoplasm to a finely granular, 

homogeneous type, and cytoplasmic vacuolation.  At 600–750 mg/kg/day, many of the livers had 

vacuolation of centrolobular hepatocytes and some had hepatocyte necrosis.  Examinations performed at 

8 weeks and 6 months postexposure showed that the liver effects persisted in the rats exposed to ≥50– 

70 mg/kg/day for 13 weeks (IRDC 1977). 

Hepatocellular hypertrophy was also observed in rats exposed to dietary penta- or octaBDE at 

≥9 mg/kg/day for 28 days (IRDC 1976), in rats exposed to pentaBDE at ≥3 mg/kg/day for 15–28 days via 

gavage (Becker et al. 2012; Fattore et al. 2001; Oberg et al. 2010), and in rats exposed to tetraBDE at 

150 mg/kg/day via gavage for 12 weeks (only dose tested) (Zhang et al. 2015a, 2015b).  No 

histopathological changes were observed in mice exposed to tetraBDE at 1 mg/kg/day via gavage for 
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6 weeks (only dose tested) (McIntyre et al. 2015). In another gavage study, rats were exposed to 

pentaBDE at doses of 0, 0.27, 0.82, 2.47, 7.4, 22.2, 66.7, or 200 mg/kg/day for 28 days (Van der ven et al. 

2008b).  The study authors reported centrilobular hypertrophy and an increased ratio of binucleated 

hepatocytes; however, the incidence data and dose(s) at which effects were observed were not reported 

(Van der ven et al. 2008b).  Van der ven et al. (2008b) also reported a near-significant 5-fold increase in 

the number of apoptotic cells in males exposed to 200 mg/kg/day (p=0.067).  Rats exposed to pentaBDE 

at 200 mg/kg/day for 21or 28 days via gavage showed “minor lesions” in the liver, but no further 

information regarding the type or incidence of the lesion was reported (Bruchajzer et al. 2010).  In mice, 

exposure to dietary tetraBDE at 0.45 mg/kg/day for 28 days induced hepatocyte vacuolation, pyknotic 

nuclei in the hepatocytes, and periportal lymphocytic infiltration; no lesions were observed in control 

animals (Maranghi et al. 2013).  

In rats exposed to pentaBDE via gavage for 70 days prior to mating until PND 42, significantly increased 

incidences of hepatocellular hypertrophy were observed in F0 males at ≥5 mg/kg/day and F0 females and 

F1 offspring at 25 mg/kg/day; no exposure-related effects were observed at 0.5 mg/kg/day (Bondy et al. 

2013).  Similarly, all F1 rats exposed to pentaBDE at 50 mg/kg/day from GD 6 to PNW 16 via gavage 

showed hepatocellular hypertrophy characterized by enlarged hepatocytes with an increased amount of 

cytoplasm, enlarged nuclei, and pale eosinophilic and granular cytoplasm.  Hepatocyte vacuolization was 

also significantly increased in exposed F1 males, but not F1 females (Dunnick et al. 2012).  

No exposure-related changes were observed in serum chemistry markers (ALT, AST, ALP, LDH, 

cholesterol, triglycerides, albumin, globulin) in rats exposed to dietary pentaBDE at doses up to 

100 mg/kg/day for 13 weeks (WIL Research Laboratories 1984), octaBDE at doses up to 750 mg/kg/day 

for 90 days (IRDC 1977), or a penta-decaBDE mixture (52.1% pentaBDE, 44.2% decaBDE, 0.4% 

octaBDE) at 20 mg/kg/day for 70 days (Ernest et al. 2012).  Similarly, no exposure-related changes were 

observed in serum ALP, ALT, AST, or gamma-glutamyl transferase (GGT) following exposure to 

pentaBDE at low doses up to 0.015 mg/kg/day via gavage for 90 days (Daubie et al. 2011).  Marginal 

changes (<2-fold) were observed in shorter-duration rat gavage studies with higher doses.  A statistically 

significant 51% increase in serum ALT level was observed in male rats exposed to pentaBDE at 

250 mg/kg/day via gavage for 28 days; no changes were observed in males at 2.5 or 25 mg/kg/day or 

females at any dose (Oberg et al. 2010).  No exposure-related changes were observed in serum ALP 

(Oberg et al. 2010).  Similarly, in female rats exposed to pentaBDE at 200 mg/kg/day via gavage for 21 or 

28 days, serum ALT levels were increased to 190% of control values at 21 or 28 days and serum AST 

levels were increased to 185% of control values at 28 days; no changes were observed at ≤40 mg/kg/day 
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(Bruchajzer et al. 2010). Increases in serum cholesterol, total protein, and ALT and decreases in the 

albumin/globulin ratio were observed in rats exposed to pentaBDE at 250 mg/kg/day, but the magnitudes 

of these effects were not reported (Fattore et al. 2001). In another gavage study, rats were exposed to 

pentaBDE at doses of 0, 0.27, 0.82, 2.47, 7.4, 22.2, 66.7, or 200 mg/kg/day for 28 days (Van der ven et al. 

2008b).  The study authors reported a dose-related increase in serum ALT in male rats (maximal increase 

of 148.1%); however, the lowest dose at which the effect was observed was not reported.  Instead, results 

were reported in terms of BMD analysis (BMD/BMDLRD10%=61.4/15.5 mg/kg/day).  No changes in 

serum ALT were observed in female rats, and no changes in serum ALP were observed in either sex, 

although the authors noted procedural problems with their ALP assay (Van der ven et al. 2008b).  The 

study authors reported dose-related increases in serum cholesterol in male and female rats (maximal 

increases in males and females were 257 and 144%, respectively). Again, the lowest dose at which the 

effect was observed was not reported (BMD/BMDLRD10%=15.4/8.4 mg/kg/day in males and 

22.4/11.6 mg/kg/day in females) (Van der ven et al. 2008b). In mice, serum ALT levels were 

significantly elevated by approximately 2-fold in males exposed to tetraBDE at gavage doses of 

150 mg/kg/day for 12 weeks, compared with control (only dose tested); no other serum biochemistry 

endpoints were evaluated (Zhang et al. 2015a, 2015b). 

Significant changes in hepatic oxidative stress parameters were observed in rats following exposure to 

pentaBDE at doses ≥8 mg/kg/day via gavage for 21 or 28 days, including increased hepatic GSH and 

MDA levels (Bruchajzer et al. 2010).  Oxidative stress markers were also significantly altered in the livers 

of rat offspring following exposure to pentaBDE from GD 6 to PND 21, including significantly increased 

activities of catalase (CAT) activity at ≥1 mg/kg/day and SOD at 2 mg/kg/day (Blanco et al. 2014).  There 

was no change in total levels of thiobarbituric acid reactive substances (TBARS) in offspring (Blanco et 

al. 2014).  In mice, exposure to diBDE at 1.2 mg/kg/day via gavage for 28 days caused significantly 

decreased levels of GSH, decreased activities of SOD and glutathione peroxidase (GPx), and increased 

levels of MDA in the liver (Zhang et al. 2014).  

Female rats were examined for hepatic porphyria following exposure to pentaBDE or octaBDE at doses 

of 0, 2, 8, 40, or 200 mg/kg/day via gavage for 21 or 28 days (Bruchajzer 2011; Bruchajzer et al. 2012).  

PentaBDE caused significant dose-related elevations in total porphyrin levels in the liver following 

exposure to ≥8 mg/kg/day for 21 days (~3–8-fold) or 28 days (~3–19-fold), compared to vehicle controls 

(Bruchajzer 2011), OctaBDE cause significant elevations in liver concentrations of high carboxylated 

porphyrins (octa- and hepta-) following exposure to ≥8 mg/kg/day for 21 days (~2–3-fold) or 2 or 

8 mg/kg/day for 28 days (~3–4-fold) (Bruchajzer et al. 2012).  At 28 days, high carboxylated porphyrin 
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levels in the 40 and 200 mg/kg/day groups were not were not significantly elevated compared to the 

vehicle control.  However, the vehicle controls at this duration had an unusually high hepatic porphyrin 

levels (4-fold increase compared with untreated control).  When compared with the untreated controls, 

porphyrin levels were significantly increased by ~10-, 14-, 4-, and 5-fold in the 2, 8, 40, and 

200 mg/kg/day groups, respectively.  Lower carboxylated porphyrins were <1% of total liver porphyrins 

measured, and were not further analyzed.  These studies also measured ALA-S and ALA-D activity, two 

enzymes involved in heme biosynthesis. The results were mixed.  PentaBDE exposure caused a 

significant elevation in ALA-S activity at ≥8 mg/kg/day after 21 days and at ≥2 mg/kg/day after 28 days, 

while octaBDE exposure caused a significant decrease in ALA-S activity at 200 mg/kg/day after 21 days 

and at ≥40 mg/kg/day after 28 days.  ALA-D activity was also significantly decreased in rats exposed to 

octaBDE at ≥40 mg/kg/day for 21 or 28 days (ALA-D activity was not assessed in pentaBDE-exposed 

rats) (Bruchajzer 2011; Bruchajzer et al. 2012).  Hepatic porphyria was also observed in rats after 

exposure to dietary pentaBDE for 90 days (WIL Research Laboratories 1984).  Liver porphyrins were 

significantly elevated by 8.5- and 390-fold in males and females from the 100 mg/kg/day group, 

respectively, and 3-fold in females from the 20 mg/kg/day group; no significant changes were observed in 

the 2 mg/kg/day group (WIL Research Laboratories 1984).  

Elevated liver weights have been reported following intermediate-duration exposure to penta-, octa-, 

tetra-, or diBDE in several animal studies.  Significantly increased liver weights were reported in rats and 

mice exposed to penta-, di-, or tetraBDE via gavage at ≥1.2, ≥50, and 150 mg/kg/day, respectively, for 

15–84 days (Becker et al. 2014; Bruchajzer et al. 2010; Fattore et al. 2001; Mercado-Feliciano and Bigsby 

2008a; Oberg et al. 2010; Stoker et al. 2004, 2005; Van der Ven et al. 2008b; Zhang et al. 2014, 2015a, 

2015b).  No exposure-related changes in liver weight were observed in mice exposed to tetraBDE at 

1 mg/kg/day via gavage for 6 weeks (only dose tested) (McIntyre et al. 2015). In dietary studies, 

significantly increased liver weights were reported in rats exposed to penta- or octaBDE at ≥5 mg/kg/day 

for 28–90 days (IRDC 1976, 1977; WIL Research Laboratories 1984) or a penta-decaBDE mixture 

(52.1% pentaBDE, 44.2% decaBDE, 0.4% octaBDE) at 20 mg/kg/day for 70 days (Ernest et al. 2012).  In 

mink exposed to dietary pentaBDE at 0, 0.08, 0.63, or 0.78 mg/kg/day for 90 days, increased absolute 

liver weight was observed at 0.78 mg/kg/day and increased relative liver weight was observed at 

≥0.08 mg/kg/day; however, these findings are confounded by significant body weight loss at 

≥0.63 mg/kg/day (Martin et al. 2007).  No exposure-related changes in liver weight were observed in 

mice exposed to dietary tetraBDE at 0.45 mg/kg/day for 28 days (Maranghi et al. 2013).  
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In studies that evaluated hepatic enzyme induction (e.g., elevated EROD, MROD, PROD, and UDPGT 

activity), significantly increased enzyme activities were observed in rats, mice, and mink at doses of ≥2.5, 

≥50, and ≥0.08 mg/kg/day, respectively, and were always observed at doses at or below the dose causing 

elevated liver weights in the same study (Bruchajzer et al. 2010; Ernest et al. 2012; Fattore et al. 2001; 

Martin et al. 2007; Mercado-Feliciano and Bigsby 2008a; Oberg et al. 2010; Stoker et al. 2004).  

Additionally, microsomal enzyme activity was induced in rats exposed by gavage to doses as low as 

0.6 mg/kg/day of octaBDE and 0.4 mg/kg/day of pentaBDE for 90 days as indicated by increases in 

O-ethyl O-p-nitrophenyl phenylphosphonothioate (EPN) detoxification, p-nitroanisole demethylation, and 

cytochrome c reductase and cytochrome P-450 levels (Carlson 1980a).  Some of these changes were 

persistent, lasting for 30–60 days after cessation of treatment. 

Maternal and pup liver weights were significantly elevated in rats exposed to pentaBDE from GD 1 or 

GD 6 to PND 21 via gavage or dosed cookies at 30 and ≥3 mg/kg/day, respectively (Bowers et al. 2015; 

Ellis-Hutchings et al. 2006; Zhou et al. 2002).  In mice, elevated maternal liver weights were observed in 

dams exposed to 452 mg/kg/day of the pentaBDE congener BDE 99, but not the pentaBDE commercial 

mixture Bromkal 70-5DE, from GD 6 to PND 17 via gavage (Skarman et al. 2005).  Elevated liver 

weights were not observed in mouse pups (Skarman et al. 2005).  In a one-generation study in rats (pre

mating day 70 to PND 42), F0 males and F1 offspring showed significantly increased liver weights on 

PND 43 following exposure to 25 and ≥5 mg/kg/day via gavage (Bondy et al. 2011, 2013).  In other one-

generation studies, no changes were observed in maternal or pup liver weight in rats exposed to 

pentaBDE-dose vanilla wafers at doses up to 11.4 mg/kg/day from pre-mating day 28 to PND 21 (Poon et 

al. 2011) or adult F1 liver weight in rats exposed to pentaBDE at 50 mg/kg/day from GD 6 to PNW 16 

via gavage (Dunnick et al. 2012).  In mink, exposure to dietary pentaBDE from 4 weeks premating until 

PNW 6 or 33 led to elevated liver weights in sows at 0.31 mg/kg/day (highest dose tested) and F1 

offspring at 0.06 mg/kg/day (Zhang et al. 2009).  In the studies that evaluated hepatic enzyme levels 

(e.g., EROD, PROD, UDPGT), significantly increased enzyme activities were always observed at doses 

at or below the dose causing elevated liver weights in the same study, with significant changes observed 

in F0 and F1 rats at ≥0.3 mg/kg/day, F0 and F1 mice at 450 mg/kg/day, and F0 and F1 mink at ≥0.06 and 

0.01 mg/kg/day, respectively (Bowers et al. 2015; Skarman et al. 2005; Zhang et al. 2009; Zhou et al. 

2002).  Additionally, significant induction of hepatic enzymes was observed in male rat pups following 

exposure to pentaBDE at ≥1.7 mg/kg/day from GD 6 to PND 21 via gavage (Szabo et al. 2009). 

Szabo et al. (2009) also evaluated genomic changes in F1 rats following exposure to pentaBDE at 0, 1.7, 

10.2, or 30.6 mg/kg/day from GD 6 to PND 4 or 21 via gavage.  Significant dose-related increases were 
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observed in hepatic mRNA expression levels of phase I enzymes (Cyp1a1, Cyp2b1, Cyp2b2, Cyp3a1), 

phase II enzymes (Ugt1a6, Ugt1a7, Ugt2b, Sult1b1), phase III influx transporters (Oatp1a4), phase II 

efflux transporters (Mdr1, Mrp2, Mrp3), the serum binding protein transthyretin (Ttr), and deiodinase 1 

(d1) during exposure (PND 4 and 21); the majority of which no longer differed from control at PND 60.  

Genomic changes were also evaluated in F1 rats following exposure to pentaBDE at 0, 1, or 2 mg/kg/day 

via gavage (Blanco et al. 2014).  Various cytochrome isoforms were evaluated, but mRNA levels were 

only significantly elevated for CYP2B1 in pup liver tissue from the 2 mg/kg/day group.  Additionally, 

significant changes were observed in the thyroid hormone receptor, including decreased TRα1 mRNA in 

both dose groups, decreased TRβ1 mRNA at 2 mg/kg/day, and decreased TRα1 protein levels at 

2 mg/kg/day.  Cylcin D1 protein expression was significantly decreased in both groups and the 

phosphorylation levels of Akt and GSK3β were significantly decreased at 2 mg/kg/day. 

To determine if PBDE exposure alters vitamin A homeostasis in a manner similar to the related PBBs 

(ATSDR 2004), hepatic vitamin A levels were measured in rats following exposure to pentaBDE at 0, 

2.5, 25, or 250 mg/kg/day via gavage for 28 days (Oberg et al. 2010).  Hepatic liver vitamin A content 

was significantly decreased in females at 25 mg/kg/day and males and females at 250 mg/kg/day by up to 

36 and 47%, respectively (Oberg et al. 2010).  Hepatic vitamin A levels were also significantly decreased 

by 13% in dams and 50% in F1 pups on PND 18 in rats exposed to pentaBDE at 0 or 18 mg/kg/day from 

GD 6 to PND 18 via gavage (Ellis-Hutchings et al. 2006).  Additional pup sacrifices on PNDs 12 and 31 

showed significant 59 and 25% decreases in hepatic vitamin A level, respectively (Ellis-Hutchings et al. 

2006).  

DecaBDE:  Moderate hepatocellular hypertrophy was observed in all mice exposed to dietary decaBDE at 

9,400 mg/kg/day for 28 days, but in none of the controls (Sakamoto et al. 2013).  Similarly, slight 

centrilobular hypertrophy was “occasionally” observed in rats exposed to decaBDE at doses ranging from 

1.87 to 60 mg/kg/day for 28 days via gavage, which was most obvious in “some” of the 60 mg/kg/day 

males (incidence data not reported) (Van der ven et al. 2008a). In an older study using an impure 

decaBDE compound (77% purity), centrilobular cytoplasmic enlargement and vacuolation were observed 

in male rats exposed to dietary doses of 800 mg/kg/day for 30 days (incidences not reported); no changes 

were observed at 8 or 80 mg/kg/day (Norris et al. 1973, 1975a).  However, no exposure-related changes 

in liver histology were observed in rats and mice exposed to dietary decaBDE at estimated doses as high 

as 2,000–8,000 and 2,375–9,500 mg/kg/day for 13 weeks, respectively (NTP 1986), or in rats exposed to 

gavage doses up to 1,000 mg/kg/day for 21 or 28 days (Bruchajzer et al. 2010).  
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Pregnant dams and developing rats and mice appear to be more susceptible to liver damage following 

exposure to decaBDE than adult animals.  Hepatocyte degeneration and eosinophil changes were 

observed in the livers of rat dams exposed to decaBDE at 300 mg/kg/day for 21 days prior to mating, 

through mating, gestation, and lactation (PND 21) (Liu et al. 2012).  Compared with control, the exposed 

group had significantly increased “histological scores;” however, the method of histological scoring and 

incidences of lesions were not reported (Liu et al. 2012).  Following exposure to dietary decaBDE from 

GD 10 to PND 21, male and female rat pups showed significantly increased incidence of follicular cell 

hypertrophy in the liver at ≥2 and 146 mg/kg/day, respectively (Fujimoto et al. 2011).  These findings 

were transient, as they were no longer evident in male and female offspring evaluated at PNW 11 

(Fujimoto et al. 2011).  Male offspring from mouse dams exposed to decaBDE from GD 0 to 17 via 

gavage showed dose-related histopathological changes in the liver on PND 71 at doses ≥10 mg/kg/day 

(lowest dose tested) (Tseng et al. 2008).  Histological changes observed in exposed groups included acute 

cell swelling of hepatocytes associated with pressure occlusion of hepatic sinusoids (Tseng et al. 2008).  

Young male rats exposed to decaBDE at doses of 0, 100, 300, or 600 mg/kg/day from PND 10 to 42 via 

gavage showed fatty degeneration at ≥300 mg/kg/day (incidence data were not reported) (Lee et al. 2010). 

Wang et al. (2010) found no exposure-related changes in serum ALT, AST, or ALP in male rats following 

gavage exposure to decaBDE at 100 mg/kg/day for 90 days, but serum total cholesterol, high density 

lipid-cholesterol, and total bile acid levels were significantly increased by 23, 26, and 98%, respectively.  

No biologically relevant, exposure-related changes were observed in either serum ALT or AST, or total 

cholesterol or triglyceride levels, in rats exposed to decaBDE at doses up to 1,000 mg/kg/day for 21– 

56 days (Bruchazjer et al. 2010; Van der ven et al. 2008a; Zhang et al. 2013a). 

No exposure-related changes were observed in hepatic markers of oxidative stress (GSH, MDA) in 

female rats exposed to decaBDE up to doses of 1,000 mg/kg/day for 21 or 28 days (Bruchazjer et al. 

2010). 

Significantly elevated liver weights were observed in male rats after exposure to decaBDE at 

≥1 mg/kg/day for 8 weeks via gavage (Zhang et al. 2013a) and male mice after exposure to dietary 

decaBDE at 9,400 mg/kg/day for 28 days (Sakamoto et al. 2013).  However, no exposure-related changes 

in liver weight were observed in rats exposed to decaBDE up to doses of 1,000 mg/kg/day via gavage for 

21–90 days (Bruchazjer et al. 2010; Van der ven et al. 2008a; Wang et al. 2010, 2011b).  In an older study 

using an impure decaBDE compound (77% purity), increased liver weights were observed at dietary 

doses ≥80 mg/kg/day in male rats exposed for 30 days (Norris et al. 1973, 1975a).  Following exposure to 
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dietary decaBDE from GD 10 to PND 21, male and female rat pups showed significantly increased liver 

weights at ≥2 and 146 mg/kg/day, respectively (Fujimoto et al. 2011).  These findings were transient, as 

they were no longer evident in male and female offspring evaluated at PNW 11 (Fujimoto et al. 2011). 

No liver weight changes were observed in dams or PND 71 male offspring exposed to decaBDE from 

GD 0 to 17 via gavage at doses up to 1,500 mg/kg/day (Tseng et al. 2008).  Young male rats exposed to 

decaBDE at doses of 0, 100, 300, or 600 mg/kg/day from PND 10 to 42 via gavage showed elevated liver 

weights at ≥300 mg/kg/day (Lee et al. 2010). 

Hepatic enzyme induction (e.g., EROD, PRO activity, CYP protein levels) was significantly elevated in a 

dose-related manner in adult male and female rats exposed to decaBDE at 1.87–60 mg/kg/day for 28 days 

via gavage (Van der ven et al. 2008a) and young male rats exposed to decaBDE at 100–600 mg/kg/day 

from PND 10 to 42 via gavage (Lee et al. 2010).  EROD activity was also significantly elevated in 

PND 71 male mice exposed to 1,500 mg/kg/day during gestation (Tseng et al. 2008).  However, no 

exposure-related changes were observed in hepatic enzyme induction in female rats exposed to decaBDE 

up to doses of 1,000 mg/kg/day for 21 or 28 days (Bruchazjer et al. 2010). Genomic analyses of liver 

tissue reported elevated mRNA levels of CYP proteins in male mice exposed to dietary decaBDE at 

9,400 mg/kg/day for 28 days (Sakamoto et al. 2013) and a dose-dependent elevation of Cyp2b2 mRNA in 

male rats exposed to decaBDE at doses of 1.87–60 mg/kg/day for 28 days via gavage (Van der ven et al. 

2008a). 

To determine if PBDE exposure alters vitamin A homeostasis in a manner similar to the related PBBs 

(ATSDR 2004), hepatic vitamin A levels were measured in rats following exposure to decaBDE at 0, 

1.87, 3.75, 7.5, 15, 30, or 60 mg/kg/day for 28 days via gavage (Van der ven et al. 2008a).  In females, 

but not males, hepatic vitamin A levels were increased in a dose-dependent manner by up to 14.6%, 

compared with controls; however, the lowest dose at which the effect was observed was not reported. 

The study authors conclude that the relevance of the effect is uncertain due to high variation in the data, 

as evidenced by a high BMD/BMDL ratio (BMD/BMDLRD10% =13.8/1.2 mg/kg/day). 

Chronic-Duration Animal Studies 

Lower-brominated PBDEs:  No chronic-duration studies analyzing hepatic effects were located for lower

brominated PBDEs. 
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DecaBDE:  In chronic studies, exposure to 94–97% decaBDE for 103 weeks caused liver lesions that 

included neoplastic nodules in rats at ≥1,120 mg/kg/day, thrombosis and degeneration in rats at 

2,240 mg/kg/day, and centrilobular hypertrophy and granulomas in mice at ≥3,200 mg/kg/day (NTP 

1986).  The thrombosis in the rats was characterized by a near total occlusion of a major hepatic blood 

vessel by a dense fibrin coagulum.  A NOAEL was not identified in the rats or mice.  The only other 

chronic study of decaBDE found that exposure to 1 mg/kg/day of a 77% pure mixture for 2 years caused 

no liver effects in rats; higher doses were not tested, precluding identification of a LOAEL (Kociba et al. 

1975; Norris et al. 1975a). 

Summary. No studies are available on hepatic effects of PBDEs in humans.  Based on the evidence in 

animals, including enzyme induction, liver enlargement, histological lesions, hepatic porphyria, and 

markers of hepatic oxidative stress, PBDEs are potentially hepatotoxic in humans, especially lower

brominated PBDEs. 

Renal Effects. Only one study was located that provides information on renal effects in humans 

following exposure to PBDEs.  A pilot study measured serum creatinine and urinary β2-microglobulin, as 

indices of renal function, in 40 Chinese residents exposed to PBDEs in an electronic waste dismantling 

area (Xu et al. 2015a).  Mean ΣPBDEs in serum from exposed subjects was almost twice that in a control 

group, but the difference was not statistically significant.  The results showed that neither serum 

creatinine nor β2-microglobulin were correlated with PBDEs.  However, congener analyses showed that 

BDE 28, BDE 47, BDE 85, and BDE 153 were positively correlated with urinary levels of 

β2-microglobulin, and that BDE 28 and BDE 85 were positively correlated with serum creatinine levels. 

PCBs also played a role in the findings reported. 

Acute-Duration Animal Studies 

Lower-brominated PBDEs:  Two studies examined renal effects in male rats 45 days after a single gavage 

administration of pentaBDE at doses of 0, 0.06, or 1.2 mg/kg (Albina et al. 2010; Alonso et al. 2010).  In 

urine, a 4-fold increase in total protein levels was observed at 1.2 mg/kg (Alonso et al. 2010).  Although 

this might suggest possible tubular damage, histopathological examination of the kidneys found no 

abnormalities other than a dose-related increase in phagolysosomes (incidence data not reported) (Albina 

et al. 2010).  No other changes were observed in urinalysis or serum chemistry parameters (urea, 

creatinine, uric acid) (Alonso et al. 2010). Altered oxidative stress markers were found in the kidney after 
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exposure to 1.2 mg/kg/day, including significantly decreased CAT activity and increased GSSG and 

GSSG/GSH ratio (Albina et al. 2010). 

No exposure-related changes in kidney weight were observed in male rats exposed to pentaBDE at doses 

up to 240 mg/kg/day for 9 days via gavage (Stoker et al. 2005) or female mice exposed to tetraBDE at 

doses up to 100 mg/kg/day for 4 days via gavage (Richardson et al. 2008).  

DecaBDE:  No acute-duration studies analyzing renal effects were located for decaBDE. 

Intermediate-Duration Animal Studies 

Lower-brominated PBDEs:  Renal effects induced by dietary octaBDE included non-inflammatory 

kidney changes in male rats exposed to 600 mg/kg/day for 13 weeks, but not females exposed to doses up 

to 750 mg/kg/day (IRDC 1977).  The incidence and severity of the kidney lesions (tubule regeneration, 

intratubular casts, and cellular debris occurred in most 600 mg/kg/day males) suggested a compound-

related effect (IRDC 1977).  However, no histopathological lesions of the kidney were observed in male 

or female rats exposed to pentaBDE at doses up to 250 mg/kg/day for 28 days via gavage (Oberg et al. 

2010; Van der ven et al. 2008b), dietary penta- or octaBDE at doses up to 90 mg/kg/day for 28 days 

(IRDC 1976), or dietary pentaBDE doses up to 100 mg/kg/day for 90 days (WIL Research Laboratories 

1984).  Additionally, no histopathological kidney lesions were observed in F0 or F1 rats exposed to 

pentaBDE at doses up to 25 mg/kg/day from pre-mating through PND 42 (Bondy et al. 2013). 

Statistically significant changes in blood urea and urea nitrogen levels were reported in some 

intermediate-duration studies; however, none of the changes were considered biologically relevant due to 

the small magnitude of change (<2-fold) compared with control.  Following exposure to pentaBDE at 0, 

2.5, 25, or 250 mg/kg/day via gavage for 28 days, blood urea levels in male rats from the 25 or 

250 mg/kg/day groups were significantly increased by 1.5- and 1.2-fold, respectively; no changes were 

observed in blood urea levels in females or blood creatinine in either sex (Oberg et al. 2010). In another 

28-day study, rats were exposed to pentaBDE at 0, 0.27, 0.82, 2.47, 7.4, 22.2, 66.7, or 200 mg/kg/day via 

gavage (Van der ven et al. 2008b).  Study authors reported dose-related increases in blood urea levels in 

male and female rats (maximal increases in males and females were 61.2 and 33.1%, respectively); 

however, the lowest dose at which the effect was observed was not reported.  Instead, results were 

reported in terms of BMD analysis (BMD/BMDLRD10%=64.2/30.2 mg/kg/day in males and 

65.1/22.2 mg/kg/day in females) (Van der ven et al. 2008b). Again, no changes in serum creatinine were 
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reported in either sex at doses up to 200 mg/kg/day (Van der ven et al. 2008b).  Blood urea nitrogen 

(BUN) levels were elevated by 35% in male rats and 59% in female rats exposed to dietary octaBDE for 

13 weeks at 600 and 750 mg/kg/day, respectively (IRDC 1977).  No changes in BUN levels were 

observed in male or female rats exposed to dietary pentaBDE doses up to 100 mg/kg/day for 90 days 

(WIL Research Laboratories 1984). 

Kidney weight changes following intermediate-duration exposure are inconsistent.  A significant 10% 

decrease in relative kidney weight was observed in mice exposed to diBDE at 1.2 mg/kg/day for 28 days 

via gavage (Zhang et al. 2014).  Absolute organ weights were not reported; however, no body weight 

effects were observed.  In contrast, no change in kidney weight was reported in rats following exposure to 

pentaBDE at gavage doses up to 120 mg/kg/day for 20–90 days (Daubie et al. 2011; Stoker et al. 2004, 

2005) or dietary penta- or octaBDE at doses up to 750 mg/kg/day for 28–90 days (IRDC 1976, 1977; 

WIL Research Laboratories 1984).  Similarly, no change in F0 or F1 kidney weight was observed in rats 

exposed to pentaBDE at doses up to 25 mg/kg/day via gavage from 70 days prior to mating through 

PND 42 (Bondy et al. 2013) or mink exposed to dietary pentaBDE at doses up to 0.31 mg/kg/day from 

4 weeks prior to mating to PNW 6 or 33 (Zhang et al. 2009).  In other studies, significantly increased 

kidney weights have been reported, including a dose-related increase in absolute liver weight in rats 

exposed to pentaBDE doses up to 200 mg/kg/day for 28 days via gavage (dose at which effect was first 

observed was not reported; maximum increase of 11.5% in males and 15.6% in females) (Van der ven et 

al. 2008b), a significant 15% increase in relative, but not absolute, kidney weight following exposure to 

pentaBDE at 250 mg/kg/day for 28 days via gavage (Oberg et al. 2010), and a significant 18% increase in 

relative kidney weight following exposure to a dietary penta-decaBDE mixture (52.1% pentaBDE, 44.2% 

decaBDE, 0.4% octaBDE) at 20 mg/kg/day for 70 days (absolute kidney weight not reported) (Ernest et 

al. 2012). 

To determine if PBDE exposure alters vitamin A homeostasis in rats in a manner similar to the related 

PBBs (ATSDR 2004), vitamin A levels were measured in kidney tissue following exposure to pentaBDE 

at 0, 2.5, 25, or 250 mg/kg/day via gavage (Oberg et al. 2010). No significant changes in kidney vitamin 

A levels were observed at any dose. 

DecaBDE:  No renal histopathological changes were observed in rats or mice exposed to dietary 

decaBDE at doses up to 8,000 or 9,500 mg/kg/day, respectively, for 13 weeks (NTP 1986).  A 28-day 

study that evaluated histology of “major organs” did not report any exposure-related kidney effects in rats 

exposed to decaBDE at doses up to 60 mg/kg/day via gavage (Van der ven et al. 2008a).  Studies of low 
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purity (≈77%) commercial decaBDE mixtures found kidney pathology (hyaline degenerative cytoplasmic 

changes) in male rats exposed to dietary levels of 800 mg/kg/day for 30 days (Norris et al. 1973,1975a), 

but not in rats exposed to ≤90 mg/kg/day for 28–30 days (IRDC 1976; Norris et al. 1973, 1975a).  

Interpretation of this finding is complicated by the fact that hyaline degenerative cytoplasmic changes are 

not uncommon in adult male rats and might be induced by a mechanism specific to certain aged male rats. 

No exposure-related changes were observed in serum urea or creatinine levels in rats exposed to 

decaBDE at doses up to 100 mg/kg/day for 28–90 days via gavage (Van der ven et al. 2008a; Wang et al. 

2010).  Additionally, no exposure-related changes were observed in kidney weights in rats exposed to 

decaBDE at doses up to 600 mg/kg/day for 28–90 days via gavage (Lee et al. 2010; Van der ven et al. 

2008a; Wang et al. 2010, 2011b; Zhang et al. 2013b), F0 or F1 mice exposed to decaBDE at doses up to 

1,500 mg/kg/day from GD 0 to 17 via gavage (Tseng et al. 2008), or dietary decaBDE at doses up to 

800 mg/kg/day for 28–30 days (IRDC 1976; Norris et al. 1973, 1975a). 

Chronic-Duration Animal Studies 

Lower-brominated PBDEs:  No chronic-duration studies analyzing renal effects were located for lower

brominated PBDEs. 

DecaBDE:  No renal histopathological changes were observed in rats or mice exposed to dietary 

decaBDE at doses up to 2,550 or 7,780 mg/kg/day, respectively, for 2 years (NTP 1986).  The only other 

chronic study of decaBDE found that exposure to dietary doses up to 1 mg/kg/day of the 77% pure 

mixture for 2 years caused no exposure-related changes in kidney histology or weight in rats (Kociba et 

al. 1975; Norris et al. 1975a).  

Summary. No studies are available on hepatic effects of PBDEs in humans.  While there is limited 

evidence from animal studies that lower-brominated PBDEs can cause kidney damage at high exposure 

levels, data are inconsistent and there is no evidence of impaired renal function.  Animal studies do not 

indicate that decaBDE causes renal toxicity. Taken together, animals studies indicate that renal effects 

are not likely to occur in humans at environmentally-relevant exposure concentrations. 
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Endocrine Effects. 

Human Studies. Numerous studies have been performed to evaluate the relationship between 

concentrations of PBDE in body tissues and circulating hormone levels in human populations.  While 

these studies have demonstrated that PBDE can perturb the human endocrine system and affect hormone 

levels, the specific findings are not consistent across studies.  For example, even limiting the discussion to 

studies that evaluated both PBDE concentrations and thyroid hormone levels in serum samples collected 

only from adult men, studies have reported positive associations with T4 (Turyk et al. 2008), negative 

associations with T4 (Abdelouahab et al. 2011), and no association with T4 (Hagmar et al. 2001).  These 

studies also reported either negative association with T3 (Turyk et al. 2008) or no association with T3 

(Abdelouahab et al. 2011; Hagmar et al. 2001), and either negative association with TSH (Hagmar et al. 

2001; Turyk et al. 2008) or no association with TSH (Abdelouahab et al. 2011).  Populations in these 

studies were 308 adult male consumers of sport fish from U.S. Great Lakes with serum ∑PBDE ranging 

from 15.8 to 1,360 ng/g lipid (0.13–10.15 ng/g) with a median of 38.4 ng/g lipid (0.26 ng/g) (Turyk et al. 

2008), 48 adult men recruited through an infertility clinic in Quebec with median serum ∑PBDE of 

0.302 ng/mL and maximum of 2.250 ng/mL (Abdelouahab et al. 2011), and 110 adult men from Latvia 

and Sweden having varying consumption of Baltic Sea fish with serum BDE 47 ranging from 0.10 ng/g 

lipid (10th percentile) to 5.16 ng/g lipid (90th percentile) and a median of 1.04 ng/g lipid (Hagmar et al. 

2001). 

Similarly, studies of serum PBDE and serum thyroid hormones in populations including adults of both 

sexes found: (1) a negative association with free T4 and no association with T4, T3, or TSH in 114 elderly 

residents of the upper Hudson River area of New York State (∑PBDE range of 0.04–9.80 µg/L and 

median of 0.19 µg/L in 48 women; range of 0.04–4.74 µg/L and median of 0.16 µg/L in 66 men) (Bloom 

et al. 2014); (2) a negative association with total T4 (BDE 47, BDE 99, and BDE 100) and a positive 

association with TSH (BDE 153 only), but no association with free T4 or total T3, in a longitudinal study 

of 51 healthy adult office workers from Boston with serum ∑PBDE geometric means ranging from 19 to 

23 ng/g lipid over 18 months (Makey et al. 2016); (3) no association with free or total T4, T3, or TSH in 

36 New York anglers living in counties adjacent to Lakes Erie or Ontario with median serum ∑PBDE of 

15 ng/g lipid and maximum of 2,303 ng/g lipid (Bloom et al. 2008); (4) a positive association with T3 (for 

BDE 47 only) and no association with free T4 or TSH in 623 Nunavik Inuits with geometric mean BDE 

47=2.16 and BDE 153=2.05 µg/kg lipid (Dallaire et al. 2009); (5) no association with T4, T3, or TSH in 

11 Swedish electronics recycling workers sampled repeatedly over 1.5 years (∑PBDE median=7.2 pmol/g 

lipid weight at start of employment and 9.7 pmol/g lipid weight at the conclusion of the study) (Julander 

http:153=2.05
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http:0.04�9.80
http:0.13�10.15
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et al. 2005); (6) a positive association with TSH in 23 Chinese e-waste workers (∑PBDE 

median=382 ng/g lipid with range of 77–8,452 ng/g lipid) versus 26 controls (∑PBDE median=158 ng/g 

lipid with range of 18–436 ng/g lipid) (Yuan et al. 2008); (7) a positive association with T4 (for BDE 126 

and BDE 205 only) and no association with free T4, T3, free T3, or TSH in another group of 239 Chinese 

e-waste workers (∑PBDE median=189.79 ng/g lipid with range of 0–6,016 ng/g lipid) and 93 farmers 

from the e-waste area (∑PBDE median=164.64 ng/g lipid with range of 0–8,600 ng/g lipid) versus 

116 controls (∑PBDE median=122.37 ng/g lipid with range of 0–1,398 ng/g lipid) (Wang et al. 2010); 

(8) a negative association with T3 (for BDE 17 and BDE 153 only) and no association with free T4 or 

TSH in 124 residents of northern China with serum ∑PBDE median=7.16 ng/g lipid with range of 2.09– 

160.3 ng/g lipid (Huang et al. 2014); (9) no associations between serum PBDEs or their methyoxylated or 

hydroxylated metabolites and thyroid hormones in 77 residents living near an e-waste recycling site in 

Vui Dau, Vietnam or 34 residents living in rural Doung Quang, Vietnam (median ∑PBDE serum 

concentrations of 290 and 230 pg/g wet weight, respectively) (Eguchi et al. 2015); and (10) no 

associations between serum PBDEs and thyroid hormones in 40 residents living near an e-waste recycling 

site in Luqiao, China or 15 residents living in rural Yunhe, China (median ∑PBDE serum concentrations 

of 51.61 and 66.45 ng/g, respectively) (Xu et al. 2015a).  Similar studies performed in children found: 

(1) a positive association with serum PBDE for serum TSH in 195 6–8-year-old children from an e-waste 

recycling area in China (∑PBDE mean=664.28 ng/g lipid) or 174 children from a control area (∑PBDE 

mean=375.81 ng/g lipid) (Han et al. 2011); (2) a negative association with serum PBDE for free T3 and a 

positive association with serum PBDE for TSH in 162 4–6-year-old children living in an e-waste area in 

China (serum ∑PBDE median=189.99 ng/g lipid) (Xu et al. 2014b); (3) no association between free and 

total T3 and T4, TSH, and serum PBDE in 21 8-year-old children from an e-waste recycling area in China 

(∑PBDE median=31.86 ng/g lipid) or 24 children from a control area (∑PBDE median=6.97 ng/g lipid) 

(Xu et al.2014a); (4) positive associations with T3 and free T4 (for BDE 99 only) and no association with 

T4 or TSH in 17 Dutch teenagers with serum ∑PBDE ranging from 4.9–22.1 ng/g lipid and a mean of 

10.5 ng/g lipid (Leijs et al. 2012); and (5) and negative or no association with free T3 (depending on type 

of analysis), positive or no association with TSH, and no association with free T4 in 515 Flemish 

teenagers with a median serum ∑PBDE of 7 ng/L and maximum of 125 ng/L (Kicinski et al. 2012). 

Oulhote et al. (2016) examined the potential association between PBDE exposure and hypothyroidism in 

Canadian women aged 30–79 years.  PBDE levels were not significantly different in women diagnosed 

with hypothyroidism (n=90; geometric mean serum ∑PBDE=15.4 ng/g lipid) compared with women 

without hypothyroidism (n=655; geometric mean serum ∑PBDE=20.5 ng/g lipid).  In a model adjusted 

for age, income, education, alcohol consumption, race/ethnicity, and history of breast-feeding, the 

http:median=6.97
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prevalence ratio of hypothyroidism was marginally increased by 1.7 per 10-fold increase in ∑PBDEs 

(95% CI 1.0, 3.0) or BDE 47 (95% CI 1.0, 2.9) and marginally increased by 1.8 in individuals with 

detectable BDE 100 compared with those without detectable BDE 100 (95% CI 1.0, 3.3).  When models 

were adjusted for age income, education, alcohol consumption, and lipid-standardized PCB-153, these 

marginal associations were no longer observed. 

A couple of studies were located in which exposure was estimated from concentrations of PBDE in house 

dust, rather than serum samples.  In the earlier study, Meeker et al. (2009) found a positive association 

between PBDE in house dust and serum levels of free T4, but no association with T3 or TSH in 24 men 

recruited through an infertility clinic.  Median and maximum concentrations of PBDE in dust collected 

from houses of study subjects were 500 and 7,620 ng/g dust for BDE 47, 838,and 9,220 ng/g dust for 

BDE 99, and 180 and 2,830 ng/g dust for BDE 100.  A later study by these same researchers found 

positive associations between dust concentrations of pentaBDE (sum of BDE 47, BDE 99, and BDE 100; 

median and maximum concentrations of 1,049 and 22,300 ng/g in dust) and octaBDE (sum of BDE 183 

and BDE 201; median and maximum concentrations of 30.5 and 1,181 ng/g in dust) and serum free T4, 

and also between pentaBDE and T3 and octaBDE and TSH in 38 additional men recruited through the 

infertility clinic (Johnson et al. 2013).  There were no significant associations between thyroid hormones 

and exposure to decaBDE (sum of BDE 206, BDE 207, BDE 208, and BDE 209; median and maximum 

concentrations of 1,800 and 38,483 ng/g in dust) in this study. 

As in other populations, findings in pregnant women differed across studies.  Both free and total T4 were 

significantly and positively associated with PBDE (several individual congeners and their sum) in serum 

collected during the 3rd trimester (>34 weeks) of pregnancy in a North Carolina cohort of 137 primarily 

African-American expectant mothers with serum ∑PBDE ranging from 3.59 to 693.95 ng/g lipid and a 

median of 36.56 ng/g lipid (Stapleton et al. 2011).  Associations for free and total T3 and TSH were not 

significant in this cohort.  In contrast, a study of a California cohort of 270 mostly Latina women tested at 

the 27th week of pregnancy (serum ∑PBDE range of 3.6–1338.6 ng/g lipid, median of 25.2 ng/g lipid) 

found no association between PBDE and free or total T4 (Chevrier et al. 2010).  However, all PBDE 

congeners identified and their sum were significantly negatively associated with TSH in this study. 

Further analysis showed that women in the highest quartile of PBDE exposure had significantly increased 

odds of subclinical hyperthyroidism (defined as low TSH and normal free T4) relative to women in the 

first quartile.  A study of 105 pregnant women in South Korean that looked at blood samples collected the 

day before delivery (serum ∑PBDE median=2.13 ng/g lipid with 25th–75th percentile range of 1.35– 

4.34 ng/g lipid) found significant negative associations for PBDE with free and total T3, a significant 

http:median=2.13
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positive association with free T4, and no association with T4 or TSH (Kim et al. 2013a).  There were no 

correlations between PBDE and free and total T4 and free and total T3 in maternal serum samples 

(∑PBDE range from 15 to 580 ng/g lipid, median=37 ng/g lipid) collected just prior to delivery in another 

study of 12 patients from Indiana (Mazdai et al. 2003). 

Abdelouahab et al. (2013) compared maternal serum concentrations of PBDE collected at <20 weeks of 

pregnancy (for ∑PBDE, median=30.92 ng/g lipid, maximum=726.09 ng/g lipid, n=380) with thyroid 

hormone levels in maternal blood at <20 weeks of pregnancy and in maternal blood collected at delivery 

for 260 pregnancies in Quebec.  At <20 weeks of pregnancy, they found significant negative associations 

between PBDE and T3 and T4, but significant positive associations between PBDE and free T3 and free 

T4. However, using the thyroid hormone levels from the maternal samples at delivery, they found 

negative associations between maternal serum PBDE at <20 weeks and maternal free and total T3 and T4 

at delivery.  There was no significant association with TSH for either of the samples. In a Swedish cohort 

(n=166), a significant inverse relationship was observed between first trimester total T3 levels and 

maternal body burden of BDE 153 (median breast milk concentration, 0.48 ng/g lipid); this relationship 

was not significant for third trimester total T3 levels (Lignell et al. 2016).  No significant associations 

were observed between breast milk BDE 153 levels and free T4 or TSH in first or third trimester serum 

samples.  No associations were observed between serum thyroid hormone levels and breast milk 

concentrations of tetra-pentaBDE (BDE 47, BDE 99, BDE 100; median concentration, 2.3 ng/g lipid). 

A few studies included analysis of maternal serum samples collected after delivery.  Kim et al. (2011d, 

2012b) found significant positive relationships between serum PBDE (BDE 49 only) and free T4, and 

between PBDE (BDE 154 and BDE 153 only) and TSH, and a significant negative relationship between 

PBDE (BDE 153 only) and T3 in maternal blood samples collected from 12 South Korean mothers after 

delivery (for ∑PBDE, range=1.88–53.54 ng/g lipid, mean=18.79 ng/g lipid). There were no such 

correlations between serum PBDE and thyroid hormone levels in post-delivery blood samples collected 

from 26 mothers of infants born with congenital hypothyroidism (for ∑PBDE, range=3.81–1563 ng/g 

lipid, mean=65.16 ng/g lipid) (Kim et al. 2011d, 2012b).  In a second study in which maternal blood 

samples were collected after delivery (for 21 South Korean mothers undergoing Cesarean section), there 

was no correlation between PBDE concentrations and thyroid hormone (free T4, T3, and TSH) levels in 

the maternal serum (Kim et al. 2012a).  In this study, ∑PBDE in maternal blood ranged from 1.8 to 

17.66 ng/g lipid, with a median of 7.81 ng/g lipid.  Kim et al. (2011a) reported a significant positive 

correlation between concentrations of BDE 153 in breast milk (mean ≈0.25 ng/g lipid) and serum TSH 

collected post-delivery in another group of South Korean mothers. 

http:mean=65.16
http:mean=18.79
http:range=1.88�53.54
http:maximum=726.09
http:median=30.92
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In addition to the maternal effects, several of these studies and others reported on thyroid hormone 

changes in developing offspring, as identified by umbilical cord or neonatal blood samples in relation to 

PBDE concentrations in maternal serum, cord serum, or breast milk.  The data on thyroid hormone effects 

in developing offspring are presented in Section 3.2.2.6 on Developmental Effects. 

Few human data were located on endocrine end points other than thyroid (discussed above) or sex 

hormones (discussed in Section 3.2.2.5, Reproductive Effects).  Lim et al. (2008) performed an analysis 

of cross-sectional U.S. NHANES 2003–2004 data that showed significant increases in risk of diabetes 

and metabolic syndrome associated with serum concentrations of BDE 153 (but not BDE 28, BDE 47, 

BDE 99, or BDE 100) based on 156 and 237 cases, respectively, in a population of 1,367 adults examined 

for diabetes status and, for metabolic syndrome, a subset of 637 participants with a morning fasting blood 

sample.  In both analyses, the risk of disease was higher with exposure to 25th–50th percentile BDE 153 

concentrations (median=3.6 ng/g lipid) and 50–75th percentile BDE 153 concentrations (median=6.6 ng/g 

lipid) than >75th percentile BDE 153 concentrations (median=24.6 ng/g lipid).  Adjusted ORs were 2.6, 

2.7, and 1.8 for diabetes and 2.5, 2.4, and 1.7 for metabolic syndrome in the respective quartiles. Serum 

BDE 153 concentrations (0.04 ng/g serum) were also shown to be significantly associated with increased 

odds of developing gestational diabetes in 258 pregnant women from the LIFE cohort in Michigan and 

Texas; no associations were observed for BDE 28, BDE 47, BDE 85, BDE 99, BDE 100, or BDE 154 

(Smarr et al. 2016).  A report from the Great Lakes Fish Consumption Study in Wisconsin found no 

significant difference in total serum PBDE or BDE 47 concentrations between individuals who were 

diagnosed with (n=64; Ln∑PBDEs reported as 0.31 ng/g) compared with non-diabetics (n=349; 

Ln∑PBDEs reported as 0.30 ng/g) (Turyk et al. 2015).  In the Great Lakes cohort, established biomarkers 

of diabetes (C-reactive protein [CRP], gamma glutamyl transferase [GGT] and adiponectin) were also not 

associated with PBDE exposure; however, in stratified models, Ln∑PBDE and LnBDE47 were 

significantly associated with LnGGT and Lnadiponectin in persons above the median age. 

In elderly populations, cross-sectional and prospective studies have found no relationship between serum 

PBDE (BDE 47 and BDE 153) concentrations and diabetes in cohorts from Finland (Airaksinen et al. 

2011) or Sweden (Lee et al. 2011).  In the Finnish study, 308 participants with diabetes had median serum 

concentrations of 2.7 ng/g lipid BDE 47 and 1.5 ng/g lipid BDE 153, while 1,680 nondiabetic participants 

had median serum concentrations of 2.9 ng/g lipid BDE 47 and 1.7 ng/g lipid BDE 153 (Airaksinen et al. 

2011).  PBDE exposure levels for the Swedish study (n=725) were not available (Lee et al. 2011). 
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In conclusion, although numerous studies have attempted to evaluate the relationship between tissue 

concentrations of PBDE and endocrine changes in humans, no clear pattern has emerged. Studies have 

found different results even in similar populations (e.g., adult men or pregnant women) from the same 

part of the world (e.g., North America or Asia) exposed to similar concentrations of PBDE.  Although the 

specific findings are not consistent across studies, the bulk of the data have demonstrated that PBDE can 

interact with the human endocrine system to affect hormone levels. 

Acute-Duration Animal Studies 

Lower-brominated PBDEs:  No exposure-related changes in thyroid weight or histology were observed in 

female rats exposed to penta- or tetraBDE doses up to 36 mg/kg/day for 14 days via gavage (Darnerud 

and Sinjari 1996; Hallgren and Darnerud 1998; Hallgren et al. 2001).  No other acute studies evaluating 

thyroid weight or histology were identified. 

Altered thyroid hormone levels have been reported following acute exposure to lower-brominated 

PBDEs.  Significant reductions in serum T4 of 19–92% have been reported following gavage exposure to 

penta-, octa-, or tetraBDE at doses ≥10 and ≥0.8 mg/kg/day in rats and mice, respectively, for 1–14 days 

(Darnerud and Sinjari 1996; Fowles et al. 1994; Hallgren and Darnerud 1998, 2002; Hallgren et al. 2001; 

Hoppe and Carey 2007; Richardson et al. 2008; Stoker et al. 2004, 2005; Zhou et al. 2001).  The 

decreases in serum T4 were associated with reduced ex vivo binding of T4 to the plasma thyroid hormone 

transporter protein TTR (Hallgren and Darnerud 1998).  Significant reductions in serum T3 were observed 

in rats exposed to penta- and octaBDE at doses ≥100 and ≥60 mg/kg/day, with maximum reductions up to 

25–30% at 300 and 100 mg/kg/day, respectively, for 4 days via gavage (Zhou et al. 2001).  No changes in 

serum T3 were observed in rats exposed to pentaBDE at lower doses (≤60 mg/kg/day) for 5 days via 

gavage (Stoker et al. 2004).  No compound-related changes were observed in serum TSH levels in rats or 

mice exposed to penta- or octaBDE at doses up to 300 mg/kg/day for 4–14 days via gavage (Darnerud 

and Sinjari 1996; Hallgren and Darnerud 1998, 2002; Hallgren et al. 2001; Stoker et al. 2004; Zhou et al. 

2001).  In a low-dose study, male rats did not show exposure-related changes in serum T4, T3, or TSH 

levels measured 45 days after a single exposure pentaBDE at doses up to 1.2 mg/kg/day via gavage 

(Alonso et al. 2010). 

Following a single gavage exposure to pentaBDE on GD 6, reductions in serum T4 levels were observed 

at doses ≥0.06 mg/kg in rat dams on PND 1 (23–33%), but not PND 22, and F1 males and females at 

0.3 mg/kg/day on PND 22 (19–23%), but not PND 1 or 14; no changes in serum T3 were observed in 
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dams or F1 rats at any time-point at doses up to 1.2 mg/kg (Kuriyama et al. 2007).  Maternal serum T4 

was also reduced on GD 20 in rat dams exposed to pentaBDE doses ≥60 mg/kg/day from GD 6.5 to 19.5 

via gavage, but not on GD 12 in rat dams exposed to up to 120 mg/kg/day on GDs 6.5–11.5 (Ellis-

Hutchings et al. 2009).  Exposure to pentaBDE at doses up to 120 mg/kg/day on GDs 6.5–11.5 or 6.5– 

19.5 did not significantly alter maternal serum T3, TSH, or TTR levels (Ellis-Hutchings et al. 2009). 

A limited amount of information is available on hormonal effects of PBDEs other than thyroid.  There 

were no clear chemical-related changes in serum corticosterone levels in female mice that were exposed 

to pentaBDE at doses up to 72 mg/kg/day via gavage for 14 days (Fowles et al. 1994).  Limited data 

regarding serum reproductive hormone levels after acute-duration exposure to lower-brominated PBDEs 

are discussed in Section 3.2.2.5 (Reproductive Effects). 

DecaBDE:  No exposure-related changes in serum T4, T3, or TSH were observed in female rats exposed 

to decaBDE at doses up to 100 mg/kg/day via gavage for 4 days (Zhou et al. 2001).  In neonatal male rats 

exposed to doses of 0, 6, or 20 mg/kg/day from PND 2 to 15, serum T4 was reduced by ~8 and 22% at 

6 and 20 mg/kg/day, respectively (Rice et al. 2007).  This finding was reported as a dose-related trend; 

however, pair-wise statistics were not reported.  No exposure-related changes in serum T4 levels were 

observed in similarly exposed neonatal females (Rice et al. 2007).  In pregnant mice exposed to decaBDE 

at 0, 150, 750, 1,500, or 2,500 from GD 7 to 9 via gavage, maternal serum T4 was significantly reduced 

by ~11 and 14% on GD 16 in the 1,500 and 2,500 mg/kg/day groups, respectively (data reported 

graphically) (Chi et al. 2011).  In the 2,500 mg/kg/day group, serum T3 levels were also significantly 

reduced by ~40% (Chi et al. 2011). 

Intermediate-Duration Animal Studies 

Lower-brominated PBDEs:  In a comprehensive 90-day study in rats, incidences of thyroid follicular cell 

hyperplasia were 0/10, 2/10, 2/10, and 5/10 in males and 0/10, 0/10, 1/10, and 4/10 in females exposed to 

dietary pentaBDE at 0, 2, 10, and 100 mg/kg/day, respectively (WIL Research Laboratories 1984).  The 

thyroid hyperplasia was mild and transient, as it was characterized as very slight in severity at all doses 

and was no longer observed at 24 weeks postexposure in any animals.  In a 28-day dietary study, thyroid 

hyperplasia was equivocally increased in male rats that were exposed to 90 mg/kg/day of penta- or 

octaBDE (IRDC 1976).  Incidences of slight or moderate hyperplasia in the 0, 9, or 90 mg/kg/day dose 

groups were 0/5, 1/5, and 3/5 in pentaBDE-exposed males and 0/5, 0/5, and 3/5 in the octaBDE-exposed 

males, respectively; no increases were seen in females (IRDC 1976).  In males rats exposed to pentaBDE 
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at doses of 0, 3, 30, or 60 mg/kg/day for 15 days via gavage, follicular cell hypertrophy and hyperplasia 

were observed in the 30 and 60 mg/kg/day groups (13/15 and 10/15, respectively); however, incidences in 

control and low-dose groups were not reported (Becker et al. 2012).  Additionally, when this study was 

repeated in a different laboratory, no treatment-related histological changes were observed in the thyroid 

from the 60 mg/kg/day group (animals from 3- and 30-mg/kg/day group were not evaluated) (Becker et 

al. 2012).  Follicular cell hypertrophy was observed in 50% of F1 rats exposed to pentaBDE at 

50 mg/kg/day for 18 weeks (GD 6 to PNW 16) via gavage; hypertrophy was not observed in any controls 

(Dunnick et al. 2012).  

Other histological and morphological changes observed in the thyroid included increased epithelial 

thickness of inner follicles of the thyroid in male rats exposed to a dietary penta-decaBDE mixture 

(52.1% pentaBDE, 44.2 decaBDE, and 0.4% octaBDE) at 20 mg/kg/day for 70 days (incidence data not 

reported) (Ernest et al. 2012); altered morphology of the epithelium (tall columnar rather than the normal 

cuboidal type) in 4/35 male and 1/35 female rats exposed to estimated dietary octaBDE doses of 600 and 

750 mg/kg/day, respectively, for 28 days (IRDC 1977); an increased incidence of cellular debris in the 

follicular lumen of the thyroid in female mice exposed to dietary tetraBDE at 0.45 mg/kg/day for 28 days 

(Maranghi et al. 2013); a significant 60–66% increase in the follicular epithelial height score, a 23–44% 

decrease in the colloid area, and a 12.5–13.3% increased incidence of follicular degeneration in male and 

female rats exposed to pentaBDE at 60 mg/kg/day via gavage for 31 or 20 days, respectively (Stoker et al. 

2004); an increase in the observed degree of vacuolation in the thyroid of female mink exposed to 

0.31 mg/kg/day for 16–17 weeks (4 weeks pre-mating through PNW 6) (Zhang et al. 2009); and a 

borderline significant (p=0.057) increase in thyroid follicular epithelial cell height in F1 mink exposed to 

0.06 mg/kg/day via gavage during a one-generation study (4 weeks pre-mating through PNW 33) (Zhang 

et al. 2009).  Additionally, the epithelial height of the inner follicles of the thyroids showed a biphasic 

response in rats following dietary exposure to a penta-decaBDE mixture (52.1% pentaBDE, 

44.2 decaBDE, and 0.4% octaBDE) at 0. 02, 0.2, 2, or 20 mg/kg/day for 70 days (Ernest et al. 2012).  

Compared with controls, the epithelial height was significantly decreased at 0.02 mg/kg/day and 

significantly increased at 20 mg/kg/day (other doses were not significantly different from controls; 

quantitative data not reported) (Ernest et al. 2012).  In contrast to findings in other studies, no exposure-

related changes in thyroid histology were observed in male or female rats exposed to pentaBDE doses up 

to 200 mg/kg/day for 28 days via gavage (Van der ven et al. 2008b). 

Relative, but not absolute, thyroid weights were significantly elevated by 50% in male and females 

exposed to dietary pentaBDE at 100 mg/kg/day for 90 days (WIL Research Laboratories 1984).  Eight 
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weeks postexposure, thyroid weights were still significantly elevated by 40% in female, but not male, 

rats; no exposure-related changes were observed 24 weeks postexposure (WIL Research Laboratories 

1984).  Rats that were exposed to octaBDE in estimated dietary doses of 5, 50, or 600 mg/kg/day (males) 

or 7, 70, or 750 mg/kg/day (females) for 13 weeks had increased absolute and relative thyroid weights of 

15–31 and 32–56%, respectively, at ≥50/70 mg/kg/day (IRDC 1977).  The thyroid weight increases were 

still observed at 8 weeks postexposure in the 600/750 mg/kg/day groups (increased 67 and 13% in males 

and females, respectively).  However, no exposure-related thyroid weight changes were observed in rats 

exposed to pentaBDE at doses up to 200 mg/kg/day for 15–28 days via gavage (Becker et al. 2012; Van 

der ven et al. 2008b), in rats exposed to dietary penta- or octaBDE at doses up to 90 mg/kg/day for 

28 days (IRDC 1976), or in F0 or F1 mink exposed to dietary pentaBDE at doses up to 0.31 mg/kg/day in 

one generation studies (4 weeks pre-mating through PNW 6 or 33) (Zhang et al. 2009). 

Following exposure to pentaBDE doses of 0, 0.27, 0.82, 2.47, 7.4, 22.2, 66.7, or 200 mg/kg/day for 

28 days via gavage, hyperemia in the zona reticularis of the adrenal gland was observed in ~50% of 

exposed male rats across all dose groups and occasionally in exposed female rats, but not in any control 

rats (incidence data for exposed animals not reported) (Van der ven et al. 2008b).  In females, there was a 

dose-related increase in necrotic lesions in the zona reticularis, with pyknosis at 67 mg/kg/day and 

widespread necrosis at 200 mg/kg/day (Van der ven et al. 2008b). The authors reported that the 

combined incidence of hyperemia and zona reticularis necrosis was statistically significantly increased at 

the higher doses (precise doses not specified).  No histological changes were observed in the adrenal 

gland of female mice exposed to dietary tetraBDE at 0.45 mg/kg/day for 28 days (Maranghi et al. 2013). 

Mink that were exposed to dietary pentaBDE for 9 weeks had increased absolute and relative adrenal 

weights at 0.78 mg/kg/day (25 and 67%, respectively); no changes were observed at ≤0.63 mg/kg/day 

(Martin et al. 2007).  No exposure-related adrenal weight changes were observed in rats exposed to 

pentaBDE at doses up to 240 mg/kg/day for 28–31 days via gavage (Stoker et al. 2005; Van der ven et al. 

2008b), in rats exposed to dietary penta- or octaBDE at doses up to 90 mg/kg/day for 28 days (IRDC 

1976), or in male or female rats exposed to dietary octaBDE doses up to 600 and 750 mg/kg/day, 

respectively, for 13 weeks (IRDC 1977).  Adrenal weight was not assessed in any other intermediate-

duration studies identified. 

Serum T4 levels were significantly reduced by 22–91% in rats exposed to pentaBDE at gavage doses of 

≥3 mg/kg/day for 15–125 days (Becker et al. 2012; Driscol et al. 2009; Hoppe and Carey 2007; Stoker et 

al. 2004) or dietary pentaBDE at doses ≥20 mg/kg/day for 90 days (WIL Research Laboratories 1984).  
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Similarly, serum T4 levels were significantly reduced by 22% in rats exposed to a dietary penta-decaBDE 

mixture (52.1% pentaBDE, 44.2 decaBDE, and 0.4% octaBDE) at 20 mg/kg/day for 70 days (Ernest et al. 

2012).  In a 28-day study, rats were exposed to pentaBDE at 0, 0.27, 0.82, 2.47, 7.4, 22.2, 66.7, or 

200 mg/kg/day via gavage (Van der ven et al. 2008b). Study authors report dose-related decreases in 

serum T4 levels (maximal reduction of 88–89%); however, the doses at which these effects were observed 

were not reported.  Instead, results were reported in terms of BMD analysis (BMD/BMDLRD10%= 

1.4/1.1 mg/kg/day in males and 2.7/1.8 mg/kg/day in females) (Van der ven et al. 2008b).  Serum T3 

levels were significantly reduced by 14–25% and serum TSH levels were significantly increased by 63– 

144% in male rats exposed to pentaBDE via gavage at ≥30 mg/kg/day for 15–31 days (Becker et al. 2012; 

Stoker et al. 2004).  However, other studies reported no significant changes in serum T3 and/or TSH levels 

in rats exposed to pentaBDE at doses up to 200 mg/kg/day for 20–28 days via gavage (Stoker et al. 2004; 

Van der ven et al. 2008b), dietary pentaBDE at doses up to 100 mg/kg/day for 90 days (WIL Research 

Laboratories 1984), or to a dietary penta-decaBDE mixture (52.1% pentaBDE, 44.2 decaBDE, and 0.4% 

octaBDE) at doses up to 20 mg/kg/day for 70 days (Ernest et al. 2012).  

Altered thyroid hormone levels have also been reported in F0 animals following exposure to lower

brominated PBDEs in one-generation and gestational/lactation exposure studies.  Following exposure to 

pentaBDE at 0, 0.5, 5, or 25 mg/kg/day via gavage for 70 days prior to mating through PND 42, serum T4 

levels were significantly reduced in F0 males at ≥5 mg/kg/day (50–87%) and females at 25 mg/kg/day 

(67%) (Bondy et al. 2011, 2013).  In rat dams exposed to pentaBDE at 18 mg/kg/day via gavage from 

GD 6 to PND 18, serum T4 levels were significantly decreased by 45%; no changes were observed in 

serum T3, TSH, or TTR (Ellis-Hutchings et al. 2006).  Following exposure to pentaBDE via gavage from 

GD 6 to PND 21, maternal serum T4 levels were significantly reduced by ≥31% at ≥10.2 mg/kg/day, and 

maternal serum TSH levels were significantly increased by 127% at 30.6 mg/kg/day (Kodavanti et al. 

2010; Zhou et al. 2002).  No exposure-related changes were observed in serum T3 (Kodavanti et al. 2010; 

Zhou et al. 2002).  In dams exposed to 30 mg/kg/day via pentaBDE-dosed cookies from GD 1 to PND 21 

via dose-cookies, significant decreases were observed in serum T3 and T4 levels (quantitative data not 

reported); no significant changes were observed in T3 and T4 levels at ≤3 mg/kg/day or TSH levels at 

doses up to 30 mg/kg/day (Bowers et al. 2015).  In a similar study, a significant 25–50% decrease in 

maternal free and total T4 levels was observed in dams exposed to ≥10 mg/kg/day via pentaBDE-dosed 

cookie from GD 6 to PND 21; no exposure-related changes were observed in T3 or TSH levels at doses up 

to 30 mg/kg/day (Bansal et al. 2014).  In rat dams exposed to tetraBDE via gavage from GD 1 to PND 14, 

maternal T4 levels were significantly reduced on PND 1 and 7 by 28–31% at doses ≥3.2 mg/kg/day; no 

changes were observed in serum T3 levels (Wang et al. 2011a).  In mice, no exposure-related changes 
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were observed in maternal serum T4 levels after exposure to pentaBDE at 452 mg/kg/day via gavage from 

GD 4 to PND 17 (Skarman et al. 2005).  In one-generation dietary pentaBDE studies in mink (4 weeks 

premating through PNW 6), significant reductions in plasma T3, but not T4, were observed in F0 females 

exposed to 0.31 mg/kg/day (Zhang et al. 2009). 

Numerous studies have also reported decreased serum T3 and/or T4 levels in pups after gestational and 

lactational exposure to penta- or tetraBDE at doses as low as 0.3 mg/kg/day in rats and at 452 mg/kg/day 

in mice (Bansal et al. 2014; Blanco et al. 2013; Bondy et al. 2011, 2013; Bowers et al. 2015; Ellis-

Hutchings et al. 2006; Kodavanti et al. 2010; Miller et al. 2012; Poon et al. 2011; Shah et al. 2011; 

Skarman et al. 2005; Szabo et al. 2009; Wang et al. 2011a; Zhou et al. 2002).  Changes observed in mink 

juveniles included decreases in serum T3, as in the adults, but also an increase in serum T4 in juvenile 

females (Zhang et al. 2009).  See Section 3.2.2.6 (Developmental Effects) for more details. 

Consistent, exposure-related changes were not observed between studies that evaluated serum 

reproductive hormone levels after intermediate-duration exposure to lower-brominated PBDEs; see 

Section 3.2.2.5 (Reproductive Effects) for more details. 

DecaBDE:  Dose-related increases in thyroid hyperplasia were reported for male Sprague-Dawley rats 

exposed to dietary decaBDE at 80 or 800 mg/kg/day for 30 days (Norris et al. 1973, 1975a), although not 

in rats exposed to ≤90 mg/kg/day for 90 days, rats exposed to ≤8,000 mg/kg/day for 13 weeks, or mice 

exposed to ≤9,500 mg/kg/day for 13 weeks (IRDC 1976; NTP 1986).  The occurrence of thyroid 

hyperplasia in the rats exposed to ≥80 mg/kg/day for 30 days could be related to the low purity 

composition of the older commercial decaBDE mixture tested by Norris et al. (1973, 1975a) (i.e., 77.4% 

decaBDE, 21.8% nonaBDE, and 0.8% octaBDE, compared to the ≥94% decaBDE composition used in 

the NTP studies).  Similarly, observed incidences of diffuse follicular cell hypertrophy were not 

significantly elevated in rat dams exposed to dietary decaBDE from GD 10 to PND 21 at doses up to 

146 mg/kg/day, compared with control (Fujimoto et al. 2011).  However, in young male rats exposed to 

decaBDE at doses of 0, 100, 300, or 600 mg/kg/day via gavage for 33 days (PNDs 10–42), multiple areas 

of degenerated follicular epithelium and slight attenuation of the follicular epithelium were observed in 

the thyroid glands of rat exposed to 300 or 600 mg/kg/day (incidence data not reported) (Lee et al. 2010). 

In young male rats exposed to decaBDE at doses of 0, 100, 300, or 600 mg/kg/day via gavage for 33 days 

(PND 10–42), absolute and relative thyroid weights were significantly increased by 60 and 40%, 

respectively, in the 600 mg/kg/day group (Lee et al. 2010).  Increased absolute and relative thyroid 
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weights were also reported in rat dams exposed to dietary decaBDE at 2, 15, or 146 mg/kg/day from 

GD 10 to PND 21; findings were significant at 2 mg/kg/day (21–22% decrease) and 146 mg/kg/day (21% 

decrease) (Fujimoto et al. 2011).  No exposure-related changes in thyroid weight were observed in rats 

exposed to dietary decaBDE at doses up to 90 mg/kg/day for 28 days (IRDC 1976).  

Unlike the lower-brominated PBDEs, serum T4 levels were not altered in rats exposed to decaBDE at 

gavage doses up to 600 mg/kg/day for 28–90 days (Lee et al. 2010; Van der ven et al. 2008a; Wang et al. 

2010, 2011b).  Serum T3 levels were significantly reduced by up to 25% in female, but not male, rats 

exposed to decaBDE at 60 mg/kg/day via gavage for 28 days (Van der ven et al. 2008a), and no changes 

in serum T3 levels were observed in male rats exposed to decaBDE at doses up to 100 mg/kg/day via 

gavage for 90 days (Wang et al. 2010, 2011b).  In young male rats exposed to decaBDE for 33 days 

(PNDs 10–45) via gavage, serum T3 was significantly reduced by up to 45% at doses ≥100 mg/kg/day and 

serum TSH was significantly increased by ~70% following exposure to ≥300 mg/kg/day decaBDE for 

33 days (PNDs 10–42) (Lee et al. 2010).  In male mice, serum T4 and T3 were significantly reduced by 

22 and 44%, respectively, following exposure to decaBDE at gavage doses of 950 mg/kg/day for 35 days, 

compared with controls; no exposure-related changes in serum thyroid hormone levels were observed at 

750 mg/kg/day (Sarkar et al. 2015). In developing animals, significant reductions in serum T3 levels were 

observed following gestational and lactational exposure to decaBDE at 146 mg/kg/day in rats and 

1,500 mg/kg/day in mice; no changes were observed in serum T4 or TSH (Fujimoto et al. 2011; Tseng et 

al. 2008); see Section 3.2.2.6 (Developmental Effects) for more details. 

In young male rats exposed to decaBDE at doses of 0, 100, 300, or 600 mg/kg/day via gavage for 33 days 

(PNDs 10–42), absolute and relative adrenal weights were significantly increased by 14 and 20%, 

respectively, in the 600 mg/kg/day group (Lee et al. 2010).  No exposure-related changes in adrenal 

weight were observed in rats exposed to dietary decaBDE at doses up to 90 mg/kg/day for 28 days (IRDC 

1976).  In mice, no significant changes in adrenal weight were observed in dams exposed to decaBDE at 

doses up to 1,500 mg/kg/day from GD 0 to 17 (Tseng et al. 2008). 

Pancreatic effects were evaluated in rats exposed to decaBDE at doses of 0, 0.05, 1 or 20 mg/kg/day via 

gavage for 8 weeks (Zhang et al. 2013a).  Serum insulin levels were significantly reduced by 50–60% at 

≥1 mg/kg/day, and blood glucose levels were elevated by 12–21% at ≥0.05 mg/kg/day (Zhang et al. 

2013a).  Consistent with these findings, morphological changes in the pancreas were observed at 

≥1 mg/kg/day, including blurred boundaries among pancreatic islet cells (incidence not reported). 
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Microarray analysis of liver tissue indicated significant alterations in genes from the canonical pathway 

for type I diabetes mellitus (Zhang et al. 2013a).  

Chronic-Duration Animal Studies 

Lower-brominated PBDEs:  No chronic-duration studies analyzing endocrine effects were located for 

lower-brominated PBDEs, 

DecaBDE:  Hyperplasia of the thyroid was observed in rats and mice following repeated dietary 

exposures to decaBDE. Thyroid follicular cell hyperplasia was increased in male B6C3F1 mice that were 

exposed to ≥94% pure commercial decaBDE for 103 weeks (NTP 1986).  Incidences of the lesion were 

2/50 (4%), 10/50 (20%), and 19/50 (38%) in the 0, 3,200, and 6,650 mg/kg/day dose groups of this study.  

Slight increases in follicular cell tumors that were considered to be equivocal evidence of thyroid 

carcinogenicity were also observed in the male mice (see Section 3.2.2.7, Cancer).  No decaBDE-related 

histopathological changes in the thyroid were found after 103 weeks of exposure to ≤7,780 mg/kg/day in 

female mice, ≤2,240 mg/kg/day in male Sprague-Dawley rats, or ≤2,550 mg/kg/day in female rats (NTP 

1986). 

Summary.  While human data are inconsistent, they suggest that PBDEs can interact with thyroid 

hormone homeostasis. These data, along with available animal studies, indicate that the thyroid is a target 

of concern for PBDE exposure, especially lower-brominated PBDEs. One study reported pancreatic 

effects, including altered insulin regulation and pancreatic lesions, following intermediate decaBDE 

exposure; however, no other animal studies evaluated these end points.  Limited human evidence is 

inconclusive regarding potential associations between diabetes and PBDE exposure; however, 

considering the animal data, the pancreas may be a target of concern for oral PBDE exposure. There is 

little evidence for endocrine effects other than those mediated by the thyroid and pancreas; data for 

altered reproductive hormones in humans and animals exposed to PBDEs are inconclusive (see 

Section 3.2.2.5, Reproductive Effects). 

Dermal Effects. No studies were located regarding dermal effects in humans after oral exposure to 

PBDEs. 

Histopathological examinations showed no dermal changes in rats following gavage exposure to 

≤200 mg/kg/day of pentaBDE for 28 days (Van der ven et al. 2008b), dietary exposure to 
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≤100 mg/kg/day of pentaBDE for 90 days (WIL Research Laboratories 1984), or dietary exposure to 

≤750 mg/kg/day of octaBDE for 13 weeks (IRDC 1977). No studies examining dermal effects after 

exposure to decaBDE were located. 

Based on animal studies, dermal effects are unlikely with oral exposure to PBDEs. 

Ocular Effects. No studies were located regarding ocular effects in humans after oral exposure to 

PBDEs. 

Histopathological examinations showed no ocular effects in rats following dietary exposure to 

≤100 mg/kg/day of pentaBDE for 90 days (WIL Research Laboratories 1984) or ≤750 mg/kg/day of 

octaBDE for 13 weeks (IRDC 1977). Similarly, histopathological examinations showed no ocular effects 

in rats following dietary exposure to ≤1.0 mg/kg/day of 77.4% decaBDE (containing 21.8% nonaBDE 

and 0.8% octaBDE) for 2 years (Kociba et al. 1975; Norris et al. 1975a). 

Based on animal studies, ocular effects are unlikely with oral exposure to PBDEs. 

Body Weight Effects. The only information located was that serum concentrations of BDE 47 in a 

group of 36 metabolically healthy but obese women (MHO) were not significantly different than in a 

group of 40 metabolically abnormal obese women (p=33 for comparison of the medians) (Gauthier et al. 

2014). The significance of this isolated finding is unknown 

Acute-Duration Animal Studies 

Lower-brominated PBDEs:  Percent body weight gain was significantly decreased by 2–19% in female 

rats following gavage exposure to pentaBDE at 2000 mg/kg for 1 day, pentaBDE at 200 mg/kg/day for 

7 days, pentaBDE at 8–200 mg/kg/day for 14 days, or octaBDE at 40–200 mg/kg/day for 7 or 14 days 

(Bruchajzer et al. 2010, 2011, 2012).  However, no changes in percent body weight gain were observed in 

female rats exposed to pentaBDE at doses up to 200 mg/kg/day for 7 or 14 days via gavage in another 

study by the same investigators (Bruchajzer 2011).  Additionally, body weight effects were not reported 

in any other acute-duration study.  No changes in body weight or body weight gain were observed in rats 

exposed to penta- or tetraBDE at doses up to 240 mg/kg/day for 3–14 days via gavage (Bruchajzer 2011; 

Hallgren and Darnerud 2002; Hallgren et al. 2001; Hoppe and Carey 2007; Stoker et al. 2004; Stoker et 

al. 2005; Zhou et al. 2001) or in mice exposed to penta-, tetra-, or octaBDE at doses up to 100 mg/kg/day 
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for 4–14 days via gavage (Hallgren and Darnerud 2002; Fowles et al. 1994; Hallgren et al. 2001; 

Richardson et al. 2008; Zhou et al. 2001). 

In pregnant rats exposed to pentaBDE at 0, 10, 100, or 200 mg/kg/day via gavage from GD 6 to 15, 

maternal body weight gain was significantly decreased by 20 and 30% in the 100 and 200 mg/kg/day 

groups (Argus Research Laboratories 1985a).  Pregnant rats exposed to octaBDE at 0, 2.5, 10, 15, 25, or 

50 mg/kg/day via gavage from GD 6 to 15 showed a significantly 40% reduction in maternal body weight 

gain at 50 mg/kg/day (WIL Research Laboratories 1986).  In pregnant rabbits, exposure to octaBDE at 

15 mg/kg/day via gavage from GD 7 to 19 also resulted in a 7% decreased in maternal body weight gain 

(statistics not provided); no body weight effects were observed at ≤5 mg/kg/day (Breslin et al. 1989).  In 

other studies, maternal body weight was not affected in rats by gestational exposure via gavage to 

pentaBDE at doses up to 120 mg/kg/day (Blanco et al. 2012, Ellis-Hutchings et al. 2009; Zhao et al. 

2014) or tetraBDE at 0.7 mg/kg/day (Talness et al. 2008).  

DecaBDE:  No change in body weight or body weight gains were observed in rats exposed to decaBDE at 

doses up to 1,000 mg/kg/day for 4–14 days via gavage (Bruchajzer et al. 2010; Zhou et al. 2001) or in rats 

and mice exposed to dietary decaBDE doses up to 16,000 and 19,000 mg/kg/day, respectively, for 7– 

14 days (NTP 1986; Sakamoto et al. 2013). DecaBDE did not alter maternal body weight in mice 

exposed to doses up to 1500 mg/kg/day from GD 0 to 17 via gavage (Tseng et al. 2006). 

Intermediate-Duration Animal Studies 

Lower-brominated PBDEs:  Percent body weight gain was significantly decreased by 8–19% in rats 

exposed to pentaBDE at 8–200 mg/kg/day or octaBDE at 40–200 mg/kg/day for 21 or 28 days via gavage 

(Bruchajzer 2011; Bruchajzer et al. 2012).  However, in another study by the same investigators that 

exposed female rats to 0, 8, 40, or 200 mg/kg/day for 21 or 28 days via gavage, percent body weight gain 

was only significantly decreased at 200 mg/kg/day (Bruchajzer et al. 2010).  Another 28-day gavage 

study reported no body weight gain changes in female rats at pentaBDE doses up to 200 mg/kg/day; 

however, significant changes were observed in male rats after the 28-day exposure to 0.27– 

200 mg/kg/day (Van der ven et al. 2008b).  The BMDRD10% and BMDLRD10% for decreased body weight 

gain in male rats were 61.3 and 9.7 mg/kg/day, respectively (data were reported in terms of BMD analysis 

only; raw data were not reported).  At higher doses (≥600 mg/kg/day), rats exposed to dietary octaBDE 

for 13 weeks showed ≥12% decreases in weight gain (IRDC 1977).  In mink, dietary pentaBDE exposure 

at doses of 0.63 and 0.78 mg/kg/day for 9 weeks showed significant body weight decreases of 21 and 
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28%, respectively; no body weight effects were observed in mink exposed to dietary concentrations of 

0.08 mg/kg/day (Martin et al. 2007).  

Body weight effects were not reported in other intermediate-duration studies.  No changes in body weight 

or body weight gain were observed in rats exposed to pentaBDE at doses up to 250 mg/kg/day for 15– 

90 days via gavage (Becker et al. 2012; Daubie et al. 2011; Hoppe and Carey 2007; IRDC 1976; Oberg et 

al. 2010; Stoker et al. 2004, 2005; WIL Research Laboratories 1984), in mice exposed to tetra- or diBDE 

at doses up to 30 mg/kg/day for 28–30 days via gavage (Wang et al. 2013; Zhang et al. 2014), in mice 

exposed to tetraBDE at doses up to 150 mg/kg/day for 6–12 weeks via gavage (McIntyre et al. 2015; 

Zhang et al. 2015a, 2015b), in rats exposed to dietary penta- or octaBDE or a penta-decaBDE mixture 

(52.1% pentaBDE, 44.2% decaBDE, and 0.4% octaBDE) at doses up to 90 mg/kg/day for 28–125 days 

(Driscol et al. 2009; Ernest et al. 2012; IRDC 1976), or in mice exposed to dietary tetraBDE at doses up 

to 0.45 mg/kg/day (Maranghi et al. 2013).  

Maternal body weight effects were not observed following gavage exposure to pentaBDE during 

gestation and lactation in rats at doses up to 30.6 mg/kg/day (Bowers et al. 2015; Ellis-Hutchings et al. 

2006; Kodavanti et al. 2010; Zhou et al. 2002) or in mice at doses up to 452 mg/kg/day (Branchi et al. 

2005; Skarman et al. 2005).  In one-generation studies, no body weight effects were observed in F0 or F1 

rats following pentaBDE exposure to gavage doses up to ≤50 mg/kg/day (Bondy et al. 2011, 2013; 

Dunnick et al. 2012), in F0 dams following administration of doses up to 11.4 mg/kg/day via pentaBDE

dosed vanilla wafers (Poon et al. 2011), in F0 or F1 mink exposed to dietary pentaBDE doses of 

≤0.31 mg/kg/day (Zhang et al. 2009), or in female F0 mice fed cornflakes dosed with 1 mg/kg/day of 

tetraBDE for 4 weeks prior to mating through PND 21 (Koenig et al. 2012; Ta et al. 2011) 

DecaBDE:  One study reported significant decreases in growth in rats exposed to decaBDE via gavage for 

90 days (Wang et al. 2011b).  “Whole-body growth rates,” defined by the study authors as the average 

growth rate after 90 days, were reported as 1.57, 0.59, and 0.76% in the 0, 10, and 50 mg/kg/day groups, 

respectively (Wang et al. 2011b).  No changes in body weight or body weight gain were observed in other 

studies of rats exposed to decaBDE doses up to 1,000 mg/kg/day for 21–90 days via gavage (Bruchajzer 

et al. 2010; Lee et al. 2010; Van der ven et al. 2008a; Wang et al. 2010; Zhang et al. 2013a), in mice 

exposed to decaBDE at doses up to 1,500 mg/kg/day for 15–60 days via gavage (Heredia et al. 2012; 

Liang et al. 2010; Sarkar et al. 2015; Tseng et al. 2006), or in rats and mice exposed to dietary decaBDE 

at doses of ≤8,000 and ≤9,500 mg/kg/day, respectively, for 28–90 days (NTP 1986; Sakamoto et al. 2013; 

Watanabe et al. 2010a).  Dietary ingestion of 77.4% decaBDE mixture (containing 21.8% nonaBDE and 



   
 

    
 
 

 
 
 
 
 

   

     

 

  

    

     

  

  

  

     

    

 

  

 

   

 

 

  

     

 

    

    

 

  

  

 

      

 

 

 

 

   

 

  

PBDEs 173 

3. HEALTH EFFECTS 

0.8% octaBDE) similarly caused no body weight changes in rats exposed to ≤800 mg/kg/day for 30 days 

or ≤1.0 mg/kg/day for 2 years (Kociba et al. 1975; Norris et al. 1973, 1975a).  

Mean maternal weight was suppressed by ~10% in mice exposed to dietary decaBDE doses of 290 or 

2,900 mg/kg/day from GD 10 to PND 21; however, the study authors did not report whether or not this 

finding was statistically significant (raw data not available for statistical analysis) (Watanabe et al. 

2010b).  A significant 12% decrease in body weight was also reported in rat dams exposed to decaBDE at 

300 mg/kg/day via gavage for 3 weeks prior to mating until PND 21 (Liu et al. 2012).  In other studies, 

decaBDE did not alter maternal body weight in rats exposed to doses up to 1,000 mg/kg/day from GD 10 

to PND 21 via gavage (Biesemeir et al. 2011; Fujimoto et al. 2011) or in mice exposed to dietary 

decaBDE at doses up to 260 mg/kg/day from GD 10 to PND 21 (Watanabe et al. 2008). 

Chronic-Duration Animal Studies 

Lower-brominated PBDEs:  No chronic-duration studies analyzing body weight effects were located for 

lower-brominated PBDEs. 

DecaBDE:  Body weight effects were not observed in rats and mice that were exposed to dietary 

decaBDE doses of ≤2,550 and ≤7,780 mg/kg/day, respectively, for 103 weeks (NTP 1986).  

Summary. No studies are available on body weight effects of PBDEs in humans.  Although some acute-

and intermediate-duration animal studies reported decreased body weight, several others reported no 

exposure-related changes in body weight.  No changes in body weight were observed in chronic studies.  

Based on the body of evidence from animal studies, body weight effects are unlikely to occur following 

oral exposure to PBDEs at environmentally-relevant doses. 

Metabolic Effects. No studies were located regarding metabolic effects in humans after oral exposure 

to PBDEs. 

Animal Studies 

Lower-brominated PBDEs:  Exposure to pentaBDE via gavage for 28 days at doses of 0, 0.27, 0.82, 2.47, 

7.4, 22.2, 66.7, or 200 mg/kg/day caused significant, dose-related decreases in blood glucose levels in 

male rats (Van der ven et al. 2008b).  Results, reported in terms of BMD analysis, indicated a BMD10 of 
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179.55 mg/kg/day and a BMDL10 of 66.7 mg/kg/day (raw data and statistics for individual dose groups 

were not reported).  No significant changes in blood glucose levels were found in female rats exposed to 

doses up to 200 mg/kg/day (Van der ven et al. 2008b).  Reduced serum glucose levels were also reported 

in male rats exposed to 20 mg/kg/day of a dietary PBDE mixture containing 52.1% penta-decaBDE 

(DE-71), 44.2% decaBDE (BDE 209), and 0.4% octaBDE (DE-79) for 70 days; no changes were 

observed at ≤2 mg/kg/day (Ernest et al. 2012). 

In wild-type mice exposed to tetraBDE at 0 or 1 mg/kg/day via gavage for 6 weeks, no exposure-related 

changes in circulating insulin levels, glucose tolerance, insulin resistance, or lipogenesis in the liver were 

observed (McIntyre et al. 2015).  However, insulin sensitivity was significantly decreased in similarly-

exposed Pten -/- mice (mice hypersensitive to insulin), compared to control Pten -/- mice.  No exposure-

related effects were observed in Tsc1 -/- (mice with mild insulin resistance). 

Exposure to pentaBDE via gavage at 250 mg/kg/day for 28 days caused hypercalcemia, hyper

magnesemia, and hyperphosphatemia in male rats and hyperatremia and hypokalemia in female rats 

(Oberg et al. 2010).  No changes in blood calcium, magnesmium, potassium, phosphorus, or sodium 

levels were observed at doses ≤25 mg/kg/day (Oberg et al. 2010).  No significant changes in blood 

calcium, magnesium, or phosphorus levels were observed in male rats exposed to ≤20 mg/kg/day of a 

dietary penta-decaBDE mixture containing 52.1% pentaBDE (DE-71), 44.2% decaBDE (BDE 209), and 

0.4% octaBDE (DE-79) for 70 days (Ernest et al. 2012). 

A single study evaluated fat pad weight and adipocyte number, size, viability, lipolysis, and glucose 

oxidation in male rats following exposure to pentaBDE at 14 mg/kg/day via gavage for 2 or 4 weeks 

(Hoppee and Carey 2007).  No exposure-related effects were noted at 2 weeks.  At 4 weeks, significant 

observations included increased adipocyte lipolysis and decreased adipocyte glucose oxidation; however, 

no changes in fat pad weight or the number, size, or viability of adipocytes were observed. 

DecaBDE:  DecaBDE exposure via gavage for 8 weeks caused elevated blood glucose levels at 

≥0.05 mg/kg/day in male rats (Zhang et al. 2013a).  Elevated glucose levels were increased 12–21% 

compared with controls, and were accompanied by significantly decreased serum insulin levels at 

≥1 mg/kg/day; see Section 3.2.2.2, Endocrine System Effects for more details.  

Summary.  Data regarding metabolic effects of PBDE are too limited to adequately characterize if PBDE 

exposure could alter metabolism in humans. 
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3.2.2.3  Immunological and Lymphoreticular Effects 

Human Studies.  A significant negative statistical association (not further described) was found between 

serum concentrations of PBDE and number of circulating lymphocytes in a subset of 18 of a cohort of 

33 children (18 girls and 15 boys) born in the Amsterdam/Zaandam area of the Netherlands and aged 14– 

19 years at the time of this study (Leijs et al. 2009).  Serum PBDE concentrations (determined as the sum 

of congeners 28, 47, 85, 99, 100, 153, 154, and 183) ranged from 5 to 74 ng/g lipid with a mean of 

13.9 ng/g lipid. Congener-specific analysis showed the main contributors to be BDE 183, BDE 154, and 

BDE 85.  There were no other effects on leukocyte count or differential.  Although dioxins and PCBs 

were also assessed, no association with lymphocytes was found for these chemicals.  No effects on 

pokeweed mitogen-stimulated DNA proliferation or IgG immunoglobulin synthesis were found in human 

lymphocytes exposed to BDE 47 or BDE 85 in vitro (Fernlof et al. 1997). A cross-sectional study of 

992 subjects from Sweden aged 70 years reported that serum levels of BDE 47 (median 12.6 ng/g lipid) 

were significantly (p=0.03) negatively associated with blood levels of protein complement 3 (C3), but not 

with serum levels of C3a or C4 (Kumar et al. 2014a); no other BDE congener was assessed.  PCB levels 

were also negatively associated with protein complements. In a similar study of the same cohort, Kumar 

et al. 2014b) found no association between serum levels of BDE 47 and multiple inflammatory markers. 

Acute-Duration Animal Studies 

Lower-brominated PBDEs:  Limited information is available on effects of acute-duration exposure to 

lower-brominated PBDEs on immunologic function in animals.  A single gavage dose of 0.8–500 mg/kg 

pentaBDE did not affect the plaque-forming splenic cell antibody response to injected sheep red blood 

cells in mice (Fowles et al. 1994).  Mice that were given 18, 36, or 72 mg/kg/day doses of pentaBDE via 

gavage for 14 days had significantly reduced antibody response to sheep red blood cells (63% of control 

value, p<0.02) and decreased thymus weight at 72 mg/kg/day (Fowles et al. 1994).  There were no 

exposure-related effects of the 14-day exposure to ≤72 mg/kg/day on NKC activity to murine YAC-1 

target cells; NKC activity was not evaluated in the single-dose study.  Another 14-day study was 

conducted in which mice and rats were administered pentaBDE at 0, 18, or 36 mg/kg/day via gavage and 

were evaluated for spleen and thymus weights, numbers of splenic and thymic lymphocyte subsets 

(CD4+, CD8+, and CD45R+ cells), and in vitro IgG immunoglobulin production in pokeweed mitogen

stimulated splenocytes (Darnerud and Thuvander 1998).  The only exposure-related effect in either 

species was significantly reduced in vitro production of IgG in pokeweed-stimulated splenocyte cultures 
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from the mice exposed to 36 mg/kg/day.  Mice that were similarly exposed to tetraBDE at 18 mg/kg/day 

via gavage for 14 days had significantly reduced numbers of total splenocytes as well as CD4+, CD8+, 

and CD45R+ cells in spleen (Darnerud and Thuvander 1998), but no changes in spleen or thymic weight 

(Hallgren et al. 2001).  

DecaBDE:  No acute-duration studies analyzing immune effects were located for lower-brominated 

PBDEs. 

Intermediate-Duration Animal Studies 

Lower-brominated PBDEs:  Immune function was evaluated in male mink exposed to dietary pentaBDE 

for 9 weeks (Martin et al. 2007).  Initial exposure concentrations were 0, 1, 10, or 100 ppm; however, 

after the first week of exposure, the 100 ppm group was switched to 5 ppm for weeks 2–9 because of food 

avoidance and weight loss concerns.  Dose levels in the 1, 5/100, and 10 ppm groups were calculated to 

be 0.08, 0.63, and 0.78 mg/kg/day, respectively, based on estimated daily intake ranges (Martin et al. 

2007). Mink were assessed weekly during exposure for antibody-mediated immunity to KLH (a carrier 

protein from keyhole limpet that binds to haptens and is used to stimulate a response from the immune 

system in the form of antibody production) and at 9 weeks for PHA skin response. No dose-related 

effects were observed for antibody production to KLH; however, at each time-point tested, antibody 

production in the 0.63 mg/kg/day group (the 100 ppm/5 ppm group) was significantly increased compared 

with controls.  No exposure-related changes were observed in the skin response to PHA challenge. 

Martin et al. (2007) also reported a significant increase in the incidence of spleen hyperplasia in mink 

from the 0.63 and 0.78 mg/kg/day groups, with 25 and 40% incidence, respectively, compared with 0% 

incidence in the controls.  In the 0.78 mg/kg/day group, the number of germinal centers in the spleen was 

also significantly increased.  In mice, histological and morphometric changes were observed in the spleen 

and thymus of females exposed to dietary tetraBDE at 0.45 mg/kg/day for 28 days (only dose tested; 

males not evaluated) (Maranghi et al. 2013).  In the spleen, follicular hyperplasia with germinal center 

development was observed in 9/10 exposed mice, compared with 4/10 controls, and lymphocytic 

infiltration involving the red pulp was observed in 5/10 exposed mice, compared with 0/10 controls.  In 

the thymus, 7/9 exposed mice showed Hassal’s bodies, compared with 2/10 controls, and 5/9 showed 

lymphocytic apoptosis, compared with 0/10 controls.  The ratio between area of cortex and medulla in the 

thymus was significantly increased by 43% in exposed mice, compared with controls.  In the thyroid, 

cellular debris was observed in the follicular lumen of 5/7 exposed mice, compared with 0/10 controls 
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(Maranghi et al. 2013).  In other studies, no exposure-related changes were observed in spleen, thymus, 

lymph node, and/or bone marrow tissue histology in rats exposed to pentaBDE at gavage doses up to 

250 mg/kg/day for 28 days (Oberg et al. 2010; Van der ven et al. 2008b), pentaBDE at dietary doses up to 

100 mg/kg/day for 90 days (WIL Research Laboratories 1984), or octaBDE at dietary doses up to 

750 mg/kg/day for 13 weeks (IRDC 1977).  Additionally, no exposure-related changes were observed in 

the histology of the spleen, thymus, Peyer’s patches, or mesenteric lymph nodes in rat dams exposed to 

pentaBDE at doses up to 25 mg/kg/day via gavage for 70 days prior to mating through PND 21 

(~21 weeks) (Bondy et al. 2013).  In offspring, a significant dose-related trend was observed in the 

incidence of apoptotic lymphocytes and tingible macrophages in the thymus of PND 43 males, but not 

females (Bondy et al. 2013); see Section 3.2.2.6 (Developmental Effects) for more details.  

Martin et al. (2007) reported a significant 29% increase in relative, but not absolute, spleen weight in 

mink exposed to dietary pentaBDE at 0.78 mg/kg/day for 9 weeks.  In a 28-day study, rats were exposed 

to pentaBDE at 0, 0.27, 0.82, 2.47, 7.4, 22.2, 66.7, or 200 mg/kg/day via gavage (Van der ven et al. 

2008b).  Study authors reported a dose-related decrease in thymus weight in male rats (maximal decrease 

of 19.4%); however, the lowest dose at which the effect was observed was not reported.  Instead, results 

were reported in terms of BMD analysis (BMD/BMDLRD20%=194.2/110 mg/kg/day).  No dose-related 

changes were reported for female thymus weight, male or female spleen weight, or T-cell, B-cell, or 

macrophage population distribution in the spleen in either sex (Van der ven et al. 2008b). In other 

studies, no exposure-related changes were observed in spleen or thymus weights in rats exposed to penta

or diBDE at gavage doses up to 250 mg/kg/day for 28 days (Oberg et al. 2010; Zhang et al. 2014), in rats 

exposed to pentaBDE at gavage doses up to 0.015 mg/kg/day for 90 days (Daubie et al. 2011), in rats 

exposed to dietary penta- or octaBDE at doses up to 100 mg/kg/day for 28 or 90 days (IRDC 1976; WIL 

Research Laboratories 1984), in rats exposed to a dietary penta-decaBDE mixture (52.1% pentaBDE 

[DE-71], 44.2% decaBDE [BDE 209], 0.4% octaBDE [DE-79]) at doses up to 20 mg/kg/day for 70 days 

(Ernest et al. 2012), in rats exposed to dietary octaBDE at doses up to 750 mg/kg/day for 13 weeks (IRDC 

1977), or in mice exposed to dietary tetraBDE at 0.45 mg/kg/day for 28 days (Maranghi et al. 2013).  

Additionally, no exposure-related changes in spleen or thymus weights were observed in rat dams or 

offspring exposed to pentaBDE at 18 mg/kg/day via gavage from GD 6 to PND 21  (Ellis-Hutchings et al. 

2006), in rat dams exposed to pentaBDE at doses up to 25 mg/kg/day via gavage for 70 days prior to 

mating through PND 21 (~21 weeks) (Bondy et al. 2013), or in mink sows exposed to dietary pentaBDE 

at doses up to 0.31 mg/kg/day for 4 weeks prior to mating through PNW 6 (Zhang et al. 2009).  Although 

immune function was not altered, increased thymus weights, as well as altered serum immunoglobin 

levels and lymphocyte proliferation, were observed in the offspring of rat dams exposed to pentaBDE at 
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doses ≥5 mg/kg/day via gavage for 70 days prior to mating through PND 21 (~21 weeks) (Bondy et al.
 

2013); see Section 3.2.2.6 (Developmental Effects) for more details.  


In a poorly-reported study, immune end points were evaluated in mouse dams and offspring following
 

exposure to pentaBDE at 0, 50, 100, or 200 mg/kg/day via gavage from GD 6 to PND 21 (Hong et al. 


2010).  The absolute and relative spleen weights were significantly decreased in the 100 and 


200 mg/kg/day groups and the thymi of exposed dams were “weighed decreasingly” (quantitative data 


were not reported).  No histopathological alterations were observed in the spleen or thymus.  The study
 

abstract reports decreased cellularity of the spleen and thymus in dams; however, cellularity data for the 


dams are not reported in the results section of the paper.  No statistically significant increases in T- or
 

B-cell lymphocyte proliferation were observed, and no exposure-related changes in T-cell, B-cell, or
 

macrophage population distribution were observed in the spleen.  The study authors reported decreases in
 

serum IgM levels, but statistical significance was not reported.  No changes in serum IgG1 were 


observed.  The study authors also noted some immune effects in offspring, including decreased spleen 


weight and cellularity and altered serum immunoglobin levels on PND 21 in groups exposed to 


≥100 mg/kg/day and increased T-cell proliferation following in vitro exposure to concanavalin A (ConA)
 

at 200 mg/kg/day on PND 63; see Section 3.2.2.6 (Developmental Effects) for more details.  


DecaBDE:  One week following exposure to dietary decaBDE at 0 or 1,800 mg/kg/day for 28 days, mice
 

were intranasally infected with the RSV (Watanabe et al. 2010a).  No exposure-related differences in
 

pulmonary viral titers were observed 5 days post-infection (Watanabe et al. 2010a).  In contrast, 


pulmonary viral loads were increased post-infection in PND 28 offspring of mouse dams exposed to 


dietary decaBDE at doses ≥260 mg/kg/day from GD 10 to PND 21 (Watanabe et al. 2008, 2010b); see 


Section 3.2.2.6 (Developmental Effects) for more details. In another high-dose study, female mice 


exposed to decaBDE at 800 mg/kg every other day showed impaired CD4 T-cell function from 4 to 


10 months of exposure, compared with controls (Feng et al. 2016b).  Significant alterations in peripheral 


CD4 T-cells from exposed mice included significant decreases in in vitro cytokine production of TNF-α,
	

IFN-γ, and IL-2, decreased percentage of multi-functional CD4 T-cells (cells capable of producing
 

multiple cytokines following mitogen production), increased percentage of T regulatory cells
 

(CD4+CD25+Foxp3+), decreased percentage of proliferating CD4 T-cells, and decreased percentage of
 

antigen-specific CD4 T cells following in vivo Listeria monocytogenes infection.  


In rats exposed to decaBDE at 0 or 300 mg/kg/day via gavage for 21 days prior to mating through 


PND 21, the distribution of T-lymphocytes in the thymus was significantly altered in exposed rat dams, 
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with significantly decreased CD3+, CD4+, CD4+/CD8+, CC3+/CD8+, and CD3+/CD4+ T-cells and 

significantly increased CD4-/CD8- T-cells compared with control dams (Liu et al. 2012).  CD161+ NKCs 

were also significantly decreased, compared with controls.  Additionally, the lymphocyte stimulation 

index in response to in vitro PHA exposure was significantly reduced by ~2-fold in lymphocytes 

harvested from exposed rat dams, compared with control dams (Liu et al. 2012).  In another study, no 

dose-related changes were reported for T-cell, B-cell, or macrophage population distribution in the spleen 

of rats exposed to decaBDE at doses up to 60 mg/kg/day via gavage for 28 days (Van der ven et al. 

2008a).  

Following exposure to decaBDE at 300 mg/kg/day via gavage for 21 days prior to mating through 

PND 21, serum IgM and IgG were significantly decreased by 28 and 4%, respectively, compared with 

controls (Liu et al. 2012).  No exposure-related changes were observed in IFN- γ or IL-4 (Liu et al. 2012).  

Histopathological examinations of spleen, thymus, lymph node, and/or bone marrow tissues showed no 

effects in rats or mice exposed to dietary decaBDE at doses up 8,000 or 9,500 mg/kg/day, respectively, 

for 13 weeks (NTP 1986). In rat dams exposed to decaBDE at 0 or 300 mg/kg/day via gavage for 21 days 

prior to mating through PND 21 (~11 weeks), the exposed group showed significantly increased 

“histological scores” in the spleen and thymus compared with controls (methods of histological scoring 

and incidences of lesions were not reported) (Liu et al. 2012).  Lesions observed in the thymus of exposed 

rats included thickened thymus capsule, decreased lymphoid tissue in the cortex with adipose tissue 

replacement, increased medulla size, and obscured corticomedullary junction.  The spleen showed 

decreased size and number of lymphoid nodules, thinner lymphatic sheath around arteries, and fibrotic 

tissue with macrophages in the medulla. 

In a 28-day study, rats were exposed to decaBDE at 0, 1.87, 3.45, 7.5, 15, 30, or 60 mg/kg/day via gavage 

(Van der ven et al. 2008a).  The study authors reported a dose-related decreased in thymus weight in 

female rats (maximal decrease of 16.6%); however, the lowest dose at which the effect was observed was 

not reported.  Instead, results were reported in terms of BMD analysis (BMD/BMDLRD20%= 

75/43 mg/kg/day).  No dose-related changes were reported for male thymus weight or male or female 

spleen weight (Van der ven et al. 2008a).  Absolute and relative spleen weights were significantly 

decreased by 12 and 27%, respectively, in rat dams exposed to decaBDE at 300 mg/kg/day via gavage for 

21 days prior to mating through PND 21 (~11 weeks); no exposure-related changes were observed in 

thymus weight (Liu et al. 2012).  In other studies, no exposure-related changes in spleen weight were 

observed in rats exposed to decaBDE at doses up to 20 mg/kg/day via gavage for 8 weeks (Zhang et al. 
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2013a) or in mouse dams or PND 71 male offspring exposed to decaBDE at doses up to 1,500 mg/kg/day 

from GD 0 to 17 via gavage (Tseng et al. 2008). 

In a poorly-reported study, immune end points were evaluated in mouse dams and offspring following 

exposure to decaBDE at 0, 500, 2,500, or 12,500 mg/kg/day via gavage on GD 6 to PND 21 (Hong et al. 

2010).  No exposure-related changes were reported for maternal spleen or thymus weight or histology. 

T-cell lymphocyte proliferation (in response to ConA) was “slightly” increased.  No statistically 

significant increases in B-cell lymphocyte proliferation were observed and no exposure-related changes in 

T-cell, B-cell, or macrophage population distribution were observed in the spleen.  The study authors 

reported increased serum IgG1 and IgM levels; however, statistics were not reported and changes do not 

appear dose-related in graphically-presented data.  In offspring, altered spleen cell populations were noted 

on PND 21; see Section 3.2.2.6 (Developmental Effects) for more details.  

Chronic-Duration Animal Studies 

Lower-brominated PBDEs:  No chronic-duration studies analyzing immune effects were located for 

lower-brominated PBDEs. 

DecaBDE:  Following chronic ingestion of decaBDE for 103 weeks, an increased incidence of splenic 

hematopoiesis was observed in female rats at ≥1,200 mg/kg/day (12/49, 24/48, and 17/50 at 0, 1,200, and 

2,550 mg/kg/day, respectively); only the incidence in the mid-dose group was statistically significant.  In 

male rats, the incidence of splenic fibrosis was significantly increased at 2,240 mg/kg/day (5/49, 8/50, and 

13/49 at 0, 1,120, and 2,240 mg/kg/day, respectively) (NTP 1983).  The incidence of lymphoid 

hyperplasia in the mandibular lymph node was also significantly increased in male rats at 

2,240 mg/kg/day (4/50, 6/50, and 13/49 at 0, 1,120, and 2,240 mg/kg/day, respectively) (NTP 1983).  No 

exposure-related histopathological lesions were observed in male or female mice following chronic 

ingestion of decaBDE for 103 weeks at doses up to 6,650 and 7,780 mg/kg/day, respectively (NTP 1983). 

Summary.  Evidence from animals suggest that PBDE exposure may cause immune suppression, 

particularly in infants or children (see Section 3.2.2.6, Developmental Effects for more details), but data 

are limited and inconsistent.  Additionally, comprehensive immunological evaluations have not been 

performed and human data are limited. Therefore, currently available information is insufficient to 

adequately characterize the human immunotoxic potential of PBDEs. The highest NOAEL values and all 
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LOAEL values from each reliable study for immunological effects in each species and duration category 

are recorded in Table 3-2 and plotted in Figure 3-2. 

3.2.2.4  Neurological Effects 

Human Studies.  No association was found between serum PBDE concentrations (BDE 28, BDE 47, 

BDE 66, BDE 85, BDE 99, BDE 100, BDE 138, BDE 153, BDE 154, and their sum) and 

neuropsychological function assessed by 34 tests of cognitive and motor function, affective state, and 

olfactory function in a study population of 144 volunteers (67 males and 77 females) between the ages of 

55 and 74 who lived for at least 25 years in the upper Hudson valley of New York State (Fitzgerald et al. 

2012).  Median total serum PBDE concentration in the study population was 23.9 ppb (lipid weight), with 

the detection limit exceeded in 89% of the population.  Neurobehavioral function in adolescents was 

studied by Kicinski et al. (2012).  The study population included 515 secondary school students 

(271 boys) from Flanders, Belgium, with a mean age of 14.9 years. The students were given a 

computerized battery of neurological tests.  PBDE concentrations (BDE 28, BDE 47, BDE 99, BDE 100, 

BDE 153, BDE 154, BDE 183, and BDE 209) were measured in the serum.  The median concentration of 

total PBDE in the serum was 7 ng/L.  Serum PBDE concentrations were not associated with most aspects 

of neurological performance investigated, but there was a significant deterioration in performance in the 

finger tapping test with increasing PBDE level, suggesting an effect of PBDE on motor activity.  Studies 

of neurological function in relation to PBDE concentrations in young children are discussed in Section 

3.2.2.6 on Developmental Effects. 

Acute-Duration Animal Studies 

Lower-brominated PBDEs:  In a neurotoxicity screen, adult male rats were exposed once to pentaBDE at 

0, 0.6, or 1.2 mg/kg via gavage (Belles et al. 2010).  Rats were assessed using a functional observation 

battery 3, 21, and 44 days after pentaBDE administration.  After 45 days, rats were assessed in a variety 

of behavioral tests over 9 days, including open-field activity, passive avoidance test, and the Morris water 

maze.  Following completion of behavioral tests, rats were sacrificed and brains were removed for 

biochemical analysis of oxidative stress markers (right hemisphere) and histopathological (left 

hemisphere) examinations of the cortex, hippocampus, and cerebellum.  No exposure-related 

neurobehavioral, histological, or biochemical effects were observed. 
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In developing animals, a series of studies evaluated neurobehavior at 2–8 months of age following single-

day exposure to lower-brominated PBDEs on PND 3, 10, or 19 in rats and mice.  Collectively, these 

studies showed altered open-field activity, impaired habituation and altered learning and memory in rats 

and mice exposed to penta-, hexa-, tetra-, or octaBDE at doses as low as 0.4, 0.45, 1, or 16.8 mg/kg, 

respectively (Eriksson et al. 2001, 2002b, 2006; Fischer et al. 2008; Hallgren et al. 2015; He et al. 2009, 

2011; Gee and Moser 2008; Sand et al. 2004; Viberg et al. 2002, 2003a, 2004a, 2004b, 2005, 2006).  No 

changes in open-field behavior were observed in mice exposed to heptaBDE at 15.2 mg/kg or nonaBDE 

at 18.5 on PND 10 (Viberg et al. 2006).  Besides behavioral changes, other significant neuro

developmental effects observed in these studies included ultrastructural changes, altered nicotinic receptor 

density, and altered gene and protein expression levels in the hippocampus.  Altered open-field behavior 

was also observed in PND 36 offspring following acute gestational exposure to pentaBDE at doses as low 

as 0.06 mg/kg via gavage on GD 6 (Kuriyama et al. 2004).  See Section 3.2.2.6 (Developmental Effects) 

for more details regarding neurodevelopmental effects of acute exposure to lower-brominated PBDEs. 

DecaBDE:  No studies evaluating neurobehavior or neuropathology in adult rats or mice following acute 

exposure to decaBDE were identified; however, there were no overt signs of neurotoxicity in rats and 

mice exposed to decaBDE in estimated dietary doses of ≤16,000 and ≤19,000 mg/kg/day, respectively, 

for 14 days (NTP 1986).  

In developing animals, a series of studies reported decreased spontaneous activity and impaired 

habituation in open-field testing in 2–6-month-old mice that were exposed to decaBDE on PND 3 at 

doses as low as 2.22 mg/kg (Buratovic et al. 2014; Johansson et al. 2008; Viberg et al. 2003b, 2007).  

These changes in open-field behaviors were not observed in animals exposed on PND 10 or 19.  In 

contrast, significantly increased locomotor activity during the first 1.5 hours of a 2-hour observation 

period was observed in PND 70 males following exposure to decaBDE at 20 mg/kg/day via micropipette 

from PND 2 to 15 (Rice et al. 2007).  No changes in locomotor activity were observed at PND 70 in 

females or at 1 year in either sex at doses up to 20 mg/kg/day (Rice et al. 2007).  In operant training and 

visual discrimination tasks, learning impairments and impulsivity were observed in aging mice 

(16 months old), but not young adult mice (3 months old), that had been exposed to decaBDE at 

20 mg/kg/day from PND 2 to 15 (Rice et al. 2009).  See Section 3.2.2.6 (Developmental Effects) for more 

details regarding neurodevelopmental effects of acute exposure to decaBDE. 
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Intermediate-Duration Animal Studies 

Lower-brominated PBDEs:  No exposure-related changes were observed in open-field behavior, anxiety-

like behavior in the elevated plus-maze performance, or learning and memory in the Morris water maze in 

male rats following exposure to pentaBDE at doses up to 0.015 mg/kg/day (highest dose tested) via 

gavage for 90 days (Daubie et al. 2011).  In a higher dose study, impaired attention and inhibitory control 

was observed in a series of 5-choice serial reaction time tasks assessed from PND 40 to 125 in male mice 

exposed to dietary pentaBDE at 26.2 mg/kg/day from PND 1 to 125; no exposure-related changes were 

observed at 17.5 mg/kg/day (Driscoll et al. 2009).  In adult male rats exposed to tetraBDE at 0, 0.1, 0.5, or 

1 mg/kg/day via gavage for 30 days, rats in all exposure groups showed impaired learning and memory in 

the Morris water maze (Yan et al. 2012).  Exposed rats required significantly more time to find the hidden 

platform in the Morris water maze compared with control group, without showing any differences in 

swim speed.  Additionally, significant decreases in the time spent in the target quadrant and the number of 

crossings over the original platform location were observed during the retention trial on day 5 (Yan et al. 

2012). 

No exposure-related changes in brain weight and/or histology were observed in rats exposed to pentaBDE 

at gavage doses up to 250 mg/kg/day for 28 days (Oberg et al. 2010; Van der ven et al. 2008b), in rats 

exposed to pentaBDE at gavage doses up to 0.015 mg/kg/day for 90 days (Daubie et al. 2011), in rats 

exposed to penta- or octaBDE at dietary doses up to 750 mg/kg/day for 28 or 90 days (IRDC 1976, 1977; 

WIL Research Laboratories 1984), in rat dams or pups exposed to pentaBDE at a gavage dose of 

18 mg/kg/day from GD 6 to PND 18 (Ellis-Hutchings et al. 2006), or in mink sows or kits exposed to 

pentaBDE at dietary doses up to 0.31 mg/kg/day for 4 weeks prior to mating through PNW 6 or 33 

(Zhang et al. 2009). 

The density of NMDA receptor subunits, NR1 and NR2B, and the glutamate receptor, Glu, was 

determined in the CA1, CA3, and dentate gyrus of the hippocampus in adult male rats exposed to 

tetraBDE at 0, 0.1, 0.5, or 1 mg/kg/day via gavage for 30 days (Yan et al. 2012). Immunohistochemical 

staining showed significant decreases in the density of NR1 and Glu in the hippocampus of all exposed 

rats and NR2B in the hippocampus of rats exposed to 0.5 and 1 mg/kg/day.  Additionally, significant 

decreases in hippocampal mRNA levels were observed for NR1 and NR2C in all dose groups and NR2D 

in the 0.5 and 1 mg/kg/day groups.  No exposure-related changes were observed in NR2A or NR2B 

mRNA levels (Yan et al. 2012). 
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Cholinergic effects were evaluated in mink sows and kits exposed to dietary pentaBDE at 0, 0.01, 0.05, or 

0.25 mg/kg/day from pre-mating day 28 to PNW 6 (Bull et al. 2007).  No exposure-related effects were 

observed in acetylcholinesterase concentration (ACh), acetylcholinesterase activity (ChE), or muscarinic 

receptor (mAChR) or nicotinic receptor (nAChR) binding in the cerebral cortices of sows or kits.  Plasma 

ChE activity in sows from the 0.25 mg/kg/day group was significantly increased by 3-fold, compared 

with controls.  Plasma ChE activity was not significantly correlated with cortical ChE activity; however, 

it was significantly correlated with absolute and relative liver weights. Therefore, altered ChE activity in 

plasma in the high-dose sows may reflect exposure-related effects in the liver, rather than the central 

nervous system.  No changes were observed in plasma ChE activity in kits (Bull et al. 2007). 

Several studies have reported delayed ontogeny of reflexes, neurobehavioral impairments, and 

ultrastructural and biochemical changes in the hippocampus of offspring after gestational and lactational 

exposure to penta- or tetraBDE in rats and mice at doses as low as 2 and 0.03 mg/kg/day, respectively 

(Blanco et al. 2013; Bowers et al. 2015; Branchi et al. 2001, 2002, 2005; Cheng et al. 2009; Koenig et al. 

2012; Ta et al. 2011; Woods et al. 2012). See Section 3.2.2.6 (Developmental Effects) for more details 

regarding neurodevelopmental effects of intermediate-duration exposure to lower-brominated PBDEs. 

DecaBDE:  Following a 15-day exposure to decaBDE at 20 mg/kg/day via gavage, male mice showed 

decreased anxiety behavior in the elevated zero maze, including decreased latency to first entry into the 

open region, increased time spent and number of entries into the open region, and increased number of 

head dips, compared with controls (Heredia et al. 2012).  No exposure-related changes were observed in 

anxiety behaviors in the light/dark test, in learning or memory in the Morris water maze, or in general 

neurological behaviors assessed using a functional observation battery (Heredia et al. 2012).  In another 

study, no changes were observed in open-field behavior of male rats exposed to decaBDE at doses up to 

50 mg/kg/day via gavage for 90 days (Wang et al. 2011b).  No overt signs of neurotoxicity were observed 

in rats and mice exposed to decaBDE in estimated dietary doses of ≤8,000 and ≤9,500 mg/kg/day, 

respectively, for 13 weeks (NTP 1986).  

Rats exposed to decaBDE at dietary doses up to 90 mg/kg/day for 28 days showed no change in brain 

weight (IRDC 1976).  No exposure-related changes in brain weight or AchE activity were observed in 

mice exposed to decaBDE at doses up to 160 mg/kg/day via gavage for 15, 30, or 60 days (Liang et al. 

2010). 
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There is limited evidence for neurodevelopmental effects following gestational and lactational exposure 

to decaBDE.  No neurobehavioral changes were observed in rat offspring exposed to decaBDE at doses 

up to 1,000 mg/kg/day from GD 6 to PND 21 (Biesemeier et al. 2011).  However, impaired spatial 

learning was observed in offspring of rat dams exposed to decaBDE at doses ≥30 mg/kg/day from GD 1 

to 14 (Chen et al. 2014).  Additionally, altered hippocampal electrophysiology was observed in mice 

offspring exposed to 20.1 mg/kg/day from GD 1 to PND 41 (Xing et al. 2009) and altered hippocampal 

immunohistochemistry was observed in mice offspring exposed to ≥15 mg/kg/day from GD 10 to 

PND 21 (Fujimoto et al. 2011).  See Section 3.2.2.6 (Developmental Effects) for more details regarding 

neurodevelopmental effects of intermediate-duration exposure to decaBDE. 

Chronic-Duration Animal Studies 

Lower-brominated PBDEs:  No chronic-duration studies analyzing neurological effects were located for 

lower-brominated PBDEs. 

DecaBDE:  There were no indications of neurotoxicity in rats and mice in lifetime feeding studies of 

decaBDE at doses as high as 2,550 and 7,780 mg/kg/day, respectively, as assessed by overt clinical signs 

and nervous system histopathology (NTP 1986).  Although the high doses and extended exposure 

durations in the NTP (1986) studies provided opportunities for the induction and/or development of 

effects, neurotoxicity is incompletely evaluated due to the lack of testing for subtle behavioral and other 

sensitive neurological end points. 

Summary.  While the nervous system is a target of concern during early development (see 

Section 3.2.2.6, Development Effects for more details), it is unclear if the developed nervous system is a 

target of oral PBDE toxicity.  Animal data suggest the oral PBDE exposure may lead to neurobehavioral 

changes; however, available information is insufficient to adequately characterize the neurotoxic potential 

of PBDEs in adults and adolescents. The highest NOAEL values and all LOAEL values from each 

reliable study for neurological effects in each species and duration category are recorded in Table 3-2 and 

plotted in Figure 3-2. 

3.2.2.5  Reproductive Effects 

Human Studies. Two studies have demonstrated reproductive effects in men associated with exposure to 

PBDEs.  In a small study limited to 10 young adult Japanese males, strong, statistically significant inverse 
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correlations were found between serum levels of BDE 153 and sperm concentration and testis size 

(Akutsu et al. 2008).  Both blood and sperm were collected monthly and pooled for each participant over 

1 year.  BDE 153 concentrations for the 10 participants ranged from 0.37 to 1.1 ng/g lipid.  There was no 

relationship to sperm concentration or testes size for other PBDE congeners or for the sum of the most 

prevalent congeners, which included BDE 153 (BDE 47, BDE 99, BDE 100, and BDE 153) and ranged 

from 1.1 to 8.6 ng/g lipid for the 10 participants.  Among a group of 52 Canadian men recruited at a 

fertility clinic, sperm mobility was significantly reduced in association with increased serum PBDE 

concentrations (BDE 47, BDE 100, and total) (Abdelouahab et al. 2011).  Results for BDE 153 were 

similar, but not statistically significant.  Relationships between PBDE and sperm concentration were 

consistently negative as well, but also not significant.  The median ∑PBDE concentration in this 

population was 0.302 ng/mL and the maximum was 2.250 ng/mL. A study of 468 male partners of 

couples discontinuing contraception for purposes of becoming pregnant from Michigan and Texas found 

that, in general, serum concentrations PBDEs were negatively associated with parameters of semen 

quality, specifically increased percentages of abnormal morphology (Mumford et al. 2015).  The study 

evaluated 10 BDEs: BDE 17, BDE 28, BDE 47, BDE 66, BDE 85, BDE 99, BDE 100, BDE 153, 

BDE 154, and BDE 183.  BDE 153, however, was associated with increased sperm concentration.  The 

95th percentile serum concentrations (unadjusted for lipid content) for the BDEs analyzed ranged from 

0.007 ng/g serum for BDE 183 to 0.761 ng/g serum for BDE 47. Significant associations at the α=0.01 

level were found only for BDE 17 (increased sperm with coiled tail) and for BDE 28 (increased 

bicephalic sperm). A cross-sectional study that included 99 men from Greenland, 100 from Poland, and 

100 from Ukraine found no association between serum levels of BDE 47 and BDE 153 with parameters 

of semen quality including markers of DNA damage and apoptosis (Toft et al. 2014).  Among the three 

groups, median concentrations of BDE 47 ranged from 0.2 to 2.0 ng/g lipid and median concentrations of 

BDE 153 ranged from 0.3 to 2.7 ng/g lipid. 

Studies of hormone levels in men in relation to PBDE concentrations have not produced consistent 

results. Concentrations of PBDE (BDE 47, BDE 99, and BDE 100) in house dust samples were 

significantly associated with changes in some sex hormone levels (decreased FSH, LH, and free androgen 

index, and increased Inhibin B and sex hormone binding globulin [SHBG]), although not testosterone or 

estradiol, in 24 adult men recruited through a Massachusetts infertility clinic (Meeker et al. 2009). 

Median and maximum concentrations of PBDE in dust collected from houses of study subjects were 

500 and 7,620 ng/g dust for BDE 47, 838 and 9,220 ng/g dust for BDE 99, and 180 and 2,830 ng/g dust 

for BDE 100.  A larger subsequent study by the same researchers with 38 additional subjects using the 

same design found a significant negative correlation with FSH and significant positive correlations with 
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estradiol and SHBG for pentaBDE (sum of BDE 47, BDE 99, and BDE 100; median and maximum 

concentrations of 1,049 and 22,300 ng/g in dust), significant positive correlations with testosterone and 

LH for octaBDE (sum of BDE 183 and BDE 201; median and maximum concentrations of 30.5 and 

1,181 ng/g in dust), and a significant negative correlation with testosterone for decaBDE (sum of BDE 

206, BDE 207, BDE 208, and BDE 209; median and maximum concentrations of 1,800 and 38,483 ng/g 

in dust) (Johnson et al. 2013).  No relationships were found between serum concentrations of BDE 47 and 

testosterone, FSH, LH, or prolactin in adult male Baltic Sea area residents of Sweden and Latvia with a 

wide range of fish consumption behavior and BDE 47 concentrations ranging from 0.10 ng/g lipid at the 

10th percentile to 5.16 ng/g lipid at the 90th percentile (median=1.04 ng/g lipid) (Hagmar et al. 2001).  In a 

study of serum PBDE and hormone levels in adult male sport fish consumers from the Great Lakes, a 

significant positive relationship was found for BDE 47 (but not other congeners) and serum testosterone 

levels (Turyk et al. 2008).  BDE 47 concentrations in this population ranged from 0.01 to 5.90 ng/g 

(median=0.11 ng/g), while ∑PBDE concentrations ranged from 0.13 to 10.15 ng/g (median=0.26 ng/g). 

Serum concentrations of FSH, LH, or estradiol were not associated with serum levels of BDE 47 or 

BDE 153 in a study of 299 spouses of pregnant women from Greenland, Poland, and Ukraine (Toft et al. 

2014).  Median concentrations of BDE 47 ranged from 0.2 to 2.0 ng/g lipid and median concentrations of 

BDE 153 ranged from 0.3 to 2.7 ng/g lipid.  

In women, Chao et al. (2007) found no significant relationship between concentrations of PBDE in breast 

milk and pre-pregnancy menstrual cycle length (by questionnaire) in an analysis of 20 pregnant women 

from Taiwan with median PBDE concentrations in breast milk of 3.65 ng/g lipid, predominantly BDE 47 

and BDE 153.  However, in a larger study of 46 pregnant Taiwanese women recruited several years later, 

Chao et al. (2010) found significant increases in average length of pre-pregnancy menstrual cycle with 

increased breast milk concentrations of PBDE (total and multiple individual congeners).  Median breast 

milk total PBDE concentration in this study group was 2.84 ng/g lipid, with predominant congeners being 

BDE 47, BDE 153, and BDE 209.  A study of 42 Cree women of James Bay, Canada, reported that 

concentrations of BDE 47 and BDE 153 in plasma were associated with increased menstrual cycle length 

(Wainman et al. 2016).  Geometric mean plasma concentrations of BDE 47 and BDE 153 were 14.1 and 

4.5 ng/g lipid, respectively, which according to the investigators, were comparable to those reported for 

women 20–39 years old from the general Canadian population; serum cadmium and selenium were also 

associated with increased cycle length.  In the study by Chao et al. (2010), age at menarche was not 

related to breast milk PBDE concentrations, but an analysis of data from a sample of 271 adolescent U.S. 

girls age 12–19 years with serum total PBDE concentrations ranging from 6.4 to 636.5 ng/g lipid 

(median=44.7 ng/g lipid) from NHANES (2003–2004) found that higher serum PBDE concentrations 

http:median=0.26
http:median=0.11
http:median=1.04
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were associated with younger age of menarche in this population (Chen et al. 2011).  There was no 

relationship between mid-pregnancy serum PBDE concentrations and pre-pregnancy menstrual cycling in 

a cohort of 223 pregnant low-income women from the Salinas Valley of California (part of the 

CHAMACOS study) (Harley et al. 2010), but there were significant decreases in fecundability 

(i.e., increases in time to pregnancy between stopping contraception and becoming pregnant) associated 

with increased serum concentrations of BDE 47 (geometric mean=14.9 ng/g lipid), BDE 99 (geometic 

mean=4.4 ng/g lipid), BDE 100 (geometic mean=2.8 ng/g lipid), BDE 153 (geometic mean=2.5 ng/g 

lipid), and their sum in this population and/or a subset comprising 107 women actively trying to become 

pregnant.  However, fecundability was not significantly related to serum PBDE concentrations 

(concentrations not reported) in a cohort of 501 Michigan and Texas couples followed prospectively for 

1 year after discontinuing contraception for the purpose of becoming pregnant (Buck Louis et al. 2013).  

Blood was collected from both male and female partners in this study and fecundity of the couple was 

assessed in relation to each partner’s exposure.  A study of 65 women undergoing in vitro fertilization 

found no association between serum PBDE concentrations (median=12.6 ng/g lipid, maximum=113 ng/g 

lipid) and risk of implantation failure, but did find a significantly increased risk of failure associated with 

increased (i.e., detectable) concentrations of BDE 153 (but not other congeners or total PBDE) in 

follicular fluid (Johnson et al. 2012).  No significant relationship was found between concentrations of the 

PBDE metabolite 6-OH-BDE-47, which ranged from <4 to 127 pg/g wet weight, with a median of 

26 pg/g wet weight) and 17β-estradiol in umbilical cord serum collected from 26 births in South Korea 

(Wan et al. 2010).  Serum PBDE concentrations had no effect on expression of genes for the sex steroid 

enzymes aromatase (CYP19A1) and 17-α-hydroxylase or estrogen receptors α and β (ESR1 and ESR2) in 

leukocytes collected from 139 adult daughters of Michigan fisheaters with serum total PBDE 

concentrations ranging from 4.3 ng/g lipid at the 5th percentile to 209.5 ng/g lipid at the 95th percentile 

(median=33.8 ng/g lipid) (Karmaus et al. 2011). 

Vagi et al. (2014 examined the association between blood levels of multiple environmental pollutants and 

Polycystic Ovary Syndrome (PCOS). Fifty-two PCOs patients and 50 controls were included in the 

study.  PCOS is an endocrine- metabolic disorder characterized by ovulatory dysfunction, hirsutism, or 

elevated levels of androgens in blood.  Eleven PBDEs were analyzed in blood, but only six had detectable 

serum concentrations (however, only five are listed in the report: BDE 28, BDE 47, BDE 99, BDE 100, 

and BDE 153).  Cases and controls had comparable serum concentrations of these BDEs, and in both 

groups, BDE 47 had the highest concentration (~25.5 ng/g lipid).  After controlling for age, BMI, and 

ethnicity, none of the measured BDEs was associated with increased risk of PCOS. 
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Concentrations of PBDEs in omental fat or serum were not associated with risk of uterine fibroids in 

women undergoing laparoscopy or laparotomy in a study conducted in Salt Lake City, Utah, and San 

Francisco, California (Trabert et al. 2015).  Ninety-nine women had fibroids and 374 had none.  Seven 

PBDEs were measured: BDE 47, BDE 99, BDE 100, BDE 153, BDE 154, BDE 183, and BDE 209.  

Whether in omental fat or serum, geometric mean concentrations of PBDEs were comparable between 

women who had fibroids and those who did not.  Odds of a fibroid diagnosis (and corresponding 95% 

CIs) showed no association with PBDEs. 

Acute-Duration Animal Studies 

Lower-brominated PBDEs:  There are limited data regarding the reproductive effects of acute exposure to 

lower-brominated PBDEs in females.  In rat dams exposed once to tetraBDE at 0, 0.14, or 0.7 mg/kg on 

GD 6 via gavage, a significant 17% increase in paired ovary weight was observed at 0.14 mg/kg, but not 

0.7 mg/kg (Talsness et al. 2008).  No treatment-related changes in gravid uterine weight or number of 

implantation or resorptions were observed in rat dams exposed to pentaBDE at doses up to 2 mg/kg/day 

from GD 6 to 19 (Blanco et al. 2012).  In ovariectomized female mice, no exposure-related changes were 

observed in uterine wet weight, uterine epithelial height, or vaginal epithelium thickness following 

exposure to pentaBDE at doses up to 300 mg/kg/day for 3 days via gavage, with or without co-exposure 

to β-estradiol-3-benzoate (Mercado-Feliciano and Bigsby 2008a). 

The effects of acute pentaBDE exposure on androgen-dependent tissue weights was assessed in castrated 

male rats supplemented with subcutaneous injections of testosterone (to ensure equal levels of circulating 

testosterone in the exposed and control groups) in a Herschberger assay (Stoker et al. 2005).  Male rats 

that were castrated on PND 42 were exposed to pentaBDE at 0, 30, 60, 120, or 240 mg/kg/day from 

PND 53 to 61 via gavage, and daily gavage exposures were followed by daily subcutaneous injections of 

0.4 mg/kg testosterone.  On PND 62, significant decreases in androgen-dependent tissue weights included 

a ~20–55% decrease in ventral prostate weight at ≥30 mg/kg/day, a ~20–60% decrease in seminal vesicle 

weight at ≥60 mg/kg/day, a ~28–41% decrease in Cowper’s gland weight at ≥120 mg/kg/day, and a 22– 

29% decrease in the gland penis and levator ani bulbo cavernosus weight at 240 mg/kg/day (Stoker et al. 

2005). 

There is limited evidence for exposure-related effects on serum reproductive hormones levels in male rats 

following acute exposure to pentaBDE.  Serum testosterone levels were significantly decreased by ~40– 

45% in male rats 45 days after a single gavage exposure to pentaBDE at doses ≥0.6 mg/kg; serum 
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progesterone was significantly decreased by ~40% at 1.2 mg/kg (data presented graphically) (Alonso et 

al. 2010).  Significantly increased serum levels of LH were reported in male rats (~65%, data reported 

graphically) following exposure to pentaBDE at 60 mg/kg/day for 3 days (Stoker et al. 2005).  No 

exposure-related changes were observed in serum testosterone, androsteridione, or estrone levels at doses 

up to 60 mg/kg/day (Stoker et al. 2005).  Following a single gavage administration of pentaBDE at 0, 

0.06, or 0.3 mg/kg on GD 6, no exposure-related changes in serum testosterone or LH levels were 

observed in F1 male rats on PND 140 (Kuriyama et al. 2005).  

As discussed in Section 3.2.2.6 (Developmental Effects), F1 reproductive success was assessed following 

a single gavage administration of pentaBDE at 0, 0.06 or 0.3 mg/kg or tetraBDE at 0, 0.14, or 0.7 mg/kg 

on GD 6 in rat dams (Kuriyama et al. 2005; Talsness et al. 2005, 2008).  Following pentaBDE exposure, 

no significant exposure-related effects were observed in F1 male fertility when exposed males were mated 

with unexposed females, and the only mating behavior significantly altered was a 32% decrease in the 

percent of males with two or more ejaculations in F1 males from the 0.3 mg/kg group (Kuriyama et al. 

2005).  Similarly, no changes in female pregnancy rate was observed in F1 females mated to unexposed 

males following exposure to pentaBDE or tetraBDE (Talsness et al. 2005, 2008).  F1 male reproductive 

performance was not assessed following tetraBDE exposure.  Despite a lack of exposure-related 

impairment in reproductive success following acute developmental exposure to penta- or tetraBDE, 

reductions in testicular weight, sperm/spermatid number, and daily sperm production were observed in F1 

males exposed to pentaBDE at ≥0.06 mg/kg/day, and a decreased number of secondary follicles and 

ultrastructural changes in the ovaries were observed in F1 females exposed to pentaBDE at 

≥0.06 mg/kg/day or tetraBDE at ≥0.14 mg/kg/day (Kuriyama et al. 2005; Talsness et al. 2005, 2008). 

In a one-generation study in mink, females exposed to pentaBDE at doses ≥0.25 mg/kg/day from pre

mating day 28 through PNW 6 did not whelp (Bull et al. 2007; Zhang et al. 2009).  It is not clear in the 

Bull et al. (2007) study whether mink exposed to 0.25 mg/kg/day never became pregnant or had complete 

litter loss.  However, Zhang et al. (2009) reported that females exposed to 0.31 mg/kg/day had no 

exposure-related changes in mating success; rather, sows showed complete litter loss with 70% showing 

clear postimplantation loss. 

DecaBDE:  In mouse dams exposed to decaBDE at 0, 150, 750, 1,500, or 2,000 mg/kg/day via gavage 

from GD 7 to 9, the percentage of postimplantation loss per litter was significantly increased by 3, 2.7, 

and 9.8% at 750, 1,500, and 2,000 mg/kg/day, respectively, compared with control (Chi et al. 2011).  At 

1,500 and 2,000 mg/kg/day, the percentage of resorptions per litter was also significantly increased by 
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2.7 and 8.6%, respectively.  Additionally, the percentage of live fetuses per litter was significantly 

decreased by 10% in the high-dose group (Chi et al. 2011).  These effects could reflect reproductive 

toxicity in the dams or developmental toxicity in the fetuses (see Section 3.2.2.6, Developmental Effects). 

No other acute-duration studies analyzing reproductive effects were located for decaBDE. 

Intermediate-Duration Animal Studies 

Lower-brominated PBDEs:  No exposure-related changes were observed in reproductive end points 

(number of pregnancies, gestation length, number, size, or sex ratio of litters) in rats exposed to 

pentaBDE at doses up to 25 mg/kg/day for 70 days prior to mating until PND 42 via gavage (Bondy et al. 

2013), in rats fed vanilla wafers containing pentaBDE at doses up to 11.4 mg/kg/day from pre-mating 

day 28 through PND 21 (Poon et al. 2011), in mice exposed to tetraBDE at doses up to 0.1 mg/kg/day via 

gavage from pre-mating day 28 through PND 21 (Woods et al. 2012), or in mice fed cornflakes 

containing tetraBDE at doses up to 1 mg/kg/day from pre-mating day 28 through PND 21 (Koenig et al. 

2012; Ta et al. 2011).  Similarly, no exposure-related effects on litter parameters (successful delivery of 

litters, gestation length, litter size, sex ratio, number of live pups) were observed in rats or mice exposed 

to pentaBDE at doses up to 2 or 10 mg/kg/day, respectively, from GD 1 or 6 to PND 21 via gavage 

(Branchi et al. 2005; Cheng et al. 2009; Zhao et al. 2014), in rats exposed to pentaBDE at doses up to 

30 mg/kg/day from GD 1 to PND 21 via dosed cookies (Bowers et al. 2015), or rats exposed to dietary 

tetraBDE at doses up to 32 mg/kg/day from GD 1 to PND 14 (Wang et al. 2011a). The number of litters 

surviving until PND 8 was significantly decreased following exposure to tetraBDE at 0.1 mg/kg/day from 

pre-mating day 28 through PND 21 in one study (Woods et al. 2012); however, reduced pup survival was 

not reported in other studies (Bondy et al. 2013; Koenig et al. 2012; Poon et al. 2011; Ta et al. 2011; 

Wang et al. 2011a).  

Male rats exposed to tetraBDE at 1 mg/kg/day via gavage for 8 weeks showed a significant 24% decrease 

in daily sperm production; no exposure-related effects were observed at doses ≤0.03 mg/kg/day (Zhang et 

al. 2013b).  In another study, sperm morphology, motility, and capacitation were evaluated in mice 

following gavage exposure to tetraBDE at 0, 0.0015, 0.045, 1.5, or 30 mg/kg/day for 30 days (Wang et al. 

2013).  No exposure-related changes in sperm morphology or sperm motility were observed.  A 

significantly decreased rate of sperm capacitation (% B-type [mature] sperm) was observed in the 0.0015, 

0.045, and 30 mg/kg/day groups, but not in the 1.5 mg/kg/day group (Wang et al. 2013).  No exposure-

related changes in sperm counts, motility, or DNA damage were observed in rats exposed to a penta
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decaBDE mixture (52.1% pentaBDE, 44.2% decaBDE, 0.4% octaBDE) at dietary doses up to 

20 mg/kg/day for 70 days (Ernest et al. 2012). 

Microscopic changes in the testes of rats were observed following exposure to tetraBDE at 

≥0.03 mg/kg/day via gavage for 8 weeks, including increased epithelial thickness, vacuolar spaces in the 

seminiferous epithelium, and increased number of multinucleated giant cells (arising from spermatocytes 

that aborted meiosis); no histopathological changes were observed at 0.001 mg/kg/day (Huang et al. 2015; 

Zhang et al. 2013b).  Additionally, the number of apoptotic cells was significantly increased by 2- and 

3-fold in the testes of rats from the 0.03 and 1 mg/kg/day groups, respectively (Huang et al. 2015; Zhang 

et al. 2013b).  In similarly-exposed rats, co-treatment with dexamethasone phosphate (DEX; a CYP3A1 

inducer) “aggravated” the observed histopathological effects (Zhang et al. 2013b).  Mice exposed to 

tetraBDE at 0, 0.0015, 0.045, 1.5, or 30 mg/kg/day via gavage for 30 days also showed testicular effects 

at doses ≥0.045 mg/kg/day, including “some” seminiferous tubules with complete germ cell loss and a 

Sertoli cell-only phenotype (incidence not reported) and a dose-related increase in the number of 

apoptotic cells (Wang et al. 2013).  No exposure-related changes were observed in testes weight at doses 

up to 30 mg/kg/day (Wang et al. 2013).  In other studies, exposure-related changes were not observed in 

organ weight or histology in male or female reproductive tissues from mice exposed to tetraBDE at 

dietary doses of 0.45 mg/kg/day for 28 days (Maranghi et al. 2013), rats exposed to penta- or octaBDE at 

dietary doses up to 750 mg/kg/day for 28–90 days (IRDC 1976, 1977; WIL Research Laboratories), rats 

exposed to a penta-decaBDE mixture (52.1% pentaBDE, 44.2% decaBDE, 0.4% octaBDE) at dietary 

doses up to 20 mg/kg/day for 70 days (Ernest et al. 2012), rats exposed to pentaBDE at gavage doses up 

to 250 mg/kg/day for 15–28 days (Becker et al. 2012; Oberg et al. 2010), or ovariectomized mice exposed 

to pentaBDE at 50 mg/kg/day for 34 days via gavage (with or without β-estradiol-3-benzoate co-

exposure) (Mercado-Feliciano and Bigsby 2008a).  Additionally, organ weight changes were not observed 

in F0 or F1 rats exposed to pentaBDE at doses up to 25 mg/kg/day via gavage from pre-mating day 70 to 

PND 42 (Bondy et al. 2013) or F0 or F1 mink exposed to dietary pentaBDE at doses up to 

0.31 mg/kg/day for 4 weeks prior to mating through PNW 6 or 33 (Zhang et al. 2009). 

Following exposure to pentaBDE at 0, 3, 30, or 60 mg/kg/day for 15 days via gavage, serum prolactin 

was significantly decreased by 67% at 60 mg/kg/day in male rats (Becker et al. 2012). While testosterone 

and FSH levels were not significantly altered at any specific dose (based on pair-wise analysis), trend 

tests showed significant dose-dependent increases in testosterone and FSH levels; LH and E2 were below 

the detection limit in all groups (Becker et al. 2012).  In contrast, a repeat of the same study in a different 

laboratory showed no exposure-related changes in serum testosterone, LH, FSH, E2, or prolactin in male 
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rats exposed to pentaBDE at doses up to 60 mg/kg/day for 15 days (Becker et al. 2012).  Similarly, male 

rats exposed to a penta-decaBDE mixture (52.1% pentaBDE, 44.2% decaBDE, 0.4% octaBDE) at dietary 

doses up to 20 mg/kg/day for 70 days did not show altered serum testosterone levels (Ernest et al. 2012). 

After exposure to tetraBDE for 8 weeks via gavage (6 days/week), male rats showed significant 

reductions in serum testosterone of ~35, 54, and 63% at 0.001, 0.03, or 1 mg/kg/day, respectively (data 

reported graphically) (Zhang et al. 2013b).  No exposure-related changes were observed in serum E2, 

FSH, or LH levels at doses up to 1 mg/kg/day (Zhang et al. 2013b).  In female mice exposed to dietary 

tetraBDE for 28 days, serum testosterone and E2 were significantly increased by 57 and 18% at 

0.45 mg/kg/day (only tested dose) (Maranghi et al. 2013). 

Biochemical analysis of rat testes showed significant dose-related elevations of mRNA levels of several 

apoptosis genes following exposure to tetraBDE at doses of 0.001–1 mg/kg/day via gavage for 8 weeks 

(6 days/week) (Zhang et al. 2013b).  Additionally, elevated levels of ROS were observed at 1 mg/kg/day 

(Zhang et al. 2013b).  Co-exposure to DEX (a CYP3A1 inducer) enhanced ROS-induction in the testes, 

with significant elevations observed at ≥0.001 mg/kg/day (Zhang et al. 2013b). No exposure-related 

changes were observed in testicular mRNA expression levels for genes involved in steroidogenesis (Star, 

Cyp17a1, Ar, Srd5a1, Srd 5a2, Cyp19a1, Esr1, Esr2) in rats following exposure to a penta-decaBDE 

mixture (52.1% pentaBDE, 44.2% decaBDE, 0.4% octaBDE) at dietary doses up to 20 mg/kg/day for 

70 days (Ernest et al. 2012). 

Exposure to lower-brominated PBDEs has been reported to cause reproductive effects in developing rats. 

Two companion studies evaluated reproductive system development following exposure to pentaBDE at 

0, 3, 30, or 60 mg/kg/day via gavage during pubertal development (PNDs 23–53 in males or PNDs 22–41 

in females) (Stoker et al. 2004) or 0, 60 or 120 mg/kg/day via gavage during pubertal development in 

males (PNDs 23–53) (Stoker et al. 2005).  In males, preputial separation (PPS) was significantly delayed 

by 1.7–5 days at ≥30 mg/kg/day, absolute ventral and lateral prostate weights and seminal vesicle weights 

were significantly decreased 16–29% at ≥60 mg/kg/day (in the absence of body weight effects), and 

serum prolactin was increased 2-fold at 60 mg/kg/day (not evaluated in the 120 mg/kg/day group).  There 

were no exposure-related changes in testicular weight or histology, epididymides histology, serum 

testosterone or LH, or pituitary LH or prolactin levels at doses up to 60–120 mg/kg/day (Stoker et al. 

2004, 2005).  In females, vaginal opening was significantly delayed by 1.8 days in the 60 mg/kg/day 

group.  No changes were observed in estrous cycling or ovarian or uterine weight or histology at doses up 

to 60 mg/kg/day (Stoker et al. 2004).  As summarized in Section 3.2.2.6 Developmental Effects, observed 

effects in F1 rats exposed to pentaBDE at 30.1 mg/kg/day from GD 6 to PND 21 included decreased 



   
 

    
 
 

 
 
 
 
 

 

 

 

  

 

   

      

 

  

 

   

   

   

  

   

     

   

 

 

 

 

   

  

 

 

  

      

   

  

   

  

 

 

 

PBDEs 194 

3. HEALTH EFFECTS 

anogenital distance, delayed PPS, and decreased serum testosterone in male offspring and decreased 

mammary gland development in female offspring (Kodavanti et al. 2010). 

DecaBDE:  Information on effects of intermediate-duration exposure to decaBDE on reproductive 

function is limited to negative findings in a one-generation study in rats using a low-purity (77.4%) 

decaBDE mixture (Dow Chemical Co. 1975; Norris et al. 1975a).  Male and female rats were exposed to 

0, 3, 30, or 100 mg/kg/day doses in the diet for 60 days prior to mating through PND 21.  Parameters 

monitored included length of time between first day of cohabitation and parturition, numbers of live and 

dead newborn, number of live pups (PNDs 1, 7, 14, and 21), litter weight (PNDs 1, 7, and 14), and 

weanling weight (PND 21).  Comprehensive histological examinations (adults and weanlings), skeletal 

examinations (weanlings), and cytogenetic evaluation of bone marrow (adults and weanlings) were also 

performed on PND 21.  There were no exposure-related effects on reproductive parameters or any 

indications of maternal or neonatal toxicity.  Additionally, no exposure-related changes were observed in 

litter parameters in mice exposed to decaBDE at gavage doses up to 1,500 mg/kg/day from GD 0 to 17 

(Tseng et al. 2008), in rats exposed to decaBDE at gavage doses up to 1,000 mg/kg/day from GD 6 to 

PND 21 (Biesemeier et al. 2011), or in rats or mice exposed to decaBDE at dietary doses up to 146 or 

3,100 mg/kg/day, respectively, from GD 10 to PND 21 (Fujimoto et al. 2011; Watanabe et al. 2008, 

2010b). 

Sperm parameters have been assessed in rats and mice following intermediate-duration exposure to 

decaBDE.  In the rat study, no exposure-related changes were observed in male epididymal sperm counts 

or morphology following exposure to decaBDE at gavage doses up to 60 mg/kg/day for 28 days (Van der 

ven et al. 2008a).  In one mouse study, sperm count and viability were significantly reduced by about 

40% in males exposed to 950 mg/kg/day via gavage for 35 days, compared with controls; no exposure-

related changes in sperm count and viability were observed at 750 mg/kg/day (Sarkar et al. 2015).  

In contrast, no exposure-related changes were observed in sperm count, sperm motility, or the percent of 

abnormal sperm heads in mice exposed to decaBDE at doses up to 1,500 mg/kg/day via gavage for 

50 days (Tseng et al. 2006).  For sperm velocity, the lateral head amplitude was significantly decreased in 

the 500 and 1,500 mg/kg/day groups, compared with control; no exposure-related changes were observed 

in curvilinear, average path, or straight line velocity or beat-cross frequency.  No exposure-related 

changes were observed in sperm damage parameters; however, sperm H2O2 production was significantly 

increased at 500 and 1,500 mg/kg/day (no change in O2- production).  The percentage of sperm with high 

mitochondrial membrane potential was significantly decreased in the 1,500 mg/kg/day group, compared 

with controls.  
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There is limited evidence of histopathological damage in reproductive organs following intermediate-

duration exposure to decaBDE.  Various degenerative changes were observed in the seminiferous tubules 

of mice exposed to decaBDE at gavage doses of 950 mg/kg/day for 35 days, including thinning of the 

germinal epithelium, decreased diameter of the seminiferous tubules, depletion of germ cells, exfoliation 

of germ cells, and intraepithelial vacuolation (Sarkar et al. 2015).  Both the height of the germinal 

epithelium and the diameter of seminiferous tubules were significantly decreased at 950 mg/kg/day, 

compared with controls.  No exposure-related testicular lesions were observed at 750 mg/kg/day. In 

female rats exposed to decaBDE at 0 or 300 mg/kg/day from 3 weeks of age, through mating to untreated 

males, gestation, and lactation (~11 weeks), the ovaries in the exposed rats had significantly increased 

“histological scores” than the ovaries from the control rats (methods of histological scoring and 

incidences of lesions were not reported) (Liu et al. 2012).  Observations in the ovaries of exposed rats 

included atrophic changes, decreased number of follicles, and increased fibrotic tissue (Liu et al. 2012).  

F0 reproductive success and F1 developmental end points were not reported in this study.  However, in 

other intermediate-duration studies, no histopathological changes were observed following exposure to 

decaBDE in male or female reproductive tissues from rats exposed for 28–50 days at gavage doses up to 

1,500 mg/kg/day (Tseng et al. 2006; Van der ven et al. 2008a), rats exposed for 28–30 days at dietary 

doses up to 800 mg/kg/day (IRDC 1976; Norris et al. 1973, 1975a), or rats or mice exposed for 13 weeks 

at dietary doses up to 8,000 or 9,500 mg/kg/day, respectively (NTP 1986). 

In a 28-day study, rats were exposed to decaBDE at 0, 1.7, 3.75, 7.5, 15, 30, or 60 mg/kg/day via gavage 

(Van der ven et al. 2008a).  The study authors reported a dose-related decrease in epididymis weight in 

male rats (maximal decrease of 22.5%) and a dose-related increase in seminal vesicle/coagulation gland 

weight (maximal increase of 38.3%); however, the lowest doses at which the effects were observed were 

not reported.  Instead, results were reported in terms of BMD analysis (BMDRD10% for epididymis= 

4.0 mg/kg/day, BMDLRD10% was not determined; BMD/BMDLRD10% for seminal vesicle= 

1.5/0.2 mg/kg/day).  No exposure-related changes in organ weight were reported for testes, ovaries, or 

uterus at doses up to 60 mg/kg/day (Van der ven et al. 2008a).  In other rat studies, no exposure-related 

changes in testes, epididymides, or seminal vesicle weights were observed following exposure to dietary 

decaBDE doses up to 800 mg/kg/day for 28–30 days (IRDC 1976; Norris et al. 1973, 1975a).  In mice, 

one study reports a significant 13–18% decrease in relative testis and epididymides weight following 

exposure to decaBDE at 950 mg/kg/day via gavage for 35 days, compared with controls; no exposure-

related changes in male reproductive organ weights were observed at 750 mg/kg/day (Sarkar et al. 2015).  

In contrast, no exposure-related changes in testes, epididymides, or seminal vesicle weights were 
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observed in another mouse study that exposed animals to decaBDE at gavage doses up to 

1,500 mg/kg/day for 50 days (Tseng et al. 2006). 

In a 35-day study, serum testosterone levels were significantly decreased by 65% in mice following 

exposure to decaBDE at gavage doses of 950 mg/kg/day, compared with controls; testosterone levels at 

750 mg/kg/day were comparable to control (Sarkar et al. 2015). 

There is limited evidence that exposure to decaBDE in developing animals results in reproductive effects. 

In male rats exposed during pubertal development, exposure to decaBDE at doses up to 600 mg/kg/day 

did not cause exposure-related changes in testes, epididmides, or prostate organ weight, testicular 

histology, or testicular mRNA expression levels of steriodogensis-related genes (Lee et al. 2010).  As 

summarized in Section 3.2.2.6 (Developmental Effects), only one intermediate-duration gestational 

exposure study reported reproductive effects in mouse offspring exposed to decaBDE doses of 10– 

1,500 mg/kg/day from GD 0 to 17 via gavage, including testicular lesions, decreased AGD, and altered 

sperm parameters (Tseng et al. 2013).  No exposure-related changes in AGD, onset of puberty (PPS or 

vaginal opening), estrous parameters, or reproductive organ weight and histology were reported in 

offspring exposed to decaBDE at doses up to 1,000 mg/kg/day during gestation and lactation (Biesemeier 

et al. 2011; Fujimoto et al. 2011) or doses up to 20 mg/kg/day from PND 2 to 15 (Rice et al. 2007). 

Chronic-Duration Animal Studies 

Lower-brominated PBDEs:  No chronic-duration studies evaluating reproductive system effects were 

located for lower-brominated PBDEs. 

DecaBDE:  No histopathological changes were observed in male or female reproductive tissues from rats 

or mice that were exposed to decaBDE at dietary doses up to 2,550 or 7,780 mg/kg/day, respectively, for 

103 weeks (NTP 1986).  In the only other chronic-duration study, a low-purity mixture (77.4% purity) did 

not cause histopathological changes in male or female reproductive tissues from rats at doses up to 

1.0 mg/kg/day for 2 years (Kociba et al. 1975; Norris et al. 1975a), 

Summary.  Based on the evidence in humans and animals, lower-brominated PBDEs are potentially toxic 

to the male reproductive system in humans, including the developing reproductive system in children (see 

Section 3.2.2.6, Developmental Effects for more details).  Available data for decaBDE provide very 

limited evidence of male reproductive damage, and are insufficient to determine if oral decaBDE 
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exposure can damage the male reproductive system in humans.  For female reproductive end points, data 

are inconsistent in humans and animals; therefore, it is unclear whether PBDEs affect the female 

reproductive system in adults or developing infants/children.  The highest NOAEL values and all LOAEL 

values from each reliable study for reproductive effects in each species and duration category are 

recorded in Table 3-2 and plotted in Figure 3-2. 

3.2.2.6  Developmental Effects 

Human Studies. Numerous studies have investigated potential relationships between developmental 

PBDE exposure and birth outcomes (e.g., birth weight, length, head circumference, gestational age) 

and/or postnatal development of various systems (neurological, reproductive, endocrine, immune). 

Physical Growth and Development and Related Birth Outcomes 

Robledo et al. (2015a) studied potential relationships between pre-conception maternal and paternal 

serum levels of 10 PBDEs (BDE 17, BDE 28, BDE 47, BDE 66, BDE 85, BDE 99, BDE 100, BDE 153, 

BDE 154, and BDE 183) and birth weight and length, head circumference, and ponderal index 

(100x[birth weight in g/birth length in cm3]) in a prospective cohort study in Michigan and Texas (LIFE 

study).  Geometric means of maternal and paternal serum PBDE levels (n=234 pairs) were 0.001– 

0.116 ng/g serum and 0.001–0.113 ng/g serum, respectively.  The relative concentrations of PBDEs was 

similar in maternal and paternal serum, with BDE 47 having the highest level (Robledo et al. 2015b).  

Levels were not reported in terms of ng/g lipid.  Maternal serum BDE 28 and BDE 183 levels and 

paternal serum BDE 183 were significantly associated with lower birth weight in female infants, with a 

decrease of 84.6–151.33 g per 1 standard deviation (SD) increase in ln- transformed chemical 

concentration. Maternal serum BDE 28 was also significantly associated with smaller birth length 

(-1.14 cm per 1-SD increase) and head circumference (-1.05 cm per 1-SD increase) in female infants. 

However, in male infants, maternal serum BDE 66 and BDE 99 were significantly associated with higher 

birth weight (+85.21–125.04 g per 1-SD increase) and larger head circumference (+0.6–0.91 cm per 1-SD 

increase. Maternal serum BDE 99 was also significantly associated with larger birth length in boy infants 

(+0.76 cm per 1-SD increase).  No other significant associations were observed. 

Maternal serum concentrations were studied in a population of 286 low-income women living in the 

Salinas Valley of California (a subset of the CHAMACOS study) (Harley et al. 2011). The main PBDEs 

detected in maternal blood, collected during the second trimester of pregnancy, were BDE 47, BDE 99, 

BDE 100, and BDE 153 (median concentrations of 14.57, 3.85, 2.45 and 2.03 ng/g lipid, respectively).  

http:0.6�0.91
http:85.21�125.04
http:84.6�151.33
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Serum concentrations of each of these congeners, and their sum, were significantly inversely related to 

infant birth weight in crude analysis.  After adjustment for covariates, regression analysis showed that 

each 10-fold increase in BDE 47, BDE 99, or BDE 100 was associated with roughly a 115-g decrease in 

birth weight.  These associations were no longer statistically significant when maternal weight gain was 

included in the models. There were no significant relationships between maternal serum PBDE and infant 

birth length or head circumference, or length of gestation. In a follow-up study of the CHAMACOS 

cohort, the potential association between obesity indices (BMI, waist circumference, obesity/overweight 

status) at 2–7 years of age and maternal serum PBDE levels was evaluated (BDE 47, BDE 99, BDE 100, 

BDE 153, and their sum); child serum PBDE levels were also determined at age 7.  The geometric means 

of the total maternal (n=224) and child (n=216) serum PBDE concentration were 25.35 and 83.03 ng/g 

lipid, respectively (Erkin-Cakmak et al. 2015).  No significant associations were observed between 

obesity measures and maternal serum concentrations of individual or summed PBDEs at any age when 

both sexes were examined together; however, statistical analysis revealed a significant effect modification 

by sex.  When evaluated separately, a significant negative relationship was observed between BMI 

z-score in 3.5-year-old females and a 10-fold increase in summed maternal serum PBDE levels (adjusted 

β -0.64, 95% CI -1.23, -0.06), and a significant positive relationship was observed between BMI z-score 

in 3.5-year-old males and a 10-fold increase in summed maternal serum PBDE levels (adjusted β 0.99, 

95% CI 0.32, 1.66).  This sex difference was also observed at 7 years of age, with a significant negative 

association in females (adjusted β -0.41, 95% CI -0.87, -0.05) and a near-significant positive association 

in males (adjusted β 0.26, 95% CI: -0.19, 0.72).  Similar trends were observed for waist circumference 

and obesity status (data not reported). When evaluating child serum PBDE levels, significant associations 

after adjustment for potential cofounders included a negative association between BDE 153 and ∑PBDEs 

and BMI and waist circumference and a reduced risk for being overweight. There was no significant 

effect by sex modification in the analysis of child serum levels.  This follow-up study suggests possible 

obesogenic effects of in utero PBDE exposure in boys.  In contrast, Vuong et al. (2016b) found no 

significant association between PBDEs (BDE 28, BDE 47, BDE 99, BDE 100, BDE 153, and their sum) 

measured in maternal serum at 16 weeks of gestation (geometric mean 39.1 ng/g lipid) and height or 

weight of boys and girls at 1–8 years of age.  However, BDE 153 was associated with lower BMI at 2– 

8 years, smaller waist circumference at 4–8 years, and lower percent body fat at 8 years.  The Vuong et al. 

(2016b) study comprised 318 mother-child pairs in the Health Outcomes and Measures of the 

Environment (HOME) Study in Cincinnati, Ohio. Agay-Shay et al. (2015) also evaluated the potential 

association between maternal PBDE exposure and childhood obesity.  This study did not find significant 

associations between maternal PBDE colostrum levels (BDE 47, BDE 99, BDE 100, BDE 153, BDE 154, 

BDE 209, and their sum) and BMI z-scores or risk of being overweight (BMI >85th percentile) in 
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470 7-year-old boys and girls from a Spanish birth cohort study; however, sex-specific analyses were not 

conducted. Geometric mean concentrations of BDE 47, BDE 99, BDE 100, BDE 153, BDE 154, and 

BDE 209 in colostrum were 0.5, 0.3, 0.2, 0.7, 0.7,and 0.8 ng/g lipid, respectively. 

Results from other studies evaluating potential associations between maternal serum PBDE levels during 

pregnancy and/or at delivery and birth outcomes are inconsistent between studies and congeners.  The 

Healthy Pregnancy, Healthy Baby (HPHB) birth cohort in North Carolina also evaluated potential 

associations between third trimester maternal serum PBDE concentrations and birth weight, length, head 

circumference, and birth weight percentile for gestational age (Miranda et al. 2015).  Serum was 

evaluated for 27 PBDE congeners and 6 OH-PBDEs; however, only congeners and metabolites detected 

in >50% of the subjects (n=137) were included in the analysis, including BDE 47, BDE 99, BDE 100, 

BDE 153, 4’-OH-BDE-49, and 6’-OH-BDE-47 (median serum concentrations of 18.87, 5.5, 4.61, 5.65, 

0.12, and 0.19 ng/g lipid, respectively).  The only significant finding was a negative association between 

maternal BDE 153 and head circumference (0.32 cm decrease per 2-fold increase in BDE 153); however, 

this association was no longer significant after adjustment for maternal risk factors.  Similarly, Serme-

Gbedo et al. (2016) did not find a statistically significant relationship between birth weight and BDE 47, 

BDE 99, BDE 100, BDE 153, or their sum in maternal serum collected during early pregnancy 

(~12 weeks; median concentration of 32.99 ng/g lipid for total PBDE).  This study evaluated 

349 Canadian women (GESTE birth cohort), and utilized both unadjusted models and multivariate 

regression models adjusted for a full range of clinical risk factors known to affect fetal growth as well as 

other environmental pollutants that are likely to impact fetal growth (PCBs, mercury, lead, cadmium, 

manganese). In contrast, Chen et al. (2015) reported negative associations between lower levels of 

maternal serum PBDEs and birth weight and length in the prospective Laizhou Wan birth cohort (LWBC) 

in 215 Chinese women.  In this study, median maternal serum levels of PBDEs, collected at delivery, 

were 2.27, 2.26, 3.53, 2.13, and 4.87 ng/g lipid for BDE 28, BDE 47, BDE 99, BDE 100, and BDE 153, 

respectively (median concentration of total PBDEs was 21.68 ng/g lipid).  After adjustment for potential 

covariants, a near-significant negative association was observed between birth weight and maternal serum 

BDE 28; when stratified by sex, this decrease was significant for males (253.76 g decreased per 10-fold 

increase in BDE 28), but not females.  A negative association was observed between birth length and 

maternal serum levels of all congeners; however, the association was only statistically significant for 

BDE 28 and BDE 100 when males and females were combined (0.92–0.97 cm decrease per 10-fold BDE 

increase).  When stratified by sex, BDE 99 was significantly negatively associated with male infant length 

and BDE 100 was significantly negatively associated with female infant length (1.47–1.50 cm decrease 

per 10-fold BDE increase). There were no significant relationships between maternal serum PBDE and 

http:1.47�1.50
http:0.92�0.97
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infant head circumference or length of gestation. In a case-control study of 197 full-term births and 

82 pre-term births, identified at the Centennial Women’s Hospital in Nashville, serum BDE 47 levels 

were divided into the following ordinal scale: 25–135, 136–200, 200–321, 322–1,000, and >1,000 pg/mL 

(Peltier et al. 2015).  The distribution for controls into the five bins was 23, 22, 21, 22, and 12%, 

respectively, while the distribution for cases was 10, 6, 20, 35, and 29%, respectively; these distributions 

are statistically significantly different.  When cases and controls were combined for analysis, women from 

the two higher exposure bins (>323 pg/mL BDE 47) showed a significantly increased risk for preterm 

birth. 

Several investigators have also evaluated associations between serum maternal and umbilical cord PBDE 

levels, and their potential associations with birth indices.  As observed in maternal serum studies, data are 

inconsistent between studies and congeners.  In a study of 97 Canadian women (a subset of the FAMILY 

study), Foster et al. (2011) found no significant relationship between infant birth weight and maternal 

serum PBDE (BDE 17, BDE 28, BDE 47, BDE 66, BDE 99, BDE 100, BDE 153, BDE 154, BDE 183, 

and their sum), whether the serum was collected during the second trimester of pregnancy or at delivery. 

PBDE concentrations in this study were relatively high (median concentrations of 52.1 and 50.1 ng/g lipid 

for total PBDE at mid-pregnancy and delivery).  Foster et al. (2011) also evaluated the potential 

relationship between umbilical cord serum PBDE (BDE 17, BDE 28, BDE 47, BDE 66, BDE 99, 

BDE 100, BDE 153, BDE 154, BDE 183, and their sum) and birth weight.  They found a significant 

negative association between birth weight and concentrations of one PBDE congener (BDE 99) in 

umbilical cord serum.  PBDE concentrations in umbilical cord serum were 1.7–3.4 times higher than in 

maternal serum at delivery (median concentration of 100.0 ng/g lipid for total PBDE). These results are 

in contrast to Mazdai et al. (2003), who found umbilical cord concentrations of PBDE (BDE 47, BDE 99, 

BDE 100, BDE 153, BDE 154, BDE 183, and their sum) to be similar to maternal serum concentrations 

at delivery (median concentrations of 39 and 37 ng/g lipid for total PBDE, respectively) in a small study 

of 12 women recruited upon presenting in labor to Indianapolis hospitals.  In this study, no relationship of 

maternal or cord blood serum to infant birth weight was observed. In contrast to these findings, a low 

exposure study in 686 Spanish women (INMA cohort; median total serum PBDE concentrations in 

maternal blood collected at gestational week 12 and umbilical cords of 10.74 and 7.51 ng/g lipid, 

respectively) reported a significant relationships between PBDE levels and some birth indices (Lopez-

Espinosa et al. 2015). While concentrations were similar between maternal and umbilical cords serum, 

Pearson’s correlations between maternal and cord log2(PBDEs) were low (0.18, 0.06, 0.04, 0.09, and 0.07 

for BDE 47, BDE 99, BDE 153, BDE 159 and BDE 209, respectively).  Potential associations were 

examined between maternal or cord serum and birth weight, length, and head circumference for each 
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congener and their sum.  A significant inverse association was observed between birth weight and 

maternal serum BDE 99 levels (Lopez-Espinosa et al. 2015).  After adjustment for covariates, regression 

analysis showed that each 2-fold increase in BDE 99 was associated a 1.4% decrease (~46.8 g) decrease 

in birth weight.  Maternal serum BDE 99, as well as the sum of all PBDEs, was also significantly 

associated with a 2.1–2.9% decrease in head circumference per 2-fold increase in PBDE concentration 

(~0.7–1.0 cm).  No significant associations were observed between birth weight or head circumference 

for other maternal serum congeners or any cord serum congeners, and no significant associations were 

observed for birth length. Lopez-Espinosa et al. (2015) also evaluated fetal growth indices during 

pregnancy using ultrasound measurements in mid-pregnancy (gestational weeks 12–20) and late 

pregnancy (gestational weeks 20–34), including abdominal circumference, fetal length, biparietal 

distance, and estimated fetal weight. Significant associations, observed only during gestational weeks 

20–34, included inverse relationships between maternal BDE 99 and biparietal distance, abdominal 

circumference, and estimated fetal weight; cord BDE 99 and ∑PBDEs and fetal abdominal circumference 

and estimated fetal weight; and maternal ∑PBDEs and biparietal distance (1.3–3.5% decrease per 2-fold 

increase in PBDE concentration). In another low-exposure study, Tan et al. (2009) also found no 

relationship between PBDE in umbilical cord blood and infant birth weight (or length, head 

circumference, or sex) in babies from 41 native mothers admitted to the Singapore National Hospital for 

Cesarean section. Median PBDE concentrations in this study population 3.3 ng/g lipid for total PBDE in 

cord blood. There was reported to be a small positive association between cord blood concentrations of 

the PBDE congeners BDE 47 and BDE 99 and Apgar score at 1 minute in this study.  

Wu et al. (2010) also studied cord blood, but did not assess effect on birth weight alone, using instead a 

composite of adverse birth outcomes, including low birth weight but also premature delivery and 

stillbirth. These researchers reported significant associations between umbilical cord PBDE (BDE 28, 

BDE 47, BDE 99, BDE 153, BDE 183, and total) and adverse birth outcomes in a comparison of 

128 normal births and 25 cases of adverse birth outcomes from two towns (Guiyu and Chaonan) in China.  

The two towns represent an e-waste recycling area (Guiyu, with a median total PBDE concentration of 

13.8 ng/g lipid [n=102]) and a control area with no e-waste recycling workshops (Chaonan, with a median 

total PBDE concentration of 5.2 ng/g lipid [n=51]). In a companion study, neonatal physiological indices 

were compared between 69 births in Guiyu (e-waste recycling) and 86 births in Haojiang (no e-waste re 

cycling), using placental PBDE concentrations as an exposure metric (Xu et al. 2015b).  Median total 

placental PBDE concentrations were 32.25 ng/g lipid in Guiyu and 5.13 ng/g lipid in Haojiang; measured 

congeners included BDE 29, BDE 47, BDE 99, BDE 100, BDE 153, BDE 154, BDE 183, and BDE 209 

(mean placental concentrations of 11.66, 1.61, 0.32, 0.14, 3.17, 0.34, 2.20, and 3.30 ng/g lipid, 
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respectively). Head circumference, BMI, and Apgar1 score were significantly decreased by 4–8% and 

body length significantly increased by 4% in the Guiyu cohort, compared with the Haojiang cohort.  No 

differences were observed in birth weight between the two cohorts. When data from both cohorts were 

combined for multiple linear regression analysis, significant negative associations were observed between 

∑PBDEs and BDE 47 and head circumference; ∑PBDEs, BDE 47, and BDE 99 and neonatal BMI, and 

∑PBDEs, BDE 29, BDE 47, BDE 153, and BDE 183 and Apgar1 score. A significant positive 

association was observed between BDE 47 and body length.  

Concentrations of PBDE in breast milk have also been studied in relation to adverse birth outcomes.  A 

study of births from 20 healthy pregnant women in Taiwan found that increased PBDE (BDE 47, BDE 

99, BDE 100, and BDE 209) in breast milk was associated with significantly reduced infant birth weight, 

length, chest circumference, and Quetelet’s index (BMI) (Chao et al. 2007).  The median total PBDE 

concentration in breast milk was 3.65 ng/g lipid in the study population.  A significant negative 

association between breast milk PBDE concentrations (BDE 47, BDE 99, BDE 100, BDE 153, and their 

sum) and birth weight was also identified in a Swedish cohort of 254 women with a median total PBDE 

concentration of 2.4 ng/g lipid (Lignell et al. 2013).  In contrast, a significant positive association was 

observed between colostrum (breast milk collected in the first week after delivery) PBDE concentrations 

(BDE 47, BDE 99, BDE 100, BDE 153, and their sum) and birth weight and birth length in a Tanzanian 

cohort of 95 women with a median total PBDE concentration of 19.8 ng/g lipid (Müller et al. 2016).  

When stratified by sex, the only significant finding was a positive association between birth weight and 

PBDE concentration in female infants.  The high PBDE levels were attributed to the consumption of 

Pemba (clay soil), which is sold in Tanzanian markers to pregnant women as a mineral supplement and 

nausea-relieving aid. Women who ate Pemba (64%) had significantly higher PBDE concentrations in 

colostrum, compared to non-Pemba eating women.  

Reproductive System Development 

Main et al. (2007) found a significant positive relationship between concentrations of PBDE in breast 

milk and congenital cryptorchidism (undescended testes) in male offspring.  The study compared 

concentrations of 14 PBDE congeners in breast milk of mothers of 62 Danish and Finnish boys with 

cryptorchidism to mothers of 68 controls from the same population.  Significant increases were seen for 

the sum of the 7 most prevalent congeners (found in all mothers), for several of the individual congeners, 

and for the sum of all 14 congeners in cases versus controls.  No such relationship was found, however, 

when placental blood PBDE concentrations, rather than maternal breast milk PBDE concentrations, were 
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used to represent exposure.  In a comparison of 86 paired samples from this study, PBDE concentrations 

in placenta and breast milk were correlated, but absolute PBDE concentrations were 3–4 times higher in 

breast milk (median of 3.23 ng/g fat for total PBDE) than in placenta (median of 1.19 ng/g fat for total 

PBDE).  The researchers hypothesized that while breast milk PBDE concentrations reflect the 

accumulated body burden of the mother, placental PBDE concentrations may resemble measurements in 

single blood samples, reflecting the situation at delivery, but not the long-term exposure. In another case-

control study in Danish and Finnish boys, no significant difference was observed in the concentrations of 

14 PBDE congeners in subcutaneous tissue samples from the inguinal region during orichidopexy surgery 

(44 cases) or hernia surgery (38 controls) (Koskenniemi et al. 2015).  Mean age at surgery was 2.3 and 

2.9 years for cases and controls, respectively.  Median concentrations of total PBDEs in adipose tissue 

were 4.90 ng/g in cases and 5.54 ng/g in controls. 

Other studies of reproductive development found no relationship between PBDE concentrations in mid-

pregnancy serum samples from California mothers (median ∑PBDE=33.7 ng/g lipid for 20 cases and 

38.6 ng/g lipid for 28 controls) and hypospadias in their male offspring (Carmichael et al. 2010) and no 

relationship between current serum concentrations of PBDE (range of 4.9–73.6 ng/g lipid, with median of 

9.9 ng/g lipid) and various measures of sexual maturation (e.g., initiation of breast development, current 

breast development, age at menarche), in a small cohort of 18 (9 boys and 9 girls) teen-aged Dutch 

children (Leijs et al. 2008). A study of 55 Dutch boys found significant positive associations between 

maternal serum concentrations of BDE 154 (median=0.5 ng/g lipid) collected on week 35 of pregnancy 

(but not other congeners measured, including BDE 47 and BDE 153 that occurred at higher 

concentrations [medians of 0.9 and 1.6 ng/g lipid, respectively]) and serum concentrations of the sex 

hormones, E2, free E2, and inhibin B (but not testosterone, LH, FSH, or sex hormone binding globulin), 

in the baby boys at 3 months of age and testes volume in the boys at 18 months of age, but no effect on 

penile length at either age (Meijer et al. 2012).  In a French birth cohort (n=262 mother-child pairs; 

141 male infants, 141 female infants), cord blood total testosterone was significantly decreased in male 

infants with detectable BDE 209 levels (>0.05 ng/g lipid) compared with male infants without detectable 

BDE 209 levels (Warembourg et al. 2016).  No associations were observed for female total testosterone 

or other sex hormones measured in male and/or female infants (sex hormone-binding globulin, E2, free 

testosterone, aromatase index, or Anti-Müllerian hormone). 

Delayed onset of puberty was significantly associated with higher PBDE concentrations in serum in a 

cohort of 645 ethnically diverse girls (recruited at 6–8 years of age and followed annually) from 

California and Ohio (Breast Cancer and the Environment Research program [BCERP] cohort) (Windham 
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et al. 2015a).  A cross-sectional analysis, conducted at enrollment, showed a significant decrease in the 

percentage of females showing Tanner stage 2 breast development per quartile increase in serum ∑PBDE 

levels; no association was observed with pubic hair development. Median serum ∑PBDE levels at 

enrollment were 78.3 ng/g lipid (Windham et al. 2015b).  In follow-up evaluations, the longitudinal 

analysis showed a significant increase in age at pubertal transition (both breast and pubic hair Tanner 

stages) with per quartile increase in serum ∑PBDE levels. When analyzed by individual congener, 

significant delays in pubic hair development were observed for all congers evaluated (BDE 28, BDE 47, 

BDE 99, BDE 100, BDE 153, and BDE 154) and significant delays in breast development were observed 

for BDE 47, BDE 99, BDE 100, and BDE 153 (associations were marginal for BDE 28 and BDE 154). 

Neurodevelopment 

Numerous studies have reported results suggestive of an effect of PBDE on neurodevelopment in 

children.  Associations are more consistent when blood concentrations were used as a biomarker of 

exposure, compared with studies utilizing breast milk concentrations as a biomarker of exposure. 

A series of studies evaluated neurodevelopmental outcomes in a longitudinal study of the HOME study 

cohort from Cincinnati, Ohio (full sample 349 mother-child pairs) (Braun et al. 2014; Chen et al. 2014; 

Donauer et al. 2015; Vuong et al. 2016a).  Several environmental chemicals, including PBDEs, were 

quantified in maternal blood collected at approximately 16 weeks of gestation. In 5-week-old infants 

(n=326), no associations were observed between neonatal neurobehavior and maternal serum PBDEs 

(Donauer et al. 2015).  The geometric mean of the sum of the most frequently detected PBDEs 

(sum4BDE=BDE 47, BDE 99, BDE 100, and BDE 153) in maternal serum from mother-child pairs in the 

neonatal study was 37.12 ng/g lipid (Donauer et al. 2015).  The majority of children from the HOME 

cohort (n=309) were examined for cognitive and motor abilities at 1, 2, and 3 years of age, intelligence at 

5 years of age, and general behavior at 2, 3, 4, and 5 years of age (Behavioral Assessment System for 

Children 2 [BASC-2]) (Chen et al. 2014).  This analysis focused primarily on maternal BDE 47 exposure 

(geometric mean=20.1 ng/g lipid; median=18.9 ng/g lipid); however, some analysis were conducted for 

sum4BDE (geometric mean=37.7 ng/g lipid; median=34.6 ng/g lipid).  Maternal serum levels of BDE 47 

or sum4BDE were not significantly associated with Bayley mental or psychomotor development indices at 

1–3 years of age. At 5 years, however, adjusted regression analysis showed a significant 4.5-point 

decrease in full-scale IQ per 10-fold increase in maternal serum BDE 47 (95% CI -8.8, -0.1). For the 

sum4BDE analysis, a marginal decrease in full-scale IQ was observed (β [95% CI] -4.38 [-8.9, 0.14]). In 

the BASC-2 behavioral assessments at 2–5 years of age, significant associations observed included a 
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positive association between maternal BDE 47 serum levels and the Externalizing Problems score at 

2 and 3 years of age (~2–3-point increase per 10-fold increase in serum BDE 47) and a positive 

association between maternal BDE 47 serum levels and the Hyperactivity subscore at 2, 3, and 5 years of 

age (~2–3-point increase per 10-fold increase in serum BDE 47); other ages showed marginal positive 

associations in these domains.  Similar trends were observed in BASC-2 analysis of sum4BDE analysis. 

Further analysis of neurodevelopment at 4 and 5 years of age in a subset of the HOME cohort (n=175) 

was reported by Braun et al. (2014), with a specific focus on autistic behaviors (social, repetitive, and 

stereotypic behaviors). Specific analysis were conducted for BDE 28, BDE 47, BDE 85, BDE 99, BDE 

100, BDE 153, and BDE 154 (maternal serum geometric mean of 0.8, 20.1, 3.1, 4.7, 3.8, 5.1, and 2.6 ng/g 

lipid, respectively).  A marginal positive association was observed between maternal serum BDE 28 

levels and autistic behaviors (β [95% CI] 2.5 [-0.6, 5.6]).  In contrast, a significant negative association 

was observed between maternal serum BDE 85 levels and autistic behaviors (β [95% CI] -3.2 [-5.9, 

-0.5]); however, BDE 85 was detected in <50% of the maternal serum samples. In the most recent report, 

Vuong et al. (2016a) evaluated potential associations between maternal PBDE levels and executive 

function at 5 and/or 8 years in 256 children from the HOME cohort. Specific analysis were conducted for 

BDE 28, BDE 47, BDE 99, BDE 100, BDE 153, and their sum (maternal serum geometric mean of 1.2, 

21.5, 5.0, 4.2, 5.5, and 41.3 ng/g lipid, respectively). After adjusted regression analysis, a significant 

positive association was observed between impaired behavior regulation and maternal serum BDE 153.  

Increased BDE 153 was also significantly associated with higher odds of having a behavior regulation 

(OR, 3.92 95% CI 1.76, 8.73) or a global executive function score (OR 2.34, 95% CI 1.05, 5.23) greater 

than 1 standard deviation above the mean, indicating increased risk of impaired behavior regulation 

and/or executive function deficits. No significant associations were observed for other congeners or their 

sums. 

In another longitudinal birth cohort of predominantly Mexican-American families in the Salinas Valley of 

California (CHAMACOS), PBDE levels were analyzed in maternal serum (collected at mid-pregnancy or 

at delivery) and child serum at 7 years of age (Eskenazi et al. 2013). Significant negative associations 

were found for both maternal serum PBDE and current child serum PBDE and measures of attention, fine 

motor coordination, and cognitive function (particularly verbal comprehension) in children evaluated at 

5 (n=249) and/or 7 (n=270) years of age.  PBDE concentrations for this subset of the CHAMACOS 

cohort are not available. A follow-up study in the CHAMACOS birth cohort (n=622) evaluated potential 

associations between PBDE levels in maternal serum (collected at mid-pregnancy or delivery) and current 

child serum (collected at age 9) and numerous measures of attention and executive function at 9, 10.5, and 

12 years of age (Sagiv et al. 2015). Significant negative associations were observed between several 
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measures of attention and executive function at 9–12 years of age and maternal serum PBDE (geometric 

mean of BDE 47, BDE 99, BDE 100, and BDE 153 of 26.3 ng/g lipid), but not current child serum PBDE 

(geometric mean of BDE 47, BDE 99, BDE 100, and BDE 153 of 63.2 ng/g lipid). 

Several studies in infants and toddlers report associations between neurodevelopmental deficits and 

umbilical cord serum PBDE levels. Taiwanese infants (n=36) evaluated for neurological development at 

age 8–12 months by Bayley Scales of Infant and Toddler Development and parental questionnaire showed 

significant deficits in cognitive score and adaptive behavior associated with umbilical cord blood 

concentrations of total PBDE (range of 2.24–49.1 ng/g lipid, with median of 4.63 ng/g lipid) and 

concentrations of several individual congeners (Shy et al. 2011).  Children from a New York City cohort 

(n=152) who had higher cord blood concentrations of PBDE congeners BDE 47, BDE 99, and BDE 100 

scored significantly lower on tests of mental and physical development at ages 12, 24, and 36 months 

(Bayley Scales of Infant Development) and ages 48 and 72 months (Wechsler Preschool and Primary 

Scale of Intelligence) than children with lower cord blood concentrations (Herbstman et al. 2010). 

Median and maximum concentrations of BDE congeners in cord blood were 11.2 and 613.1 ng/g lipid for 

BDE 47, 3.2 and 202.8 ng/g lipid for BDE 99, and 1.4 and 71.9 ng/g lipid for BDE 100. Ding et al. 

(2015) evaluated the potential association between motor, adaptive, language, and social developmental 

quotients in Chinese children at 12 months (n=192) and 24 months (n=149) and cord blood concentrations 

of BDE 28, BDE 47, BDE 85, BDE 99, BDE 100, and BDE 153 (median concentrations of 2.05, 3.71, 

1.47, 6.70, 2.63, and 2.19 ng/g lipid, respectively) and the sum of BDE 47, BDE 99, BDE 100, and 

BDE 153 (the four congeners detected in >80% of samples).  No significant associations were observed at 

12 months. At 24 months, a 10-fold increase in cord blood BDE 99 was significantly associated with a 

2.16-fold decrease in the language domain developmental quotient and a 10-fold increase in cord blood 

BDE 47 was significantly associated with a 1.89-fold decrease in the social domain developmental 

quotient.  No significant associations were observed for the other congeners or the sum of BDE 47, 

BDE 99, BDE 100, and BDE 153. 

Studies in preschool and school-aged children (≥4 years of age) also report associations between 

neurodevelopmental impairments and maternal, child, or umbilical cord serum/plasma PBDEs. Both cord 

and current blood concentrations of BDE 47 (cord blood median and maximum of 2.10 and 16.8 ng/g 

lipid [n=88], current blood median and maximum of 0.12 and 130.2 ng/g lipid [n=244]) were also 

negatively associated with cognitive and motor functions in 4-year-old children from a Spanish cohort 

(McCarthy Scales of Children’s Abilities), although in this study, the results were not statistically 

significant, except for associations with symptoms of poor social competence and ADHD (Gascon et al. 
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2011).  Positive associations between attention problems (Child Behavior Checklist) and cord plasma 

levels of BDE 47, BDE 99, BDE 100, and BDE 153 were also observed in 4-year-old children (n=109) 

from a New York City cohort of mothers pregnant during the September 11, 2001 World Trade Center 

terrorist attacks; however, associations were only significant for BDE 47 and BDE 153 (Cowell et al. 

2015).  No significant associations were observed in 6-year-old children.  Median BDE 47, BDE 99, 

BDE 100, and BDE 153 cord plasma levels were 11.2, 3.2, 1.4, and 07 ng/g lipid, respectively. 

Significant negative correlations were observed for maternal serum PBDE (median ∑PBDE=3.4 ng/g 

lipid, n=62) in the 35th week of pregnancy and fine manipulative abilities, verbal memory, and sustained 

attention in a cohort of Dutch children tested at age 5–6 years (Roze et al. 2009), although some aspects 

of neurodevelopment appeared to be improved with higher PBDE concentrations in this study, including 

coordination, visual perception, and behavioral outcome reported by parents and teachers.  A case-control 

study of 100 California children, including 51 with autism/autism spectrum, 26 developmentally delayed 

but not autistic, and 23 with typical development, found no association of autism or developmental delay 

with concentrations of PBDE in serum collected from the children after assessment of developmental 

status at 36 months (Hertz-Picciotto et al. 2011).  PBDE concentrations for this study were not available 

numerically.  

Studies attempting to discern relationships between PBDE concentrations in breast milk, rather than 

blood, and neurodevelopmental end points produced more uncertain results.  A study of 70 infants in 

Taiwan found no correlation between total PBDE concentrations in breast milk collected within 1 month 

of delivery (range=1.44–118 ng/g lipid, median=2.92 ng/g lipid) and neurodevelopment as assessed in 

infants at 8–12 months of age using the Bayley Scales (Chao et al. 2011).  There was, however, a 

significant inverse association between BDE 209 concentration in breast milk and cognitive score, 

suggesting delayed cognitive development associated with that particular congener.  Gascon et al. (2012) 

reported similar findings in a Spanish cohort of 290 infants.  In this study, total PBDE concentrations in 

colostrum collected at the hospital within 4 days of delivery (range=0.31–32.66 ng/g lipid, median= 

4.05 ng/g lipid) were negatively, but not significantly, associated with the Bayley score for cognitive 

development in children assessed at age 12–18 months, but again, a significant negative relationship was 

found for BDE 209, the congener found at the highest concentrations in this population (median of 

1.02 ng/g lipid).  Studies of a North Carolina cohort found modest and imprecisely estimated associations 

between PBDEs (BDE 28, BDE 47, BDE 99, BDE 100, BDE 153, and their sum) in breast milk collected 

3 months postpartum (median ∑PBDE=47.3 ng/g lipid, n=222) and (1) increased extermalizing 

behaviors, primarily driven by activity/impulsivity behaviors, in children assessed at 24–36 months for 

social and emotional development; (2) higher anxiety and withdrawal in children assessed at 36 months 

http:range=0.31�32.66
http:median=2.92


   
 

    
 
 

 
 
 
 
 

  

   

 

 

   

       

  

        

     

 

 

 

  

   

  

 

  

 

      

 

 
 

   

   

     

       

    

      

    

    

  

 

PBDEs 208 

3. HEALTH EFFECTS 

for behavioral development using a parental rating scale; and (3) improved cognitive skills in children 

assessed at 36 months for cognitive development using the Mullen Scales of Early Learning (Adgent et al. 

2014; Hoffman et al. 2012). 

Potential associations between household BDE 99 and BDE 209 dust and cognitive ability of 6-year-old 

children (verbal comprehension, working memory) were evaluated in French birth cohort (n=246); 

potential associations with cord blood BDE 209 were also evaluated (Chevrier et al. 2016). After 

adjustment for potential covariates, children from homes with BDE 99 dust levels above the median value 

(54 ng/g) or BDE 209 dust levels in the 2nd or 3rd exposure tertile (≥257 ng/g) had significantly increased 

risk of poor performance on verbal comprehension assessments.  No association was observed between 

dust BDE 99 or BDE 209 levels and working memory, and no association was observed between cord 

BDE 209 and cognitive function. 

A case-control study of a Chinese population found no relationship between risk of neural tube defects 

and placental PBDE concentrations (median ∑PBDE=0.55 ng/g lipid for 80 cases and 0.54 ng/g lipid for 

50 controls) (Ma et al. 2012b; Ren et al. 2011). 

Endocrine System Development 

A number of studies evaluated effects on thyroid hormones in neonatal serum or cord blood associated 

with developmental exposure to PBDEs; however, findings are inconsistent between studies and 

congeners. 

Abdelouahab et al. (2013) evaluated the potential associations between thyroid hormone levels in the 

umbilical cord blood and maternal serum concentrations of PBDEs collected at <20 weeks of pregnancy 

(for ∑PBDE, median=30.92 ng/g lipid, maximum=726.09 ng/g lipid, n=380).  Significant negative 

associations were observed between maternal PBDE levels and both free and total T4 in cord blood, but 

not free or total T3 or TSH in cord blood.  Similarly, neonatal TSH assessed in blood samples collected 

24 hours after birth (on average) was not related to PBDE concentrations (median ∑PBDE=25.4 ng/g 

lipid) in maternal serum collected at the start of the third trimester or at delivery from 289 expectant 

mothers living in the Salinas Valley of California (Chevrier et al. 2011). In a low-exposure Korean birth 

cohort (n=104), no significant associations were observed between neonatal free or total T3, free or total 

T4, or TSH and maternal PBDE concentrations in maternal serum collected at delivery (median 

∑PBDE=2.2 ng/g lipid) (Kim et al. 2015) 

http:maximum=726.09
http:median=30.92
http:�PBDE=0.55
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Other studies of thyroid hormone changes in infants looked at hormone levels in umbilical cord or 

neonatal blood in relation to PBDE concentrations in maternal breast milk.  Kim et al. (2011a) reported a 

significant negative correlation between breast milk PBDE (BDE 28 only, mean ≈0.1 ng/g lipid) and free 

T4 in cord blood.  Other studies that measured PBDEs in breast milk to assess exposure found no 

association with TSH in neonatal blood collected 3 days after delivery in a Norwegian population of 

239 mother-baby pairs (median ∑PBDE in breast milk=1.91 ng/g lipid) (Eggesbo et al. 2011), no 

association with T3, T4, free T4, or TSH in cord blood in a population of 149 Taiwanese mothers (median 

∑PBDE in breast milk=3.38 ng/g lipid from 42 mothers in Central Taiwan and 3.13 ng/g lipid from 

107 mothers in Southern Taiwan) (Shy et al. 2012), and no association with free T4, total T3, or TSH in 

infant serum at 3 weeks or 3 months in 186 Swedish mother-child pairs (median breast milk 

concentrations of tetra-pentaBDE [BDE 47, BDE 99, BDE 100] of 2.3 ng/g lipid and BDE 153 of 

0.48 ng/g lipid) (Lignell et al. 2016). 

Inconsistent findings were also observed when thyroid hormones and PBDEs levels were evaluated in 

infant serum and/or cord blood. For example, Mazdai et al. (2003) found no correlations between PBDE 

concentrations (for ∑PBDE, range=14–460 ng/g lipid, median=39 ng/g lipid, n=12) and thyroid hormone 

levels (free and total T4 and free and total T3) in umbilical cord blood.  Similarly, there was no correlation 

between PBDEs and thyroid hormone levels in umbilical cord blood in another study of 21 South Korean 

mothers undergoing Cesarean section (Kim et al. 2012a).  In this study, ∑PBDE in cord blood ranged 

from 2.28 to 30.94 ng/g lipid, with a median of 12.04 ng/g lipid. Both T3 and free T3 in cord blood were 

significantly inversely related to PBDE in cord blood (median ∑PBDE=3.49 ng/g lipid) in another study 

of 54 Taiwanese births (Lin et al. 2011).  T4, free T4, and TSH were unaffected in this study.  Wan et al. 

(2010) found no significant relationship between the PBDE metabolite, 6-OH-BDE-47 (which ranged 

from <4 to 127 pg/g wet weight, with a median of 26 pg/g wet weight), and T4 in cord serum in 

26 pregnant South Korean women.  In an analysis of 289 births at Johns Hopkins Hospital in Maryland, 

PBDE in cord blood (median ∑PBDE=18.7 ng/g lipid) was compared to T4, free T4, and TSH in cord 

blood and T4 from blood spots collected from newborns at 2 and 18 days of age (on average) (Herbstman 

et al. 2008). There were consistent negative associations between PBDEs and free and total T4 in cord 

blood and/or spot samples, although these were primarily nonsignificant. Kim et al. (2011d, 2012b) 

analyzed blood samples collected from infants in neonatal screening tests.  They found a positive 

relationship between PBDEs with TSH (BDE 197 and BDE 196 only), a negative association with T3 

(BDE 154 only) for control babies (for ∑PBDE, range=1.61–252.9 ng/g lipid, mean=56.70 ng/g lipid, 

n=12), and no significant relationships between PBDEs and thyroid hormones in babies with congenital 

http:mean=56.70
http:�PBDE=3.49
http:milk=3.38
http:milk=1.91
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hypothyroidism (for ∑PBDE, range=2.22–861.0 ng/g lipid, mean=59.84 ng/g lipid, n=26). In another 

Korean birth cohort (n=104), significant positive associations were observed between neonatal serum 

TSH and cord BDE 99 levels and cord TSH and cord BDE 47 levels; no significant associations were 

observed for free or total T3 or T4 and ∑PBDE, BDE 47, or BDE 99 levels in cord blood (median ∑PBDE 

in cord=8.8 ng/g lipid) (Kim et al. 2015). 

Immune System Development 

A study of developmental immunity found reduced risk of atopic dermatitis in Japanese infants 

(diagnosed at 7 months of age by questionnaire) with higher concentrations of PBDE in umbilical cord 

blood (median ∑PBDE=41 pg/g wet weight for 27 cases and 54.5 pg/g wet weight for 54 controls) 

(Ochiai et al. 2014).  

Animal Studies 

Teratology, Fetotoxicity, and Physical Growth and Development 

Lower-brominated PBDEs: No exposure-related developmental changes were observed following 

gestational exposure to pentaBDE in GD 12 rat embryos from dams exposed to doses up to 

120 mg/kg/day via gavage from GD 6.5 to 11.5 (Ellis-Hutchings et al. 2009), in GD 20 rat fetuses from 

dams exposed to doses up to 120 mg/kg/day via gavage from GD 6.5 to 19.5 (Ellis-Hutchings et al. 

2009), or in GD 20 rat fetuses from dams exposed to doses up to 200 mg/kg/day via gavage from GD 6 to 

15 (Argus Research Laboratories 1985a).  End points evaluated included fetal/embryo survival, 

resorptions, fetal weight and length, gross abnormalities, and skeletal and soft tissue abnormalities.  In 

these studies, maternal toxicity (significantly decreased maternal weight gain) was observed at doses 

≥100 mg/kg/day (Argus Research Laboratories 1985a; Ellis-Hutchings et al. 2009).  Similarly, rat dams 

exposed to pentaBDE at doses up to 30.6 mg/kg/day from GD 6 to 21 did not show any exposure-related 

changes in pregnancy or birth indices (Branchi et al. 2001, 2002, 2005; Kodavanti et al. 2010; Zhou et al. 

2002).  Zhou et al. (2002) also reported no change in offspring viability and growth, as assessed by 

numbers of pups at birth and on PNDs 4–21, body weight of pups on PNDs 4–90, and eye opening status 

on PNDs 11–18; however, Kodavanti et al. (2010) observed significantly decreased body weight from 

PND 29 to 58 in female offspring at ≥10.2 mg/kg/day (8–10% reduction at PND 60).  No exposure-

related changes were observed in litter size, live births per litter, sex ratio, implantation sites, timing of 

eye opening, or body or organ weights (brain, liver, thymus) on PND 21 in offspring from rat dams fed 

http:mean=59.84
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vanilla wafers dosed with commercial pentaBDE (DE-71) at doses up to 11.4 mg/kg/day from 28 days 

pre-mating through PND 21 (Poon et al. 2011). In a similar study, no exposure-related changes were 

observed in litter size, live pups per litter, sex ratio, offspring survival, or timing of eye opening or pinna 

detachment in offspring from rat dams fed cookies dosed with DE-71 at doses up to 30 mg/kg/day from 

GD 1 to PND 21; however, a significant decrease in offspring body weight was observed during early 

development (up through PND 30) at 30 mg/kg/day, but not at doses ≤3 mg/kg/day (Bowers et al. 2015).  

Several studies examined developmental effects of very low doses of pentaBDE. Following maternal 

exposure to pentaBDE at doses of 0, 0.5, 1, or 2 mg/kg/day via gavage from GD 6 to 19, GD 20 rat 

fetuses showed delayed ossification and an increased incidence of internal variations at 2 mg/kg/day 

(Blanco et al. 2012).  Significantly increased skeletal variations included delayed ossification of parietal 

and occipital bones, caudal vertebrae, and floating ribs.  Soft tissue variations included significant 

increase in the size of the ventricles of the heart and liver enlargement.  No significant changes were 

observed in the number of live fetuses, the sex ratio, the average fetal body weight/litter, or external 

malformations (Blanco et al. 2012).  In another study, incisor eruption was delayed in offspring from rat 

dams exposed on GD 6 to a single gavage dose of pentaBDE at 0.3 mg/kg, but not 0.06 mg/kg (average 

age at eruption was not reported) (Kuriyama et al. 2005).  No exposure-related delays were reported for 

fur development or eye opening (Kuriyama et al. 2005).  Following single gavage doses of pentaBDE up 

to 0.3 mg/kg or tetraBDE up to 0.7 mg/kg/day in F0 rats on GD 6, no significant, exposure-related 

changes were observed in F1 body weights through PND 100 or F2 fetal end points (implantation sites, 

implantation sites/dam, number of live fetuses, fetuses/dam, mean fetal weight, resorption rate, or 

incidence of skeletal anomalies) on GD 21 (Talsness et al. 2005, 2008). 

In several other studies assessing offspring body weight following developmental exposure to pentaBDE 

(without assessing any teratogenic or fetotoxic end points), no consistent body weight effects were found. 

No dose-related body weight changes were observed in offspring of male and female rats exposed to 

pentaBDE at doses up to 25 mg/kg/day via gavage for 70 days pre-mating through PND 42 (Bondy et al. 

2011, 2013).  No exposure-related body weight effects were observed in rat pups from dams exposed to 

pentaBDE at doses up to 30 mg/kg/day via gavage or pentaBDE-dosed cookies from GD 6 to PND 18 or 

21 (Bansal et al. 2014; Cheng et al. 2009; Ellis-Hutchings et al. 2006; Miller et al. 2012; Zhao et al. 

2014), or in mouse pups from dams exposed to pentaBDE at 452 mg/kg/day every third day from GD 4 to 

PND 17 via gavage (Skarman et al. 2005).  A poorly-reported study indicated that pup weight was 

significantly decreased at PND 21 by 8, 16, and 15% following maternal exposure to pentaBDE at 50, 

100, at 200 mg/kg/day, respectively, from GD 6 to PND 21 via gavage; by PND 63, no body weight 



   
 

    
 
 

 
 
 
 
 

   

   

   

 

   

  

 

     

 

    

 

  

  

   

  

   

   

  

    

    

 

 

   

  

     

   

    

      

 

 

  

  

PBDEs 212 

3. HEALTH EFFECTS 

effects were observed (Hong et al. 2010).  Another study reported significantly elevated pup body weight 

on PND 21 in rat offspring from dams exposed to pentaBDE at 2 mg/kg/day via gavage from GD 6 to 

PND 21; no changes were observed at 1 mg/kg/day (Blanco et al. 2014).  

Three studies exposed rat dams to different commercial octaBDE mixtures at 0, 2.5, 10, or 25 mg/kg/day 

via gavage on GDs 6–15, including FR-1208 (Life Science Research Israel Ltd. 1987), Saytex 111 (Argus 

Research Laboratories 1985b), and DE-79 (WIL Research Laboratories 1986).  Following exposure to 

FR-1208, postimplantation loss was significantly elevated at 10 and 25 mg/kg/day when Freeman-Tukey 

arcsine transformed values were tested as normally distributing data (Student’s t-test); however, no 

statistical differences were observed with untransformed data and values were within the range of 

laboratory historical control values. There were no indications of skeletal malformation or variations or 

delayed or retarded ossification in any dose group (Life Science Research Israel Ltd. 1987).  Following 

exposure to Saytex 111, the number of resorptions per litter was significantly increased by 8-fold and the 

number of live fetuses per litter was decreased 6.6% in the 25 mg/kg/day group (Argus Research 

Laboratories 1985b).  Average fetal body weights were also significantly reduced at 25 mg/kg/day (Argus 

Research Laboratories 1985b).  Following exposure to DE-79, effects observed at 50 mg/kg/day included 

significantly reduced mean maternal body weight gain during the post-treatment period (GDs 16–20) and 

fetotoxicity as indicated by increased postimplantation loss due to late resorptions (not significantly 

increased compared to control group but exceeded historical control range), 39% reduced mean fetal 

weight (p<0.01), skeletal variations (e.g., reduced ossification of the skull and various unossified bones) 

that were associated with the reduced fetal weights in this group, and single instances of malformations 

(fetal anasarca, bent limb bones, unilateral absence of 13th rib) commonly associated with maternal 

toxicity (WIL Research Laboratories 1986). 

In rabbit does exposed to octaBDE (Saytex 111) at 0, 2, 5, or 15 mg/kg/day on GDs 7–19 via gavage, the 

15 mg/kg/day group showed slight fetotoxicity, as indicated by a significantly (p≤0.05) increased 

incidence of delayed ossification of the sternebrae (Breslin et al. 1989). This finding was accompanied by 

evidence of slight maternal toxicity as indicated by decreased body weight gain during GDs 7–20 and 7– 

28 (not statistically identified), reduced body weight on GD 28 (7% less than controls, p≤0.05), and 

significantly increased absolute and relative liver weights on GD 28 (Breslin et al. 1989). 

Developmental effects were assessed in mice from dams fed cornflakes containing tetraBDE at doses of 

0, 0.03, 0.1, or 1 mg/kg/day from 28 days premating to PND 21 (Ta et al. 2011).  At PND 21, a 

significant decrease in crown-rump length of pups was observed in the 0.1 mg/kg/day group, compared 
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with controls; however, no other dose-group showed this effect and the ponderal index (weight/crown

rump length) was not statistically different among treatment groups.  Similarly, body weight was 

significantly decreased by ~13–17% from PND 14 to 18 in the 0.1 mg/kg/day group, compared with 

controls, but not in the 0.03 or 1 mg/kg/day groups.  No changes were observed in gestation length, litter 

size, or sex ratio (Ta et al. 2011).  In another study using the same protocol, no changes were observed in 

the number of pups per litter, the sex ratio, or pup body weight (Koenig et al. 2012).  Pre-weaning 

weights were significantly reduced by ~10% in female offspring of female mice exposed to tetraBDE at 

0.03 mg/kg/day via gavage for 28 days premating through PND 21, but only in one of two experimental 

replicates (Woods et al. 2012).  In a dietary study, no exposure-related changes were observed in 

pregnancy length, litter sizes, pup mortality, sex ratio, or pup weight in rats exposed to tetraBDE at doses 

up to 32 mg/kg/day from GD 1 to PND 14 (Wang et al. 2011a). 

DecaBDE:  Developmental effects were assessed in mice following maternal exposure to decaBDE at 

gavage doses of 0, 150, 750, 1,500, or 2,000 mg/kg/day from GD 7 to 9 (Chi et al. 2011).  No gross 

external malformations were observed; however, significant exposure-related changes were observed in 

postimplantation loss, resorptions, number of live litters, and fetal body weight on GD 16.  The 

percentage of postimplantation loss per litter was significantly increased by 3, 2.7, and 9.8% at 750, 

1,500, and 2,000 mg/kg/day, respectively, compared with control.  At 1,500 and 2,000 mg/kg/day, the 

percentage of resorptions per litter was also significantly increased by 2.7 and 8.6%, respectively. 

Additionally, the percentage of live fetuses per litter was significantly decreased by 10% in the high-dose 

group.  Fetal body weight was significantly decreased by 10, 10, and 22% at 750, 1,500, and 

2,000 mg/kg/day, respectively, compared with controls (Chi et al. 2011).  A significant 15% reduction in 

pup body weight was observed in offspring of mouse dams fed dietary decaBDE at 260 mg/kg/day from 

GD 10 through PND 21 (Watanabe et al. 2008); however, another study using the same protocol did not 

observe body weight effects in PND 21 pups at doses up to 2,900 mg/kg/day (Watanabe et al. 2010b). No 

exposure-related changes were observed in the number of liters or survival rate of pups in either study at 

doses up to 3,100 mg/kg/day (Watanabe et al. 2008, 2010b).  In other studies, no exposure-related 

teratogenic, fetotoxic, or body weight effects, and/or delays in attainment of developmental landmarks, 

were observed following decaBDE exposure in rat offspring from dams exposed to gavage doses up to 

146 mg/kg/day from GD 10 to PND 20 or 21 (Fujimoto et al. 2011; Saegusa et al. 2012), in rat offspring 

from dams exposed to gavage doses up to 1,000 mg/kg/day from GD 0 to 19 or from GD 6 to PND 21 

(Hardy et al. 2001, 2002; Biesemeier et al. 2011), in mouse offspring from dams exposed to gavage doses 

up to 1,500 mg/kg/day from GD 0 to 17 (Tseng et al. 2008, 2013), or in mouse offspring from dams 

exposed to doses up to 20 mg/kg/day via micropipette from PND 2 to 15 (Rice et al. 2007).  In a poorly
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reported study, the study authors reported that pup weight was significantly decreased in mouse offspring 

at PND 21 following maternal exposure to decaBDE at 500, 2,500, and 12,500 mg/kg/day via gavage 

from GD 6 to PND 21; however, the included graph and table do not support that statement (Hong et al. 

2010). 

A lower purity commercial decaBDE product (77% decaBDE, 22% nonaBDE, 0.8% octaBDE) used in 

the 1970s was fetotoxic in rats at high, albeit not maternally toxic, dose levels.  Developmental effects 

were investigated in GD 21 rat fetuses from dams exposed to decaBDE at doses of 10, 100, or 

1,000 mg/kg/day by gavage on GDs 6–15 (Dow Chemical Co. 1985; Norris et al. 1975a).  The numbers 

of fetuses with subcutaneous edema and delayed ossification of normally developed skull bones were 

significantly increased at 1,000 mg/kg/day.  Resorptions were significantly increased at ≥10 mg/kg/day, 

but the increases were not dose-related and rates in the high dose group were comparable to historical 

control values.  As discussed in Section 3.2.2.5 (Reproductive Effects), a one-generation study of the 77% 

commercial decaBDE mixture at ≤100 mg/kg/day in rats found no effects on numbers of live pups at birth 

or during lactation, body weights of pups at birth or weaning, or skeletal development or soft-tissue 

histology of pups at weaning (Dow Chemical Co. 1975; Norris et al. 1975a). 

An additional study evaluated developmental effects in neonatal mice engineered to express neonatal 

human apolipoprotein E (three genotypes: apoE2, apoE3, and apoE4) exposed once to decaBDE at 0, 10, 

or 30 mg/kg via micropipette on PND 10 (Reverte et al. 2014).  Investigators were assessing the potential 

effect of different human apoE genotypes on susceptibility to decaBDE exposure during development, as 

apolipoprotein is a genetic factor that is associated with varied vulnerability for the development of 

neurodegenerative disease.  No exposure-related changes were observed in survival, body weight gain, 

ontogeny of reflexes, pinna detachment, or incisor eruption.  However, eye opening was significantly 

delayed in apoE2 mice exposed to 30 mg/kg, compared with apoE2 controls. 

Neurodevelopment 

Lower-brominated PBDEs 

Neurobehavior: In a series of one-day exposure neonatal gavage studies using similar experimental 

designs, mice exposed to pentaBDE at doses ≥0.8 mg/kg on PND 3 or PND 10 consistently showed 

alterations in open-field behavior at 2–8 months of age, characterized by decreased activity during the 

first 20-minute period followed by increased activity during the third 20-minute period; exposure-related 
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effects were not observed in any study at ≤0.4 mg/kg/day or following exposure to pentaBDE at 8 mg/kg 

on PND 19 (Eriksson et al. 2002b, 2006; Fischer et al. 2008; Hallgren et al. 2015; Sand et al. 2004; 

Viberg et al. 2002, 2004a, 2004b).  These findings indicate an initial decrease in activity, but also a lack 

of habituation to new surroundings.  The study authors noted that this nonhabituating behavior profile 

(i.e., decreased activity early in the test period and increased activity late in the test period) has also been 

reported in adult mice neonatally exposed to certain ortho-PCB congeners (Eriksson and Fredriksson 

1996a, 1996b).  Several other 1-day exposure studies report similar findings in rats and mice following 

exposure to various lower-brominated PBDEs.  Decreased spontaneous activity and/or impaired 

habituation was observed in rats exposed to pentaBDE at 8 mg/kg on PND 10, mice exposed to hexaBDE 

at ≥0.45 mg/kg on PND 10, mice exposed to tetraBDE at 10.5 mg/kg on PND 10, mice exposed to 

heptaBDE at 15.2 mg/kg on PND 3, and mice exposed octaBDE at 16.8 mg/kg on PND 3 or 10 (Eriksson 

et al. 2001; Viberg et al. 2003a, 2005, 2006).  Increased vertical activity was significantly increased at 

4 months, but not 2 months, in mice exposed to tetraBDE at ≥1 mg/kg on PND 10; no changes were 

observed in horizontal activity or habituation (Gee and Moser 2008).  No changes in open-field behavior 

were observed in mice exposed to heptaBDE at 15.2 mg/kg or nonaBDE at 18.5 on PND 10 (Viberg et al. 

2006).  The observed effects may be modulated by the cholinergic system, as mice exposed to pentaBDE 

at 8 mg/kg on PND 10 showed significantly altered responses in a nicotine-induced behavior task 

(decreased instead of increased activity) (Viberg et al. 2002). 

Evidence for exposure-related changes in open-field behavior is less consistent in pre- and perinatal 

studies. Male offspring from mouse dams exposed to pentaBDE at 18 mg/kg/day via gavage or “self

administration” from a modified syringe from GD 6 to PND 21 showed significantly increased motor 

activity during the 3rd 10-minute block of an open field test on PND 34, indicating decreased habituation 

(female offspring not evaluated) (Branchi et al. 2005).  This effect was transient, as it was no longer 

observed in male offspring at PND 60 to 120.  No exposure related changes were observed in the amount 

of time spent in the center versus the middle of the open field (Branchi et al. 2005).  However, male and 

female offspring from mouse dams exposed to pentaBDE at 0, 0.6, 6, or 30 mg/kg/day via gavage from 

GD 6 to PND 21 showed changes suggestive of an age-dependent alteration in activity at ≥6 mg/kg/day; 

effects included hyperactivity (increased locomotion and rearing) and impaired habituation at PNDs 34 

and 60, altered thigmotaxis (reduced time near walls) at PND 60, and a tendency to hypoactivity (reduced 

locomotion) at PND 120 (Branchi et al. 2001, 2002).  In 24-hour observations of open-field behavior, 

total activity, time spent active, duration of activity per active phase, and total activity per active phase 

were all significantly increased in PND 36 male rat offspring following a single maternal exposure to 

0.3 mg/kg on GD 6 via gavage (Kuriyama et al. 2005).  At PND 71, the increases in total activity and 
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time spent active persisted in the 0.3 mg/kg group, and were also significantly increased at 0.06 mg/kg 

(Kuriyama et al. 2005).  Bowers et al. (2015) reported a significant increase in rearing behavior in rats at 

PND 110 following maternal exposure to pentaBDE at doses up to 30 mg/kg/day via dosed cookie intake 

from GD 1 to PND 21; however, rearing behavior did not differ from control on PND 16, 55, or 230, and 

no other changes in motor activity or habituation behavior were observed in open-field testing at any 

time-point.  Kodavanti et al. (2010) also reported a lack of exposure-related changes in open-field 

behavior in rats at PND 100, 114, or 273 following maternal exposure to pentaBDE at doses up to 

30.6 mg/kg/day via gavage from GD 6 to PND 21.  Similarly, no exposure-related changes were observed 

in general motor activity in an open field in PND 22 male and female offspring of rat dams exposed to 

pentaBDE at doses up to 2 mg/kg/day via gavage from GD 6 to PND 21; however, the offspring exposed 

to 2 mg/kg/day spent a significantly greater percentage of time in the center of the open field, indicating 

decreased anxiety (anxiolytic effect) (Blanco et al. 2013).  However, no effect on anxiety behavior was 

observed in the emergence latency assay in PND 35 or 80 rat offspring of dams fed pentaBDE-dosed 

cookies at intake levels up to 30 mg/kg/day from GD 1 to PND 21 (Bowers et al. 2015).  In offspring of 

mouse dams fed cornflakes containing tetraBDE at doses up to 1 mg/kg/day from pre-mating day 28 

through PND 21, no changes in locomotor activity were observed at PNW 8 or 17 (Koenig et al. 2012). 

In contrast, a second study using the same protocol reported significantly decreased locomotion and 

distance travelled in open-field testing of PND 60 females exposed to ≥0.1 mg/kg/day; at 0.03 mg/kg/day, 

PND 60 female mice showed decreased activity in the center of the open field (Ta et al. 2011).  No 

exposure-related changes in open-field behavior were observed at PND 60 in males or PND 42 in either 

sex (Ta et al. 2011). Open field behavior was not significantly altered in PND 21 male offspring of 

mouse dams administered tetraBDE at 0.2 mg/kg/day from GD 8 to PND 21, compared with control (Kim 

et al. 2015). 

In 1-day exposure neonatal gavage studies, significant impairments were also observed in learning and 

memory in the Morris water maze test in mice exposed to pentaBDE at 0.8 mg/kg on PND 10, mice 

exposed to hexaBDE at ≥0.9 mg/kg on PND 10, and mice exposed to octaBDE at 16.8 mg/kg on PND 10, 

or in rats exposed to tetraBDE at ≥1 mg/kg on PND 10 (Fischer et al. 2008; He et al. 2009, 2011; Viberg 

et al. 2003a, 2006).  Observed changes included increased latencies to find a hidden platform during a 

4-day training period and decreased distance travelled in the quadrant containing the hidden platform 

compared with controls; no changes were observed during a reversal phase on the 5th day (when the 

platform was moved to a new quadrant).  Similarly, impairments in learning and memory were observed 

in the radial arm maze in mice exposed to pentaBDE at 0.8 mg/kg on PND 10, as evidence by the 

increased number of re-entries into maze arms from which the food pellet had already been eaten (Fischer 
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et al. 2008).  No exposure-related effects on learning or memory were observed in the Morris water maze 

in mice exposed to octaBDE at 16.8 mg/kg on PND 3 or nonaBDE at 18.5 mg/kg on PND 10 (Viberg et 

al. 2006).  Based on the observed deficits, some of the studies evaluated the density of nicotinic 

cholinergic receptors in the hippocampus.  Significant decreases in receptor density of 7–31% were 

observed in mice exposed to penta- or hexaBDE at ≥9 mg/kg on PND 10 (Viberg et al. 2003a, 2004b, 

2005).  Another study reported a significant 23% decrease in cortical density of nicotinic cholinergic 

receptors in mice exposed to pentaBDE at 0.8 mg/kg on PND 10; hippocampal density was not altered at 

this dose (Fischer et al. 2008). The observed effects may be modulated by the cholinergic system, as 

mice exposed to pentaBDE at 8 mg/kg on PND 10 showed significantly altered responses in a nicotine-

induced behavior task (decreased instead of increased activity) (Viberg et al. 2002). 

Learning and memory impairments have also been reported following pre- and perinatal exposures. 

Following maternal exposure to pentaBDE at 0, 1, or 2 mg/kg/day via gavage from GD 6 to PND 21, a 

nonsignificant trend toward increased time to locate the hidden platform in the Morris water maze was 

observed on days 2–4 in PND 22 rat offspring from both dose groups; however, the increase was only 

significant on day 4 in the 2 mg/kg/day group (Blanco et al. 2013).  In another study, significantly 

increased latency to find the escape platform was observed in the Morris water maze on training days 2–3 

in PND 34 offspring of rat dams exposed to pentaBDE at 2 mg/kg/day from GD 6 to PND 21 (Cheng et 

al. 2009).  In a low-dose study, maternal exposure to 0.2 mg/kg/day from GD 1 to PND 21 via gavage did 

not impair spatial learning in PND 34–36 offspring (Zhao et al. 2014).  Effects observed at higher doses 

may be transient, as no exposure-related changes were observed in the Morris water maze in PND 235 rat 

offspring following maternal exposure to pentaBDE at doses up to 30 mg/kg/day via dosed cookie intake 

from GD 1 to PND 21 (Bowers et al. 2015).  No exposure-related deficits in the Morris water maze were 

observed during PNW 7 or 11 in offspring of mouse dams exposed to tetraBDE at 0.03 mg/kg/day via 

gavage from pre-mating day 28 to PND 21 (Woods et al. 2012).  Similarly, offspring of mouse dams fed 

cornflakes containing tetraBDE at 0, 0.03, 0.1, or 1 mg/kg/day from pre-mating day 28 through PND 21 

did not show exposure-related impairments in the Morris water maze at PNW 8 (Ta et al. 2011). 

However, another study using the same protocol reported a significant increase in the latency to find a 

hidden escape hole in the Barnes maze on the first day of training at ≥0.03 mg/kg/day in PNW 8 offspring 

(Koenig et al. 2012).  No exposure-related effects were observed during trial days 2–4 or during reversal 

learning on day 5 (escape hole placed in a different location) at doses up to 1 mg/kg/day (Koenig et al. 

2012).  Other studies assessed learning and attention using 5-choice visual learning and attention tasks 

conducted from PND 30 to 95 in offspring of rat dams exposed to pentaBDE via gavage from PND 6 to 

12 (Driscoll et al. 2012; Dufault et al. 2005).  Offspring exposed to 30 mg/kg/day required significantly 
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more trials to reach “passing” criterion in the visual discrimination task, and committed significantly 

more errors than controls prior to reaching the criterion (Dufault et al. 2005).  The number of omission 

errors (no choice made) was also significantly increased in rats exposed to 30 mg/kg/day.  No exposure-

related impairments were observed in the visual discrimination task at doses ≤15 mg/kg/day, and no 

exposure-related impairments were observed in the sustained attention task at doses up to 30 mg/kg/day 

(Driscoll et al. 2012; Dufault et al. 2005).  

In the three-chambered sociability task, general sociability (time spent in the chamber with a social target) 

was decreased in female offspring of mouse dams exposed to tetraBDE at 0.03 mg/kg/day via gavage 

from pre-mating day 28 to PND 21 (only dose evaluated); no exposure-related changes were observed in 

male offspring (Woods et al. 2012).  No changes were observed in social novelty (time spent in the 

chamber with a new social target vs. a familiar social target) or barrier social interaction tests (time spent 

interacting with social target) in either sex (Woods et al. 2012).  No exposure-related changes in social 

interaction were observed in offspring of mouse dams fed cornflakes containing tetraBDE at 0, 0.03, 0.1, 

or 1 mg/kg/day from pre-mating day 28 through PND 21 (Ta et al. 2011).  No performance deficits were 

observed in additional neurobehavioral tests in these studies, including the elevated plus maze, acoustic 

startle and prepulse inhibition, and fear conditioning (Ta et al. 2011; Woods et al. 2012). Similarly, no 

significant, exposure-related changes were observed in social interaction or social novelty indices in 

PND 70 offspring of dams administered tetraBDE at 0 or 0.2 mg/kg/day via gavage from GD 8 to 

PND 21 (Kim et al. 2015).  Additionally, no exposure-related effects were observed in social dominance 

testing (tube test, urine marking test). 

Sensory and motor development. Sensory and motor development (righting reflex, forelimb stick 

grasping reflex, forelimb placing reflexes, negative geotaxis, screen grasping and climbing, pole grasping, 

ultrasonic vocalizations, homing test) were assessed in male and female offspring of mouse dams exposed 

to pentaBDE at doses of 0, 0.6, 6, or 30 mg/kg/day via gavage from GD 6 to PND 21 (Branchi et al. 2001, 

2002).  The screen climbing response was delayed by approximately 2 days in the 30 mg/kg/day group, 

compared with controls; no other exposure-related changes were observed in reflex development (Branchi 

et al. 2001, 2002).  However, in rats, development of the cliff drop and negative geotaxis reflexes was 

significantly delayed in male pups following maternal exposure to pentaBDE at 2 mg/kg/day via gavage 

from GD 6 to PND 21; no delays were observed in the development of the righting reflex (Cheng et al. 

2009).  Similarly, development of the cliff drop reflex was significantly delayed in male rat pups 

following a single maternal exposure to pentaBDE at 0.3 mg/kg on GD 6, but not at 0.06 mg/kg (average 

age at which the reflex developed was not reported) (Kuriyama et al. 2005).  However, no exposure
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related changes were observed in the ability of male offspring to stay on a rotating rod for 3 minutes at 

doses up to 0.3 mg/kg (Kuriyama et al. 2005).  In a low-dose study, no exposure-related changes in reflex 

maturation or motor coordination were observed in PND 3–30 offspring of dams exposed to pentaBDE at 

0.2 mg/kg/day from GD 1 to PND 21 via gavage (Zhao et al. 2014). Similarly, no changes in grip 

strength or motor coordination (beam test) were observed in PND 12–60 rat offspring of dams fed 

pentaBDE-dosed cookies at intake levels up to 30 mg/kg/day from GD 1 to PND 21 (Bowers et al. 2015). 

However, the acoustic startle response was significantly increased at the highest intensity levels in rats on 

PND 9, but not PND 20 (Bowers et al. 2015).  

Sensory and motor development was also tested in offspring of mouse dams fed cornflakes containing 

tetraBDE at doses of 0, 0.03, 0.1, or 1 mg/kg/day from pre-mating day 28 to PND 21 (Ta et al. 2011).  No 

significant exposure-related effects were found in the Wahlsten battery for sensory and motor 

development (righting reflex, cliff aversion, needle grasp, visual placing, vibrissa placing, eye opening, 

ear opening, ear twitch response, screen pull, screen cling/climb, startle reflex) on PNDs 8–18 or rotarod 

performance on PNDs 35–36; however, significant differences in ultrasonic pup vocalization (UPV) 

measures were observed between the 1 mg/kg/day group and control, including increased duration of 

UPVs on PND 13 and increased UPV bout duration on PND 9 and 13.  A nonsignificant trend was also 

observed in the 1 mg/kg/day group in the number of UPVs on PNDs 13 and 17 (Ta et al. 2011).  

Similarly, female offspring of mouse dams exposed to tetraBDE at 0 or 0.03 mg/kg/day via gavage from 

pre-mating day 28 to PND 21 showed significantly decreased UPV between PND 8 and 16; no exposure-

related deficits were observed in male or female offspring in sensory or motor test batteries from PND 8 

to 21 or rotarod performance at PNDs 29–30 or 66–68 (Woods et al. 2012).  Koenig et al. (2012) also 

reported a lack of exposure-related changes motor tests (grip strength, ladder walk, gait analysis) in 

PND 14–42 offspring of mouse dams fed cornflakes containing tetraBDE at doses up to 1 mg/kg/day 

from pre-mating day 28 through PND 21 (Koenig et al. 2012). 

In other studies, no exposure-related changes were observed in functional observation batteries in male 

offspring of rat dams exposed to pentaBDE at doses up to 30.6 mg/kg/day via gavage from GD 6 to 

PND 21 (assessed at PND 24 or 60) or male mice exposed to single tetraBDE doses up to 30 mg/kg via 

gavage on PND 10 (assessed at PNDs 12–18 or at 1 or 3 months of age) (Gee and Moser 2008; Kodavanti 

et al. 2010).  

Electrophysiology. Following a single exposure to tetraBDE at 0, 6.8, or 68 mg/kg via gavage on 

PND 10, hippocampal slices from PND 17 to 19 male mice were prepared for field-excitatory 
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postsynaptic potential (fEPSP) recordings (Dingemans et al. 2007).  No exposure-related differences in 

the stimulus-response relation were seen in fEPSPs.  However, post-tetanus potential (PTP) and long-term 

potential (LTP) were significantly decreased in the hippocampus of exposed mice, compared with 

controls.  No exposure-related effects on paired-pulse inhibition were observed. 

To assess auditory function, distortion product otoacoustic emissions (DPOAEs) were measured in adult 

offspring of rat dams fed vanilla wafers containing pentaBDE at doses of 0, 5.7, or 11.4 mg/kg/day from 

pre-mating day 28 to PND 21 (Poon et al. 2011).  No exposure-related changes were observed in DPOAE 

amplitudes, frequencies, or thresholds. 

Histology and organ weight. Ultrastructural changes were observed in the hippocampus of 2-month-old 

rats exposed once to tetraBDE on PND 10 at ≥5 mg/kg, but not at 1 mg/kg (He et al. 2009).  At 5 mg/kg, 

the endoplasmic reticulum appeared increasing swollen and degranulated, and at 10 mg/kg, the neurons 

were acutely affected, with puffed periplast, dissolved cell organelles, and vacuolized mitochondria (no 

incidence data reported) (He et al. 2009).  No exposure-related changes in hippocampal histology were 

observed in PND 70 offspring of mouse dams fed cornflakes containing tetraBDE at 0, 0.03, 0.1, or 

1 mg/kg/day from pre-mating day 28 through PND 21 (Ta et al. 2011). 

No exposure-related changes in brain weight were observed in neonatal, weanling, or adult offspring 

following maternal exposure to pentaBDE at 18 mg/kg/day via gavage on GD 6 to PND 21 (Ellis-

Hutchings et al. 2006), maternal exposure to pentaBDE-dosed cookies at doses up to 30 mg/kg/day from 

GD 1 to PND 21 (Bowers et al. 2015), or maternal exposure to pentaBDE-dosed vanilla wafers at doses 

up to 11.4 mg/kg/day from pre-mating day 28 to PND 21 (Poon et al. 2011).  Similarly, cerebrum weight 

was unaffected in 2-month-old rats exposed once to tetraBDE at doses up to 10 mg/kg via gavage on 

PND 10 (He et al. 2011). 

Biochemical, proteomic, genomic, and epigenetic changes. Hippocampal and cortical tissues of rat pups 

were evaluated for mRNA and protein expression levels of several T3-mediate proteins (BDNF, NCAM1, 

and GAP-43) following maternal exposure to tetraBDE at 0, 3.2, or 32 mg/kg/day via gavage from GD 1 

to PND 14 (Wang et al. 2011a).  At PNDs 1, 7, and 14, multiple alterations in mRNA and protein levels 

were observed; however, magnitude, direction, and significance of the changes were time- and region-

dependent, with no clear exposure-related pattern (Wang et al. 2011a).  In another study, hippocampal 

and cortical tissues were evaluated for gene expression levels of TRα1, TRα2, TRβ1, and BDNF in 

PND 21 offspring of rat dams exposed to pentaBDE at 0, 1, or 2 mg/kg/day via gavage from GD 6 to 
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PND 21 (Blanco et al. 2013).  The only exposure-related change observed was a significant decrease in 

BDNF expression in the hippocampus at 2 mg/kg/day (Blanco et al. 2013).  

In 2-month-old rats exposed once to tetraBDE at 0, 1, 5, or 10 mg/kg on PND 10, various dose-related 

changes were observed in the mRNA and protein expression levels of apoptotic proteins in the 

hippocampus, including induction of caspase3, caspase12, and cytochrome C (He et al. 2009).  Costa et 

al. (2015) reported similar induction of caspase3 in mice sacrificed 24 hours following exposure to 

20 mg/kg of tetraBDE on PND 10, compared with control.  Markers of oxidative stress were also elevated 

in exposed mice, including malondialdehyde (MDA), 8-isoprostane, and reactive protein carbonyls, and 

tetraBDE-mediated induction of caspase3 was significantly greater in glutathione-deficient knockout mice 

(Gclm -/-) than in wild-type mice (Costa et al. 2015).  In another 1-day neonatal exposure study, brain 

levels of calcium/calmodulin-dependent protein kinase II (CaMKII), NMDA interacting proteins PSD-95 

and SAP97, AMPA receptor subunit GluR1, and NMDA receptor subunits NR1, NR2A, and NR2B were 

measured in PNDs 17–19 mice exposed to tetraBDE at 0, 6.8, or 68 mg/kg on PND 10 (Dingemans et al. 

2007).  Protein expression levels of NR2B, GluR1, and the autophosphorylated-active form of CaMKII 

were significantly decreased in exposed mice compared with control.  No exposure-related changes were 

observed for total CaMKII, NR1, NR2A, PSD-95, or SAP97 protein expression levels.  Additionally, 

K+-evoked catecholamine release was evaluated from chromaffin cells isolated from mice in the 0 and 

68 mg/kg groups; no significant exposure-related effects were observed (Dingemans et al. 2007). 

Hippocampal, cortical, and cerebellar tissues were evaluated for markers of oxidative stress in PND 37 

male offspring of rat dams exposed to pentaBDE at 0 or 2 mg/kg/day via gavage from GD 6 to PND 21 

(Cheng et al. 2009).  In the hippocampus of offspring of exposed dams, the specific activities of SOD and 

GSH-Px were significantly decreased, lipid peroxidase, H2O2, and NO generation were significantly 

increased, and the number of free radicals was significantly increased, compared with controls.  No 

significant changes were observed for these measures in the cerebral cortex or cerebellum, with the 

exception of significantly increased H2O2 generation in the cerebellum.  No changes in brain GSH 

concentrations were observed (Cheng et al. 2009). Increased markers of apoptosis and oxidative stress 

were also observed in the hippocampus of offspring of rat dams exposed to the commercial pentaBDE 

mixture DE-71 at 30.6 mg/kg/day via gavage from GD 6 to PND 14 (Kodavanti et al. 2015).  In a low-

dose study, no exposure-related changes were observed in cortical, cerebellar, or hippocampal levels of 

SOD, GSH-Px, GSH, H2O2, NO, or lipid peroxidation in PND 37 male offspring of dams exposed to 

0.2 mg/kg/day via gavage from GD 1 to PND 21, compared with controls (Zhao et al. 2014). 
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DNA methylation and mRNA levels of DNA methyltransferase (Dmnt1) were measured in adult 

offspring of mouse dams exposed to tetraBDE at 0 or 0.03 mg/kg/day via gavage from pre-mating day 28 

to PND 21 (Woods et al. 2012).  Global DNA methylation was significantly decreased in female, but not 

male, offspring; no changes were observed in Dmct1 transcript levels. 

Cortical and hippocampal cholinergic gene transcription was evaluated in 2-month-old mice exposed to 

pentaBDE at 12 mg/kg via gavage on PND 10 (Hallgren et al. 2015).  Significant transcriptional findings 

included increased cortical nAchR-β2, AChR5, and nAChR-α4 in exposed mice, compared with controls; 

a near-significant increase in cortical AchE transcription was also observed.  No exposure-related 

cholinergic gene transcription changes were observed in the hippocampus of 2-month-old mice.  

Additionally, no exposure-related cholinergic gene transcription changes were observed in the cortex or 

hippocampus of mice sacrificed 24 hours postexposure (i.e., PND 11).  Cholinergic effects were also 

evaluated in offspring from a one-generation study in mink (Bull et al. 2007). F0 females were exposed 

to dietary pentaBDE at 0, 0.01, 0.05, or 0.25 mg/kg/day from pre-mating day 28 to PNW 6.  No kits were 

born in the 0.25 mg/kg/day group; for the other groups, 6 kits/group were sacrificed at PNW 6 and 10 

kits/group continued dietary exposure until PNW 27 and were sacrificed at PNW 45.  In both PNW 6 and 

45 kits, ChE was determined in blood plasma and cerebral cortex.  In the cerebral cortex, ACh, mAChR, 

and nAChR binding were also measured.  No exposure-related effects were observed in any cholinergic 

measures in 6-week-old kits or 27-week-old juveniles. 

DecaBDE 

Neurobehavior. As seen in the lower-brominated PBDE neurobehavioral section, decreased spontaneous 

activity and impaired habituation in open-field testing were observed at 2 and 4 months in mice exposed 

once to decaBDE on PND 3 at doses ≥2.22 mg/kg (Buratovic et al. 2014; Johansson et al. 2008; Viberg et 

al. 2003b, 2007).  Also as observed with pentaBDE, decaBDE-exposed mice showed significantly altered 

responses in a cholinergic-induced behavior task (decreased instead of increased activity) at ≥5.76 mg/kg 

on PND 3 (Buratovic et al. 2014; Johansson et al. 2008).  Following exposure on PND 10 or 19, however, 

no exposure-related changes in open-field behavior were observed in mice exposed to decaBDE at doses 

up to 20.1 mg/kg (Viberg et al. 2003b).  In contrast, significantly increased locomotor activity during the 

first 1.5 hours of a 2-hour observation period was observed in PND 70 males following exposure to 

decaBDE at 20 mg/kg/day via micropipette from PND 2 to 15 (Rice et al. 2007).  No changes in 

locomotor activity were observed at PND 70 in females or 1 year in either sex at doses up to 20 

mg/kg/day (Rice et al. 2007).  In a perinatal exposure study, no exposure-related changes in motor 
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activity were observed in neonatal, weanling, juvenile, or adult offspring of rat dams exposed to decaBDE 

at doses up to 1,000 mg/kg/day via gavage from GD 6 to PND 21 (Biesemeier et al. 2011). 

Operant training and visual discrimination were assessed in young adult (3-month-old) and aging 

(16-month-old) mice following exposure to decaBDE at 0, 6, or 20 mg/kg/day via micropipette on 

PNDs 2–15 (Rice et al. 2009). Neurobehavioral tasks included lever-press training followed by a series 

of operant procedures, including a fixed-ratio (FR) schedule of reinforcement, a fixed-interval (FI) 

2-minute schedule, and a light-dark visual discrimination.  No significant, exposure-related effects were 

observed in the young adult cohort; however, learning impairment and impulsivity were observed in the 

aging cohort.  In the FR task, exposure did not lead to impaired performance; however, there was a 

significant main effect of decaBDE exposure on the slope parameter for the number of earned food 

pellets.  The control group earned the fewest reinforcers at the beginning of the task, and the high-dose 

group earned the most; by the end of the 10 sessions, all dose groups earned about the same number of 

reinforcers.  In the FI task, there were significant main effects of decaBDE exposure on the fitted mean 

for the overall response rate, with the high-dose having a marginally higher response rate than the control 

group (p=0.06).  This means that the exposed mice were emitting more responses for the same number of 

reinforcers. No significant exposure-related changes were observed for other parameters measured in the 

FI task (pause time, run rate, index of curvature, or number of responses during the feed cycle).  A 

number of significantly altered parameters were observed during the visual discrimination task (41 trials).  

Significantly decreased number of first choice errors and shorter response latencies were observed in 

6 and 20 mg/kg/day females and 20 mg/kg/day males; these findings were particularly pronounced in the 

earlier trials.  However, mice in the 20 mg/kg/day group showed a significantly higher rate of error in the 

last 15 trials, compared with controls.  Additionally, after an initial error, mice in the 20 mg/kg/day group 

made significantly more “perseverative” errors than controls. 

Altered spatial learning and memory have been reported in the Morris water maze following prenatal or 

neonatal exposure to decaBDE.  While initial spatial learning was not impaired in mice exposed to 5.76 or 

13.4 mg/kg on PND 3, reversal learning (ability to find the escape platform in a new location after initial 

training) was significantly impaired at ≥5.76 mg/kg at 5 and 7 months (Buratovic et al. 2014).  Following 

gestational exposure from GD 1 to 14, rat offspring showed significantly impaired spatial learning on 

PND 25 at ≥30 mg/kg/day, but not at 10 mg/kg/day, compared with controls; reversal learning was not 

assessed in this study (Chen et al. 2014).  An additional study evaluated spatial learning and memory in 

neonatal mice engineered to express neonatal human apolipoprotein E (three genotypes: apoE2, apoE3, 

and apoE4) exposed once to decaBDE at 0, 10, or 30 mg/kg via micropipette on PND 10 (Reverte et al. 
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2013).  Investigators were assessing the potential effect of different human apoE genotypes on 

susceptibility to decaBDE exposure during development, as apolipoprotein is a genetic factor that is 

associated with varied vulnerability for the development of neurodegenerative disease.  Impaired learning 

and memory were observed at 4 months in apoE3 and apoE4 male mice at ≥10 mg/kg/day and at 

12 months in apoE3 females exposed to 30 mg/kg (lack of preference for target quadrant).  No wild-type 

mice were evaluated. 

In other behavioral tests, no exposure-related changes were observed in auditory startle responses, or 

learning and memory in the water-filled T-maze in weanling, juvenile, or adult offspring from rat dams 

exposed to decaBDE at doses up to 1,000 mg/kg/day via gavage from GD 6 to PND 21 (Biesemeier et al. 

2011) or in the elevated plus maze in 4-month-old mice exposed once to decaBDE at doses up to 

20.1 mg/kg via gavage on PND 3 (Johansson et al. 2008). No changes in were observed in surface-

righting or geotaxis reflexes or motor function assays (tail pull, cling and climb test) at PNDs 12–16 in 

mice engineered to express neonatal human apolipoprotein E (three genotypes: apoE2, apoE3, and 

apoE4) exposed once to decaBDE at 0, 10, or 30 mg/kg via micropipette on PND 10 (Reverte et al. 2014). 

Sensory and motor development. A comprehensive functional observation battery was conducted every 

other day from PND 2 to 20 in mice exposed to decaBDE at 0, 6, or 20 mg/kg/day via micropipette from 

PND 2 to 15 (Rice et al. 2007).  The only exposure-related changes observed were a significant reduction 

in the number of male and female pups performing the palpebral reflex on PND 14 and a significant 

reduction in the number of male pups performing an effective forelimb grip on PNDs 14 and 16 in the 

20 mg/kg/day group. 

Electrophysiology. Five groups of developing mice were exposed to decaBDE at 0 or 20.1 mg/kg/day via 

gavage during the following periods: gestational (GDs 1–21, via dam), lactational (PNDs 1–21, via dam), 

neonatal (PNDs 3–21, direct), post-weaning (PNDs 22–41), or gestational, lactational, and post-weaning 

(GD 1–PND 21, via dam, and PNDs 22–41, direct) (Xing et al. 2009).  In the control group, dams were 

administered the vehicle only from GD 1 to PND 21 and offspring were administered the vehicle from 

PND 22 to 41.  The dams and pups in all exposure groups were administered the vehicle during non-

exposure periods (e.g., the group exposed to decaBDE during gestation only was administered the vehicle 

daily from PND 1 to 41).  In all groups, in vivo extracellular recording of synaptic transmission in the 

hippocampus was measured on PND 60 by placing the anesthetized mice in a stereotaxic head holder.  

Significantly decreased synaptic potency, short-term plasticity, and long-term potentiation were observed 

in exposed mice from the neonatal, post-weaning, and gestation+lactation+post-weaning groups. In the 
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lactation-only group, long-term potentiation was significantly decreased, but no exposure-related changes 

were observed in synaptic potency or short-term plasticity.  No exposure-related changes were observed 

in the gestation-only exposure group. 

Histology and organ weight. No exposure-related changes were observed in brain weight, histology, or 

morphometry in weanling or juvenile offspring from rat dams exposed to decaBDE at doses up to 

1,000 mg/kg/day via gavage from GD 6 to PND 21 or PND 10 to 21 (Biesemeier et al. 2011; Fujimoto et 

al. 2011; Saegusa et al. 2012) or juvenile offspring from rat dams exposed to decaBDE at doses up to 

1,500 mg/kg/day via gavage from GD 0 to 17 (Tseng et al. 2008).  Absolute brain weight was 

significantly decreased in GD 16 fetuses following maternal exposure to decaBDE at 2,000 mg/kg/day via 

gavage on GDs 7–9; however, the difference was no longer significant once brain weights were adjusted 

for body weight (Chi et al. 2011). 

Biochemical, proteomic, and genomic changes. Seven months following exposure to decaBDE at 0 or 

13.4 mg/kg on PND 3, the cortical and hippocampal expression of CaMKII, Gap-43, Tau, and 

synaptophysin were evaluated in male and female mice (Buratovic et al. 2014).  Significant increases in 

protein levels of CaMKII, Gap-43, and Tau were observed in the cortex and hippocampus in exposed 

male mice and increased levels of Tau were observed in the cortex and hippocampus of exposed female 

mice, compared with control.  No changes in synaptophysin were observed. 

Neonatal mice engineered to express neonatal human apolipoprotein E (three genotypes: apoE2, apoE3, 

apoE4) were exposed once to decaBDE at 0, 10, or 30 mg/kg via micropipette on PND 10 and evaluated 

for BDNF levels in the hippocampus (Reverte et al. 2013).  When all genotypes were combined for 

analysis, hippocampal BDNF levels were significantly elevated in males and females (combined) in the 

30 mg/kg group.  No wild-type mice were evaluated. 

Following exposure to decaBDE at 0, 2, 15, or 146 mg/kg/day from GD 10 to PND 21, brains from 

offspring sacrificed on PND 20 and 77 were fixed for hippocampal immunohistochemistry (reelin, 

flutamic acid decarboxylase 67 [GAD67], EphA5, Tacr3, and neuron-specific nuclear protein [NeuN]) 

and cresyl violet staining of apoptotic bodies (Saegusa et al. 2012).  Significant, exposure-related findings 

included an increase in the number of reelin-immunoreactive cells in the dentate hilus in groups exposed 

to ≥15 mg/kg/day on PND 20, an increase in the number of EphA5-postive cells in the CA1 layer on 

PND 20, and a minimal increase in the number NeuN-immunoreactive cells in the hilus in the 

146 mg/kg/day group on PND 77. 
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Reproductive System Development 

Lower-brominated PBDEs:  Reproductive performance was assessed in F1 male and female offspring 

from rat dams exposed to single pentaBDE doses of 0, 0.06, or 0.3 mg/kg or tetraBDE doses of 0, 0.14, or 

0.7 mg/kg on GD 6 via gavage (Kuriyama et al. 2005; Talsness et al. 2005, 2008).  Following pentaBDE 

exposure, no significant exposure-related effects were observed in F1 male fertility or F2 litter parameters 

when exposed males were mated with unexposed females (Kuriyama et al. 2005).  Additionally, 

ejaculatory and mounting latencies, intromission frequency and latency, and number of penetrations were 

not altered in F1 exposed mice, compared with controls; however, the percent of males with two or more 

ejaculations was significantly decreased by 32% in the F1 males from the 0.3 mg/kg group (Kuriyama et 

al. 2005).  In pentaBDE-exposed F1 females mated to unexposed males, there were no exposure-related 

changes in female pregnancy rate, total implantation sites, implantation sites/dam, F2 fetuses/gravid dam, 

or total number of live F2 fetuses (Talsness et al. 2005).  However, the resorption rate was 12 and 15% in 

the 0.06 and 0.03 mg/kg groups, respectively, compared with the control rate of 9%, and the percentage of 

litters with resorptions was 69 and 72% in the 0.06 and 0.3 mg/kg groups, respectively, compared with 

the control percentage of 47% (Talsness et al. 2005). Following tetraBDE exposure, reproductive 

performance of F1 females was unaltered by developmental tetraBDE exposure (Talsness et al. 2008). 

No exposure-related changes were observed for the following F2 litter parameters: total number of 

implantation sites, implantation sites/dam, number of live fetuses, fetuses/dam, mean fetal weight, or 

resorption rate.  In the 0.7 mg/kg group, the sex ratio was significantly altered; however, comparison of 

the altered sex ratio with controls from two different historical experiments (n=24 and 43 litters) revealed 

no differences (Talsness et al. 2008).  F1 male reproductive performance was not assessed following 

tetraBDE exposure. 

Male offspring of rat dams exposed to pentaBDE at 0, 1.7, 10.2, or 30.6 mg/kg/day via gavage from GD 6 

to PND 21 showed a significant 1.8-day delay in PPS (an external sign of pubertal development), 

compared with controls (Kodavanti et al. 2010).  A 5.5% decrease in AGD was also observed at PND 7 in 

the 30.6 mg/kg/day group; although not statistically significant, the study authors argue that this finding 

may be biologically relevant, as the findings were not confounded by body weight effects and were 

accompanied by the delay in PPS and a 20% decrease in mean testosterone concentration on PND 60 

(Kodavanti et al. 2010).  After maternal exposure to a lower pentaBDE dose (2 mg/kg/day) from GD 6 to 

PND 21 via gavage, no exposure-related changes in AGD were observed in male offspring on PND 1 

(Cheng et al. 2009).  Female offspring of rat dams exposed to pentaBDE at 0, 1.7, 10.2, or 
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30.6 mg/kg/day via gavage from GD 6 to PND 21 showed a significant reduction in mammary gland 

development on PND 21 at 10.2 and 30.6 mg/kg/day, showing lack of outgrowth, fewer lateral branches 

and limited terminal end bud development, compared with controls (Kodavanti et al. 2010).  Vaginal 

opening was not assessed.  

As discussed in Section 3.2.2.5 (Reproductive Effects), delays in reproductive development also occurred 

in male and female rats that were exposed to pentaBDE at 0, 3, 30, or 60 mg/kg/day via gavage during 

pubertal development (PNDs 23–53 in males or PNDs 22–41 in females) (Stoker et al. 2004).  PPS was 

significantly delayed by 1.7 and 2.1 days in the 30 and 60 mg/kg/day groups, respectively, and vaginal 

opening was significantly delayed by 1.8 days in the 60 mg/kg/day group.  However, no changes were 

observed in estrous cycling at doses up to 60 mg/kg/day (Stoker et al. 2004). 

Following a single gavage administration of pentaBDE at 0, 0.06 or 0.3 mg/kg on GD 6 to rat dams, 

various exposure-related sperm effects were observed in male offspring on PND 140 in both dose groups 

(Kuriyama et al. 2005).  Spermatid number and daily sperm production were significantly decreased by 

31 and 34%, and sperm number was significantly decreased by 29 and 18%, at 0.06 and 0.3 mg/kg, 

respectively (Kuriyama et al. 2005). 

Following a single gavage administration of pentaBDE at 0, 0.06 or 0.3 mg/kg on GD 6 to rat dams, 

multiple ultrastructural changes were noted in the ovaries of female offspring at PND 90 in both exposure 

groups, including destruction of the surface of the serosal epithelial cells, necrosis, and numerous 

vesicular structures with dense granular material within the cytoplasm (Talsness et al. 2005).  Additional 

changes observed in the 0.3 mg/kg group included degenerative changes and aggregates of small and 

large vesicles filled with homogeneously dense granular material in the cytoplasm and clumped 

chromatin within the condensed nucleus.  No statistically significant, exposure-related histological 

changes were observed at the light microscopic level in the ovary, uterus, or vagina of female offspring, 

and no exposure-related effects were observed on the number of ovarian follicles (Talsness et al. 2005). 

Following a single gavage administration of tetraBDE at 0, 0.14, or 0.7 mg/kg on GD 6 to rat dams, the 

mean number of secondary follicles in the ovaries of female offspring was significantly decreased by 43% 

in both exposure groups at PND 38, and the mean number of tertiary follicles was significantly decreased 

by 38% in the 0.7 mg/kg group, compared with controls (Talsness et al. 2008).  No exposure-related 

changes were observed in the number of primordial, primary, or atretic follicles.  No histopathological 

lesions or organ weight changes were observed in the ovary, uterus, or vagina at PND 38 or 100 (Talsness 

et al. 2008).  However, ultrastructural changes of the ovaries were observed on PND 200 in F1 females 
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from both exposure groups, including an accumulation of vesicular structures with homogeneously dense 

granular material in the cytoplasm of the stromal cells, which appeared to fuse together to form large 

vacuoles (Talsness et al. 2008).  No exposure-related histopathological changes were observed in the uteri 

or ovaries from female rats exposed to pentaBDE at gavage doses up to 60 mg/kg/day for 20 days during 

pubertal development (PNDs 22–41) (Stoker et al. 2004). 

In 2-month-old females exposed to tetraBDE on PND 10, relative uterine weights were significantly 

decreased by 23–36% at doses ≥1 mg/kg and relative ovary weights were significantly increased by 27– 

35% at doses ≥5 mg/kg (He et al. 2011).  In other studies, no exposure-related changes were observed in 

ovary or uterus weights in PND 100 offspring of rat dams exposed to tetraBDE at doses up to 0.7 mg/kg 

via gavage on GD 6 (Talsness et al. 2008), in PND 31 offspring of rat dams exposed to pentaBDE at 

18 mg/kg/day from GD 6 to PND 18 via gavage (Ellis-Hutchings et al. 2006), in PND 43 offspring of rat 

dams exposed to pentaBDE at doses up to 25 mg/kg/day from pre-mating day 70 to PND 42 (Bondy et al. 

2013), or in PND 42 rats exposed to pentaBDE at doses up to 60 mg/kg/day for 20 days during pubertal 

development (PNDs 22–41) (Stoker et al. 2004). 

No exposure-related histopathological changes were observed in the epididymides or left testis from male 

rats exposed to pentaBDE at gavage doses up to 60 mg/kg/day for 31 days during pubertal development 

(PNDs 23–53) (Stoker et al. 2004).  No other developmental studies examined male reproductive 

histology following exposure to lower-brominated PBDEs. 

Relative testes weights were significantly increased by 1.3-fold in PND 31 male offspring of rat dams 

exposed to pentaBDE at 18 mg/kg/day from GD 6 to PND 18 via gavage (absolute weights not reported); 

no exposure-related changes were observed on PND 12 and 18 (Ellis-Hutchings et al. 2006).  In contrast, 

following a single maternal exposure to pentaBDE on GD 6, adult male rat offspring showed significant 

10 and 11% decreases in relative testes weights at 0.06 and 0.3 mg/kg, respectively, as well as a 

significant 5% decrease in relative epididymis weight at 0.3 mg/kg (Kuriyama et al. 2005).  Neither 

absolute organ weights nor body weight were significantly altered (Kuriyama et al. 2005).  In other 

studies, no exposure-related weight effects were observed in male reproductive organs (seminal vesicles, 

prostate, epididymides, or testes) in PND 60 offspring of rat dams exposed to pentaBDE at doses up to 

30.6 mg/kg/day from GD 5 to PND 21 (Kodavanti et al. 2010), in 2-month-old rats exposed to tetraBDE 

at doses up to 10 mg/kg on PND 10 (He et al. 2011), in PND 43 offspring of rat dams exposed to 

pentaBDE from pre-mating day 70 to PND 42 at doses up to 25 mg/kg/day (Bondy et al. 2013), or in 
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PND 53 rats exposed to pentaBDE at doses up to 60 mg/kg/day for 31 days during pubertal development 

(PNDs 23–53) (Stoker et al. 2004). 

After a single maternal gavage exposure to tetraBDE on GD 6, serum E2 levels in female rat offspring 

were significantly decreased on PND 28 by ~38% at 0.7 mg/kg; no change was observed in the 

0.14 mg/kg group (Talsness et al. 2008).  No exposure-related changes in serum testosterone or LH were 

observed in adult F1 males after a single exposure to pentaBDE at doses up to 0.3 mg/kg via gavage on 

GD 6 (Kuriyama et al. 2005).  Exposure-related effects on serum testosterone levels were also not 

observed in male offspring of rat dams on PND 60 following exposure to pentaBDE at doses up to 

30.6 mg/kg/day from GD 6 to PND 21 (Kodavanti et al. 2010).  In male rats exposed to pentaBDE at 0, 3, 

30, or 60 mg/kg/day via gavage during pubertal development (PNDs 23–53), serum prolactin was 

increased 2-fold in the 60 mg/kg/day group approximately 2 hours after the final exposure on PND 53; 

however, no exposure-related changes were observed in serum testosterone, serum or pituitary 

luteinizing, or pituitary prolactin levels (Stoker et al. 2004).  

DecaBDE:  Male offspring of mouse dams exposed to decaBDE at 0, 10, 500, or 1,500 mg/kg/day via 

gavage from GD 0 to 17 were assessed for reproductive system effects on PND 71 (Tseng et al. 2013). 

The mean AGD and AGI (anogenital index; corrected for body weight) were significantly reduced in the 

1,500 mg/kg/day group, compared with control.  No exposure-related changes were observed in testicular 

index ([testicular length x testicular width]/body weight) or male reproductive organ weights (testis, 

epididymis, cauda epididymis, or seminal vesicles). However, increased incidences of testicular lesions 

were observed in male offspring, with increased incidence of slight/moderate vacuolization in interstitial 

cells in all treated groups (0/5, 4/5, 3/5, or 5/5 at 0, 10, 500, or 1,500 mg/kg/day, respectively) and 

increased incidence of slight-severe vacuolization in seminiferous tubules at 1500 mg/kg/day (4/5; control 

incidence 0/5).  Additionally, in the 1,500 mg/kg/day group, seminiferous tubules had lost almost all 

spermatozoa and spermatids.  Analysis of male offspring sperm parameters (from the seminiferous 

tubules) showed a significant increase in percentage of abnormal sperm heads in the 1,500 mg/kg/day 

group (18.2%) compared with controls (10.3%). No changes were observed in abnormal sperm heads at 

lower doses, and no changes were observed in sperm count, motility, or velocity at any dose.  However, 

evidence of sperm damage was observed in all exposed groups.  The DNA fragmentation index (DFI) and 

level of sperm with DNA damage (X αT) were significantly elevated in all exposed groups in a dose-

related manner.  Sperm H2O2 generation was significantly elevated in a dose-related manner; however, 

only the values in the 10 and 1,500 mg/kg/day groups reached statistical significance in pairwise 
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comparisons with controls.  No changes were observed in sperm O2- generation. No changes in serum 

testosterone levels were observed. 

In other studies, no exposure-related changes were observed in AGD, onset of puberty (PPS or vaginal 

opening), estrous parameters, and/or reproductive organ weight and histology in offspring of rat dams 

exposed to dietary decaBDE at doses up to 146 mg/kg/day from GD 10 to PND 21 (Fujimoto et al. 2011) 

or gavage doses up to 1,000 mg/kg/day from GD 6 to PND 21 (Biesemeier et al. 2011).  Similarly, no 

exposure-related changes were observed in AGD or the onset of puberty (vaginal opening or descent of 

the testes) in mice exposed to decaBDE at doses up to 20 mg/kg/day via micropipette from PND 2 to 15 

(Rice et al. 2007). No changes in were observed in vaginal opening or testicle descent in mice engineered 

to express neonatal human apolipoprotein E (three genotypes: apoE2, apoE3, and apoE4) exposed once 

to decaBDE at 0, 10, or 30 mg/kg via micropipette on PND 10 (Reverte et al. 2014). 

Endocrine System Development 

Lower-brominated PBDEs:  Histological, ultrastructural, and morphometric changes of the thyroid were 

observed at PND 100 in female offspring of dams exposed once to tetraBDE via gavage on GD 6 at 0, 

0.14, or 0.7 mg/kg; however, a clear dose-response pattern cannot be determined from the available data 

(Talsness et al. 2008).  The study authors reported “occasional” follicular cyst formation in the 

0.14 mg/kg group with multiple areas of degenerated follicular epithelium.  In the 0.7 mg/kg group, only 

mild cyst formation was observed.  Ultrastructural changes observed in both exposure groups included 

irregular, non-typical follicular shape and detached and swollen follicular cells.  Incidence data were not 

reported for any of these end points.  Morphometric analysis showed that the colloid area of the thyroid 

was also significantly increased in offspring, but only in the 0.14 mg/kg group (Talsness et al. 2008).  In 

mink, no exposure-related changes were observed in thyroid histology in PNW 6 offspring of sows 

exposed to pentaBDE at doses up to 0.06 mg/kg/day from pre-mating week 4 to PNW 6 (Zhang et al. 

2009). 

In rats exposed once to tetraBDE via gavage on PND 10 at doses of 0, 1, 5, or 10 mg/kg, relative thyroid 

weights were significantly decreased by 11% in the 10 mg/kg group at 2 months of age (He et al. 2011).  

In other studies, no exposure-related changes in thyroid weight were observed in rat offspring of dams 

exposed once to tetraBDE at gavage doses up to 0.7 mg/kg on GD 6 (Talsness et al. 2008) or in mink 

offspring of sows exposed to pentaBDE at doses up to 0.06 mg/kg/day from pre-mating week 4 to PNW 6 

(Zhang et al. 2009). 
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Significant reductions in serum T4 ranging from 12 to 90% were observed in male and female offspring of 

rat dams exposed once to pentaBDE on GD 6 at 0.3 mg/kg (Kuriyama et al. 2007), exposed to pentaBDE 

or commercial pentaBDE mixtures from GD 6 to PND 18 or 21 via gavage at doses as low as 

2 mg/kg/day (Blanco et al. 2013; Ellis-Hutchings et al. 2006; Kodavanti et al. 2010; Miller et al. 2012; 

Shah et al. 2011; Szabo et al. 2009; Zhou et al. 2002), exposed to pentaBDE from GD 1 or 6 to PND 21 

via dosed cookies at intake levels ≥3 mg/kg/day (Bansal et al. 2014; Bowers et al. 2015), or exposed to 

dietary tetraBDE from GD 1 to PND 14 at doses ≥3.2 mg/kg/day (Wang et al. 2011a).  These reductions 

were observed in offspring between PND 7 and 22.  In studies described above that also evaluated 

offspring at older ages, it was found that the effects were no longer observed at PNDs 31–60 (Bowers et 

al. 2015; Ellis-Hutchings et al. 2006; Kodavanti et al. 2010; Szabo et al. 2009; Zhou et al. 2002), 

indicating that serum T4 changes in offspring may be transient.  In one-generation studies, offspring from 

rat dams fed pentaBDE-dosed vanilla wafers from pre-mating day 28 to PND 21 showed significant 43– 

55% reductions in serum T4 on PND 21 at ≥5.7 mg/kg/day (Poon et al. 2011) and male and female 

offspring from rat dams exposed to pentaBDE via gavage from pre-mating day 70 to PND 42 showed 

significant 65–70% reductions in serum T4 on PND 21 at 25 mg/kg/day (but not ≤5 mg/kg/day) (Bondy et 

al. 2011, 2013).  In rats and mice exposed once to tetraBDE via gavage on PND 10 at doses up to 10 or 

20 mg/kg, respectively, no exposure-related changes were observed in serum T4 levels (Costa et al. 2015; 

Gee et al. 2008; He et al. 2011).  In other mouse studies, maternal exposure to the pure pentaBDE 

congener BDE 99 at doses up to 452 mg/kg/day via gavage from GD 6 to PND 21 or from GD 4 to 

PND 17 did not lead to altered serum T4 levels in offspring at PNDs 11–37 (Branchi et al. 2005; Skarman 

et al. 2005).  In contrast, maternal exposure to the commercial pentaBDE mixture Bromkal 70-5DE at 

452 mg/kg/day via gavage from GD 4 to PND 17 caused a significant 29–32% reduction in serum T4 in 

PND 11 mouse offspring (Skarman et al. 2005). This effect was transient, as it was no longer observed at 

PND 18 (Skarman et al. 2005).  In mink, no exposure-related changes were observed in serum T4 levels in 

PNW 6 offspring of sows exposed to dietary pentaBDE at doses up to 0.06 mg/kg/day from pre-mating 

week 4 to PNW 6 (Zhang et al. 2009).  In mink offspring that continued exposure through PNW 33, 

serum T4 levels were significantly increased by 31% compared with control; however, this response was 

entirely attributable to the females, which were significantly elevated by 71% compared to males at the 

same dose (change compared with female controls was not reported) (Zhang et al. 2009). 

Evidence for exposure-related serum T3 changes is less consistent.  In a one-generation study, male and 

female offspring from rat dams exposed to pentaBDE via gavage from pre-mating day 70 to PND 42 

showed significant 16–27% reductions in serum T3 on PND 21 at 25 mg/kg/day (but not ≤5 mg/kg/day) 
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(Bondy et al. 2013).  Similarly, offspring of rat dams exposed to pentaBDE at ≥2 mg/kg/day via gavage 

from GD 6 to PND 21 showed a significant 19–25% reduction in serum T3 levels on PNDs 21–23 and 

offspring from dams fed cookies dosed with ≥3 mg/kg/day pentaBDE from GD 1 to PND 21 showed a 

significant 5–40% reduction in serum T3 levels on PND 21; no exposure-related effect was observed at 

doses ≤1.7 mg/kg/day (Blanco et al. 2013; Bowers et al. 2015; Shah et al. 2011). This effect was 

transient, as it was no longer observed at PND 50 or later (Bowers et al. 2015; Shah et al. 2011). In 

contrast, exposure-related changes in serum T3 levels were not observed in offspring of rat dams exposed 

to pentaBDE at doses up to 30.6 mg/kg/day via gavage or pentaBDE-dosed cookies from GD 6 to PND 

18 or 21 (Bansal et al. 2014; Ellis-Hutchings et al. 2006; Kodavanti et al. 2010; Szabo et al. 2009) or 

offspring of rat dams exposed to a single pentaBDE dose up to 0.3 mg/kg on GD 6 via gavage (Kuriyama 

et al. 2007).  In rats and mice exposed once to tetraBDE via gavage on PND 10 at doses up to 10 or 

20 mg/kg, respectively, no exposure-related changes were observed in serum T3 levels (Costa et al. 2015; 

Gee et al. 2008; He et al. 2011).  In mink, no exposure-related changes were observed in serum T3 levels 

in PNW 6 offspring of sows exposed to pentaBDE at doses up to 0.06 mg/kg/day from pre-mating week 4 

to PNW 6; however, in offspring that continued exposure through PNW 33, serum T3 levels were 

significantly reduced by ~31% at 0.06 mg/kg/day (Zhang et al. 2009). 

No exposure-related changes in serum TSH were observed in offspring of rat dams exposed to a single 

pentaBDE dose up to 0.3 mg/kg on GD 6 via gavage (Kuriyama et al. 2005), offspring of rat dams 

exposed to pentaBDE at doses up to 30.6 mg/kg/day via gavage or pentaBDE-dosed cookies from GD 6 

to PND 21 (Bansal et al. 2014; Kodavanti et al. 2010), or rats exposed once to tetraBDE via gavage on 

PND 10 at doses up to 10 mg/kg (He et al. 2011). 

DecaBDE:  Following maternal exposure to decaBDE at 0, 2, 15, or 146 mg/kg/day via gavage from 

GD 6 to PND 21, the incidences of diffuse follicular cell hypertrophy in the thyroid of rat offspring on 

PND 21 were 0/10, 1/10, 3/10, and 9/10 in males and 0/10, 3/10, 2/10, and 4/10 in females, respectively 

(Fujimoto et al. 2011).  No change was observed in thyroid weight (Fujimoto et al. 2011).  Following 

maternal exposure to decaBDE at 0, 10, 500, or 1,500 mg/kg/day via gavage on GDs 0–17, histological 

evaluation of the thyroid glands in male offspring at PND 71 showed that a few acini were slightly 

enlarged in the 1,500 mg/kg/day group, compared to the controls (female offspring were not evaluated) 

(Tseng et al. 2008).  The normal cuboidal epithelium had dose-dependently transformed into squamous 

epithelium, with the most notable change found in the 1,500 mg/kg/day group.  Incidence data for 

histological lesions were not reported (Tseng et al. 2008).  
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Serum T3 levels were significantly reduced by 16% on PND 21 in male offspring of rat dams exposed to 

decaBDE at 146 mg/kg/day via gavage from GD 6 to PND 21; no change was observed in serum T3 levels 

in female offspring or serum T4 or TSH levels in either sex at doses ≤146 mg/kg/day (Fujimoto et al. 

2011).  Following maternal exposure to decaBDE at 0, 10, 500, or 1,500 mg/kg/day via gavage on 

GDs 0–17, serum T3 levels were significantly decreased by 21% in the 10 and 1,500 mg/kg/day groups in 

male mouse offspring examined on PND 71 (female offspring not examined); serum T3 levels were not 

significantly altered in the 500 mg/kg/day group and serum T4 levels were not altered in any group (Tseng 

et al. 2008).  In neonatal male mice exposed to 0, 6, or 20 mg/kg/day from PND 2 to 15, serum T4 was 

reduced by ~8 and 22% at 6 and 20 mg/kg/day, respectively (Rice et al. 2007).  This finding was reported 

as a dose-related trend; however, pair-wise statistics were not reported.  No exposure-related changes in 

serum T4 levels were observed in similarly exposed neonatal female mice (Rice et al. 2007).  Serum T3 

levels were not examined by Rice et al. (2007). 

Immune System Development 

Lower-brominated PBDEs:  In a one-generation study, F0 rats were exposed to pentaBDE at 0, 0.5, 5, or 

25 mg/kg/day via gavage for 70 days prior to mating, through mating, gestation, and lactation (PND 21) 

(Bondy et al. 2013).  F1 rats continued exposure to their respective doses from PND 22 to 42.  Half of the 

F1 rats were sacrificed on PND 43 and assessed for serum immunoglobin levels, B and T lymphocyte 

quantification in the spleen, spleen cell proliferation in vitro, and immune organ weight and histology.  

The remaining F1 rats were assessed for immune function at PND 56 using the KLH antigen immune 

challenge.  Serum IgE and IgG1 levels were significantly reduced by 77 and 53%, respectively, in 

females at 25 mg/kg/day; no changes were observed in serum IgE or IgG1 levels in males or serum IgM, 

IgA, IgG2a, IgG2b, or IgGc levels in either sex.  All exposed groups showed a significant, dose-related 

reduction in the proportion of B cells and a significant concomitant increase in the proportion of T cells in 

the spleen (7–18%).  In vitro, increased proliferation of unstimulated spleen cells was observed in cells 

harvested from F1 males and females from the 25 mg/kg/day group; however, the proliferative response 

to ConA or lipopolysaccharide (LPS) stimulation was not affected by pentaBDE exposure.  In the thymic 

cortex from F1 rats, mild increases in apoptotic lymphocytes and tingible macrophages were observed in 

F1 males (0/14, 1/19, 3/13, and 3/13) and F1 females (0/13, 3/17, 0/13, and 4/14) in control, 0.5, 5, and 

25 mg/kg/day groups, respectively. Trend test analysis indicated that the increase was significantly dose-

related in males, but not females.  No treatment-related histopathological changes were observed in the 

Peyer’s patches, mesenteric lymph nodes, or spleen of F1 rats.  Absolute thymus weights were 

significantly increased in the 5 mg/kg/day males and females and relative thymus weight was only 
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increased in the 5 mg/kg/day females; no changes were observed in thymus weights at 25 mg/kg/day.  

These organ weight changes reflect observed body weight changes (significantly increased in the 

5 mg/kg/day group).  In the immune challenged rats, no exposure-related changes were observed in 

KLH-specific IgG levels or changes in delayed-type hypersensitivity responses to KLH injections (Bondy 

et al. 2013).  In another one-generation study (pre-mating day 28 to PND 21), maternal exposure to 

pentaBDE-dose vanilla wafers at doses up to 11.4 mg/kg/day had no effect on thymus weight in PND 21 

offspring (Poon et al. 2011). 

In a poorly-reported study, mouse dams were exposed to pentaBDE at 0, 50, 100, or 200 mg/kg/day via 

gavage from GD 6 to PND 21 (Hong et al. 2010).  In PND 21 offspring, study authors report exposure-

related decreases in serum IgM and IgG1, decreased absolute and relative spleen weights at 

≥100 mg/kg/day, and reduced cellularity levels at ≥100 mg/kg/day.  No statistically significant increases 

in T- or B-cell lymphocyte proliferation were observed in vitro. The only significant effect observed in 

PND 63 offspring was increased T-cell proliferation following in vitro exposure to ConA at 

200 mg/kg/day. 

In another study, absolute spleen weight was significantly increased by 9% in PND 140 male offspring of 

rat dams exposed to single pentaBDE doses of 0.06 and 0.3 mg/kg on GD 6; relative spleen weight was 

only significantly increased in the 0.06 mg/kg group (12%) (Kuriyama et al. 2005).  No organ weight 

changes were observed in the thymus of PND 140 male rats (Kuriyama et al. 2005).  Following maternal 

exposure to pentaBDE at 0 or 18 mg/kg/day via gavage from GD 6 to PND 18, no exposure-related 

changes were observed in spleen or thymus weights measured in rat offspring on PNDs 3, 12, 18, and 31 

(Ellis-Hutchings et al. 2006). 

DecaBDE:  Immune function in PND 28 mice was assessed using the RSV intranasal infection test 

following maternal exposure to decaBDE from GD 10 to PND 21 at doses of 0, 3.3, 34, 260, or 

3,100 mg/kg/day (Watanabe et al. 2008). Typical features of pneumonia due to RSV infection were 

observed in all RSV-infected mice; however, exacerbation of histopathological changes in the lung was 

observed in 50% of mice exposed to 3,100 mg/kg/day, including hypertrophy and/or hyperplasia.  Five 

days after the RSV infection, pulmonary viral titers of RSV and bronchoalveolar lavage fluid (BALF) 

levels of IFN-γ were significantly increased in the 260 mg/kg/day group (titers and BALF fluid not 

assessed in the 3,100 mg/kg/day group).  Additionally, mRNA expression of RANTES (a characteristic 

marker of severity of inflammation in the lungs due to an RSV infection) was significantly elevated at 

34 and 260 mg/kg/day (Watanabe et al. 2008).  In a second study, immune function in PND 28 mice was 
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also assessed using the RSV infection test following maternal exposure to decaBDE from GD 10 to 

PND 21 at doses of 0, 290, or 2,900 mg/kg/day (Watanabe et al. 2010b).  In this study, pulmonary viral 

titers of RSV were significantly increased in the 2,900 mg/kg/day group 1 and 5 days post-infection.  

BALF levels of TNF-α, IL-6, and IL1β were significantly decreased one day post-infection (cytokine 

levels at 5 days postexposure were not reported).  No exposure-related changes were observed in BALF 

cell TNF-α production in vitro in response to LPS.  

In a poorly-reported study, mouse dams were exposed to decaBDE at 0, 500, 2,500, or 12,500 mg/kg/day 

via gavage from GD 6 to PND 21 (Hong et al. 2010).  Absolute and relative thymus weights were 

significantly increased in offspring the 2,500 mg/kg/day group at PND 21, but not the 500 or 

12,500 mg/kg/day groups.  At PND 21, no exposure-related changes were reported for spleen weight, 

spleen, or thymus cellularity, serum IgM or IgG1 levels, or T- or B-cell lymphocyte proliferation in vitro. 

The study authors report an increase in the relative B cell population and a decrease in the relative 

distribution of macrophage cells in spleens from pups exposed to decaBDE (no statistics provided).  No 

exposure-related effects were observed at PND 63.  In another study, no exposure-related changes in 

spleen weight were observed in PND 71 male offspring of mouse dams exposed to decaBDE at doses up 

to 1,500 mg/kg/day from GD 0 to 17 (Tseng et al. 2008). 

Summary 

Teratology, fetotoxicity, and physical growth and development: No human studies have evaluated 

associations between embryotoxicity or fetotoxicity and PBDE exposure.  Evidence for altered physical 

grown and development from human studies is inconsistent. Available data from animal studies do not 

indicate that PBDEs are embryotoxic or fetotoxic at PBDE doses below doses that elicited maternal 

toxicity, although occasional observations of reduced pup weight were reported.  Taken together, it is 

unlikely that oral PBDE exposure will cause embryotoxicity or fetoxicity in humans; however, data 

indicate that PBDE exposure could potentially lead to low birth weight. 

Neurodevelopment: Evidence from both human and animal studies indicates that oral PBDE exposure 

can lead to adverse effects in neurodevelopment, leading to altered neurobehavior later in life. 

Reproductive system development: Based on limited human and adequate animal data, it is possible that 

that oral PBDE exposure during development may adversely affect the developing reproductive system, 
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particularly the male reproductive system.  However, data are too limited to adequately determine 

whether or not PBDE exposure in infants and children will lead to altered reproductive performance. 

Endocrine system development: While human data are inconsistent, they suggest that PBDEs can interact 

with thyroid hormone homeostasis in infants and children. These data, along with available animal 

studies, indicate that the thyroid is a target of concern for PBDE exposure, especially lower-brominated 

PBDEs. 

Immune system development: Animal data suggest that oral PBDE exposure during development may 

lead to immunosuppression; however, data are too limited to adequately assess the immunotoxic potential 

of PBDE exposure in infants and children. 

The highest NOAEL values and all LOAEL values from each reliable study for developmental effects in 

each species and duration category are recorded in Table 3-2 and plotted in Figure 3-2. 

3.2.2.7  Cancer 

Human Studies.  There was no clear association between risk of non-Hodgkin’s lymphoma (NHL) and 

exposure to 2,2'4,4'-tetraBDE in a case-control study of 77 Swedish men and women who were recruited 

in 1995–1997 and ranged in age from 28 to 85 years (Hardell et al. 1998; Lindstrom et al. 1998).  Adipose 

tissue concentrations of 2,2',4,4'-tetraBDE (BDE 47) (used as a marker for total PBDE exposure) were 

compared in 19 patients with NHL, 23 patients with malignant melanoma, 8 patients with other cancers or 

in situ changes, and 27 persons with no cancer diagnosis.  The highest concentrations were seen in the 

patients with NHL. The mean concentration of BDE 47 was 13.0 ng/g (ppb) lipid (range 1.0–98.2 ppb) in 

the 19 NHL patients and 5.1 ppb (range 0.6–27.5 ppb) in the 27 persons without known malignancies.  

Logistic regression, adjusted for age, gender, sum of PCBs, and sum of chlordanes, was performed on 

cases and controls in three concentration groups (<2.05, 2.05–<5.43, and ≥5.43 ppb).  A nonsignificantly 

elevated risk with a suggestive dose-response was found for NHL in the two highest concentration groups 

compared with the lowest group; the ORs and 95% CIs were 1.9 (0.3–14) and 3.8 (0.7–26) in the middle 

and high groups, respectively.  Although the risk was highest in the group with the highest concentration 

of 2,2'4,4'-tetraBDE (p=0.09 for trend), there was no significant difference between cases and controls 

(p=0.14).  The results for patients with malignant melanoma did not differ from controls. 

http:2.05�<5.43
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Hardell et al. (2006) found no association between testicular cancer risk and serum PBDE (sum of 

congeners 47, 99, and 153, but concentrations not reported) in a study of 58 cases recruited from hospitals 

in Sweden and age-matched controls.  Blood was also collected from the mothers of the cases and 

controls (44 of the case mothers and 45 of the control mothers agreed to participate).  There was a 

marginally significant relationship between maternal PBDE and the risk of testicular cancer in sons (OR 

2.5, 95% CI 1.02–6.0 using median concentration in mothers of controls as a cut-off) and some evidence 

of a dose-response (OR 3.2, 95% CI 1.1–11 for those with high concentrations of PBDE in blood 

[>75th percentile] and OR 1.8, 95% CI 0.6–7.9 for those with low concentrations of PBDE in blood 

[median–75th percentile]). The relevance of this finding is uncertain, as it is unclear the extent to which 

the case mothers’ body burden of PBDE at the time of the study might relate to body burden when giving 

birth to the cases (approximately 30 years previously, as median age of the cases was 30 years). A case-

control study of Singaporean males found no significant association between serum levels of BDE 47 and 

risk of prostate cancer (Pi et al. 2016).  The study included 240 prostate cancer incident cases and 

268 controls.  Serum concentrations of BDE 47 were 37 ng/g lipid in cases and 58 ng/g lipid in controls.  

Other BDEs analyzed in serum included BDE 99, BDE 100, BDE 153, BDE 154, and BDE 183, but the 

concentrations were below the limit of detection of the analytical method (0.3–20 pg/g lipid). 

PBDE concentrations in adipose tissue (sum of congeners 28, 47, 66, 100, 99, 85, 154, 153, 138, and 183) 

were significantly higher in 21 cases with exocrine pancreatic cancer recruited in Sweden 1996–1999 

(median 3.1 ng/g lipid) than in 59 controls comprising 20 males undergoing transurethral resection for 

benign prostate hyperplasia and 39 females undergoing hysterectomy 1997–1998 in the same 

geographical area (median 1.6 ng/g lipid) (Hardell et al. 2007).  Case-control analysis found that the risk 

of pancreatic cancer was not significantly increased with lipid PBDE (OR 3.90, 95% CI 0.93–16.3) using 

median concentration in controls as a cut-off after adjustment for age, sex, and BMI at tissue sampling, 

but that the increase in risk was significant when the BMI adjustment was performed for the year before 

tissue sampling (OR 7.67, 95% CI 1.53–38.5, body weight 1 year before tissue sampling obtained by 

questionnaire). 

Serum concentrations of PBDEs (10 tri- to hepta-BDEs) were not associated with risk of thyroid cancer in 

a nested case-control study in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, a large 

multicenter clinical trial in the United States (Aschebrook-Kilfoy et al. 2015).  The study included 

104 case of thyroid cancer and 208 controls matched to cases by race, sex, birth date, center, and blood 

collection date.  Median lipid adjusted concentrations of ΣPBDEs (sum of BDE 47, 99, 100, and 153) 

were 12.8 ng/g for cases and 19.4 ng/g for controls.  For ΣPBDEs, the OR for the fourth versus the first 
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quartile was 0.62 (95% CI 0.29–1.30). Restricting the analyses to cases with the papillary subtype (75% 

of the cases) did not alter the findings. 

A case-control study found no evidence of an association between adipose concentrations of PBDE (BDE 

47, BDE 99, BDE 100, BDE 153, BDE 154, and their sum) and breast cancer risk in women from the San 

Francisco Bay area of California (Hurley et al. 2011).  The study population included 78 cases with 

histologically confirmed invasive breast cancer and 56 controls with benign histological changes 

undergoing surgical breast biopsies.  PBDE concentrations in both cases and controls were relatively high 

(median values of 56.32 and 72.25 ng/g lipid in cases and controls, respectively, for total BDE). Another 

case-control study of 170 native Alaskan women reported that cases (n=75) had significantly higher 

serum levels of BDE 47 (38.8 ng/g lipid) than controls (n=95, 25.1 ng/g lipid) (Holmes et al. 2014).  The 

result of univariate logistic regression analysis showed increase risk that approached statistical 

significance (OR 1.79, 95% CI 0.97–3.32); no statistical significance was apparent in multivariable 

analysis (OR 1.58, 95% CI 0.75–3.33).  

Animal Studies.  Information on carcinogenic effects of PBDEs in animals is limited to results of chronic 

bioassays of decaBDE mixtures in rats and mice (Kociba et al. 1975; Norris et al. 1975a; NTP 1986).  As 

summarized below, these studies provide limited evidence for the carcinogenicity of decaBDE in animals.  

No carcinogenicity studies of octaBDE or pentaBDE were located in the available literature. 

NTP evaluated the carcinogenicity of commercial-grade decaBDE (94–97% pure, no detected brominated 

dioxins or furans) in Sprague-Dawley rats (50/sex/dose) and B6C3F1 mice (50/sex/dose) that were 

exposed in the diet for 103 weeks and observed for an additional 0–1 weeks (NTP 1986).  Comprehensive 

gross and histological examinations were performed on all animals in all dose groups including those that 

were moribund or died during the study.  Reported estimated dose levels in the rats were 1,120 and 

2,240 mg/kg/day in males and 1,200 and 2,550 mg/kg/day in females.  Incidences of liver neoplastic 

nodules in low- and high-dose male rats (7/50 and 15/49, respectively) and high-dose female rats (9/50) 

were significantly greater than in controls (1/50 in both males and females) (p≤0.03, Fisher Exact test) 

and showed positive dose-related trends (p<0.001, Cochran-Armitage trend test). Incidences of 

hepatocellular carcinoma alone (1/50, control males; 1/50, low-dose males; 1/49, high-dose males; 0/50, 

control females; 2/49, low-dose females; and 0/50, high-dose females) were not significantly increased in 

the treated rat groups compared to controls. The increased incidences of neoplastic nodules were 

considered as “some evidence of carcinogenicity” in both sexes.  However, although it was concluded 

that there was some evidence of carcinogenicity in male and female rats based on “neoplastic nodules,” 

http:0.75�3.33
http:0.97�3.32
http:0.29�1.30
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this is a poorly defined and understood term that is no longer used by NTP to characterize 

hepatoproliferative lesions in rats.  A dose-related trend for mononuclear cell leukemia was observed in 

treated male rats but was not considered to be biologically significant because of a high incidence in 

control animals. 

Reported estimated doses in the mice were 3,200 and 6,650 mg/kg/day in males and 3,760 and 

7,780 mg/kg/day in females (NTP 1986).  Hepatocellular adenoma or carcinoma (combined) occurred at 

significantly increased incidences in low-dose male mice (22/50, p=0.002) and high-dose male mice 

(18/50, p=0.019) in comparison to controls (8/50) and showed a positive dose-related trend (p=0.021).  

Incidences of hepatocellular carcinoma alone were not significantly increased in either the low- or high-

dose male mice.  Slightly elevated incidences of thyroid gland follicular cell adenoma or carcinoma 

(combined) were additionally observed in exposed male mice but the increases were not statistically 

significant (control, 0/50; low dose, 4/50; high dose, 3/50).  Incidences of follicular cell hyperplasia were 

significantly increased in male mice as summarized in the subsection on Endocrine Effects in 

Section 3.2.2.2.  No significantly increased incidences of neoplastic lesions were observed in the female 

mice.  NTP (1986) concluded that the significant increase in liver tumors and equivocal increase in 

thyroid tumors represented equivocal evidence of carcinogenicity in male mice. The evidence of 

carcinogenicity in the male mice was considered limited by an early loss of control animals.  Losses of 

control male mice were significant during the first year of the study, but were subsequently comparable to 

the dosed mice; the early losses were presumed to be due to fighting among animals in both control and 

treatment groups. 

The carcinogenicity of decaBDE was also evaluated in Sprague-Dawley rats (25/sex/dose) that were 

exposed to dietary doses of 0, 0.01, 0.1, or 1.0 mg/kg/day for approximately 2 years (702 days for males, 

735 days for females) (Kociba et al. 1975; Norris et al. 1975a).  The commercial mixture was comprised 

of 77.4% decaBDE, 21.8% nonaBDE, and 0.8% octaBDE and therefore differs from typical decaBDE 

formulations containing ≥97% decaBDE.  Comprehensive histological examinations showed no 

exposure-related neoplastic effects. The ability of this study to detect carcinogenic changes is limited by 

the very low dose levels in comparison to those tested in the NTP (1986) bioassay. 

Summary.  With the exception of one small case-control study reporting possible associations between 

adipose PBDE concentrations and risk of pancreatic cancer, there is no evidence for carcinogenicity of 

PBDEs in human studies. There is limited evidence of carcinogenicity in animals in a NTP bioassay with 

decaBDE (significantly increased incidences of neoplastic liver nodules in rats and combined 
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hepatocellular adenomas and carcinomas in mice). The Cancer Effect Levels (CELs) for decaBDE in the 

NTP (1986) study are recorded in Table 3-3 and plotted in Figure 3-3. 

3.2.3 Dermal Exposure 

A few studies have examined groups of chemical workers involved in the manufacture and distribution of 

PBDEs (Bahn et al. 1980; Brown et al. 1981; Chanda et al. 1982; Landrigan et al. 1979; Rosenman et al. 

1979; Stross et al. 1981).  Although the route of exposure (inhalation relative to dermal) of these workers 

has not been well defined, they appear to have had a high potential for dermal exposure (Anderson et al. 

1978).  Results from these studies are discussed in this section, as well as in Section 3.2.1.  Dermal 

exposure may not be an important route of concern for PBDEs because dermal absorption is likely to be 

low, particularly for the highly brominated congeners, based on in vitro dermal absorption assays (Hughes 

et al. 2001; Roper et al. 2006). 

3.2.3.1  Death 

No reports of death in humans after dermal exposure to PBDEs were located in the available literature. 

No deaths occurred in rabbits that were observed for 14 days following a single ≤2,000 mg/kg dermal 

dose of decaBDE, octaBDE, or pentaBDE (IRDC 1974, 1975a, 1975b).  The PBDEs were applied to 

clipped intact skin, covered with an occlusive barrier, and washed from the treatment site 24 hours later. 

3.2.3.2  Systemic Effects 

No studies were located regarding respiratory, cardiovascular, gastrointestinal, hematological, 

musculoskeletal, hepatic, or renal effects in humans or animals after dermal exposure to PBDEs. 

Systemic effects that have been observed in humans and animals following dermal exposure to PBDEs 

are described below. The highest NOAEL and all LOAEL values from each reliable study for systemic 

end points in each species and duration category are recorded in Table 3-4. 

Endocrine Effects. There is suggestive evidence of hypothyroidism in a small group of workers who 

were occupationally exposed to decaBDE (Bahn et al. 1980) as summarized above and detailed in 

Section 3.2.1.2. 



Table 3-4  Levels of Significant Exposure to Lower Brominated Diphenyl Ethers  - Dermal 

Exposure/ LOAEL 

Species 
(Strain) 

Duration/ 
Frequency 

(Route) System NOAEL 
Reference 
Chemical Form Comments Less Serious Serious 

ACUTE EXPOSURE 
Systemic 
Rabbit 24 hr 
(New 
Zealand) 

Bd Wt 2000 
mg/kg 

IRDC 1975a 
OctaBDE (technical) 

2103

2103 mg/kg

Rabbit 24 hr 
(New 
Zealand) 

Bd Wt 2000 
mg/kg 

IRDC 1975b 
PentaBDE (technical) 

2105

2105 mg/kg

3.  H
E

A
LTH

 E
FFE

C
TS

P
B

D
E

s
241

Note on chemical form: The chemical forms included technical octaBDE and pentaBDE mixtures (exact compositions were not reported). 

Bd Wt = body weight; hr = hour(s); LOAEL = lowest-observed-adverse-effect level; NOAEL = no-observed-adverse-effect level 
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No studies were located regarding endocrine effects in animals after dermal exposure to PBDEs. 

Dermal Effects. No studies evaluating dermal exposure of PBDEs were located. 

There was no evidence of primary irritation in intact skin of rabbits that were dermally exposed to a 

former commercial decaBDE mixture (500 mg as dry solid was applied to clipped skin and occluded for 

24 hours) (IRDC 1974).  A similar application of 77.4% decaBDE (containing 21.8% nonaBDE and 0.8% 

octaBDE) (dry solid, amount not reported), octaBDE (500 mg as dry solid), or pentaBDE (0.5 mL as a 

viscous liquid) was also non-irritating to intact rabbit skin (IRDC 1975a, 1975b).  

OctaBDE and pentaBDE were non-sensitizing in maximization tests in guinea pigs (Microbiological 

Associates Inc. 1996).  The induction doses consisted of three pairs of interscapular region intradermal 

injections of (1) a 50:50 solution of Freund’s adjuvant and corn oil, (2) 2.5% octaBDE or 5% pentaBDE 

solutions in corn oil, and (3) 2.5% octaBDE or 5% pentaBDE in the 50:50 corn oil/Freund’s adjuvant 

solution.  Control groups received the same regimen without PBDEs.  After 7 days, the PBDE-treated 

animals received topical applications of neat octaBDE or pentaBDE on the previously treated 

interscapular sites. Two weeks later, the animals were challenged with topical doses of neat octaBDE or 

pentaBDE on the left flank.  Subsequent examination of the test sites at 24, 48, 72, 96, or 120 hours after 

the challenge dose showed no erythema or edema responses in any of the animals, indicating that the 

PBDEs did not cause delayed contact hypersensitivity. 

A 10% chloroform solution of 77.4% decaBDE (containing 21.8% nonaBDE and 0.8% octaBDE) did not 

induce bromacne when applied to the ear of rabbits for 30 days (Norris et al. 1975a).  A slight 

erythematous response and slight exfoliation were the only observed effects.  No additional information 

was reported on the design and results of this acnegenesis study. 

Ocular Effects. No studies were located regarding ocular effects in animals after dermal exposure to 

PBDEs. 

Ocular effects were investigated in rats that had 100 mg decaBDE (solid), 100 mg octaBDE (solid), or 

0.1 mL pentaBDE (viscous liquid) instilled into the conjunctival sac (IRCD 1974, 1975a, 1975b). The 

eyes were examined for irritation after 24, 48, and 72 hours and 7 days and corneal injury after 72 hours.  

There were no exposure-related effects with decaBDE or octaBDE, although pentaBDE caused slight 

evidence of corneal damage in one of six rats (IRDC 1975b). 
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Body Weight Effects. No studies were located regarding body weight effects in humans after dermal 

exposure to PBDEs. 

There were no adverse effects on body weight in rabbits that were observed for 14 days following a single 

≤2,000 mg/kg dermal dose of decaBDE, octaBDE, or pentaBDE (IRDC 1974, 1975a, 1975b).  The 

PBDEs were applied to clipped intact skin, covered with an occlusive barrier, and washed from the 

treatment site after 24 hours. 

No studies were located regarding the following effects in humans or animals after dermal exposure to 

PBDEs: 

3.2.3.3  Immunological and Lymphoreticular Effects 
3.2.3.4  Neurological Effects 
3.2.3.5  Reproductive Effects 
3.2.3.6  Developmental Effects 
3.2.3.7  Cancer 

3.3  GENOTOXICITY 

Limited information exists regarding the in vivo genotoxicity of PBDEs. The frequency of micronuclei in 

peripheral lymphocytes was significantly higher in 23 Chinese workers who dismantled electronic waste 

(median PBDE serum concentrations 382 ng/g lipid weight) compared with 26 unexposed workers (median 

PBDE serum concentrations 158 ng/g lipid weight) (Yuan et al. 2008). Multivariate logistic regression 

analysis of several risk factors showed that only history of engaging in dismantling electronic waste was a 

significant predictor of micronuclei frequencies.  The investigators also noted that pollutants other than 

PBDEs also may have played a role in the increased frequency of micronuclei.  No evidence of oxidative 

DNA damage was found in peripheral lymphocytes from exposed workers.  A study of 84 healthy Korean 

subjects from the general population reported that serum concentrations of BDE 47 and BDE 99 were not 

associated with telomere length in peripheral lymphocytes (Shin et al. 2010); actual concentrations of 

PBDEs were not provided.  Telomers are complex structures consisting of repeat DNA sequences and 

associated proteins located at the end of chromosomes which protect chromosomes from end-to-end fusions.  

Dosing of mice with up to 1,250 mg/kg/day pentaBDE (mixed congeners) by gavage once per day for 

3 consecutive days did not increase the frequency of micronuclei in blood or bone marrow cells (Witt et al. 

2008).  In another gavage study, dosing of pregnant mice with ≥10 mg/kg/day decaBDE (the lowest dose 



   
 

    
 
 

 
 
 
 
 

   

 

    

  

    

 

     

  

  

 

  

 

  

     

   

   

  

   

     

  

  

 

     

   

 

   

  

  

 

  

  

     

   

PBDEs 244 

3. HEALTH EFFECTS 

tested) on GDs 0–17 resulted in significant sperm chromatin DNA damage in male offspring examined at 

71 days of age, as indicated by DNA denaturation induction and increased DNA fragmentation index in 

the sperm chromatin structure analysis (Tseng et al. 2013).  The investigators suggested that hydrogen 

peroxide, which was increased in sperm cells, may have been involved in induction of oxidative DNA 

damage.  A summary of in vivo genotoxicity studies of PBDEs is presented in Table 3-5. 

Results from in vitro assays for gene mutation in various Salmonella typhimurium strains and in 

Escherichia coli WP2 uvrA conducted with 2,2’,4,4’,5-pentaBDE and decaBDE yielded negative results 

in the presence or absence of metabolic activation (Evandri et al. 2003; NTP 1986).  Assays conducted in 

mammalian cells yielded mixed results.  Tests of decaBDE (BDE 209) for sister chromatid exchange and 

chromosomal aberrations in Chinese hamster ovary cells were negative and the same was reported for 

gene mutation in mouse lymphoma L5178Y cells (NTP 1986).  These tests were conducted with and 

without metabolic activation.  However, decaBDE induced DNA damage (Comet assay) in human 

SK-N-MC neuroblastoma cells (Pellacani et al. 2012) and SW 480 colon carcinoma cells (Curcic et al. 

2014).  Several congeners (BDE 47, 99, 253, 183, and 209) induced micronuclei in human mammary 

carcinoma cells (Barber et al. 2006). Both BDE 32 and BDE 47 caused DNA damage (Comet assay) in 

HepG2 hepatocellular carcinoma cells (Saquib et al. 2016). The congener 2,2',4,4'-tetraBDE (BDE 47) 

also induced micronuclei formation and DNA damage (Comet assay) in human neuroblastoma cells (Gao 

et al. 2009; He et al. 2008a; Pellacani et al. 2012) and DNA damage (Comet assay) in rat primary 

hippocampal neurons (He et al. 2008b).  However, BDE 47 did not cause DNA damage in normal human 

hepatocytes, as assessed by the Comet assay (An et al. 2011).  BDE 47 also induced gene recombination 

in Chinese hamster SPD8/V79 cells, but not Sp5/V79 cells (Helleday et al. 1999).  In the same study, 

3,4-diBDE (BDE 12) and 2-monoBDE (BDE 1) produced positive results for gene recombination in both 

Chinese hamster SPD8/V79 cells and Sp5/V79 cells (Helleday et al. 1999).  Experiments conducted by Ji 

et al. (2011) in chicken DT40 cell lines showed that BDE 47 and 2,2,4’,5-tetraBDE (BDE 49) could 

induce DNA damage (double strand breaks; identified by γ-H2AX focus formation) and that BDE 47 

could also induce chromosomal aberration.  Ji et al. (2011) also reported that tetraBDEs had a greater 

genotoxic potential than PBDEs with a higher number of bromine substitutes and that hydroxylated 

analogs of tetraBDEs were more genotoxic than tetraBDEs.  These investigators suggested that DNA 

damage caused by tetraBDEs and hydroxylated analogs is mediated through ROS, which leads to 

replication blockage and subsequent chromosomal breaks.  However, Song et al. (2009) did not find 

evidence of DNA damage (Comet assay) in human adreno cortical carcinoma cells exposed to the 

hydroxylated metabolite OH-BDE-47 or OH-BDE-85. DNA damage by PBDEs could be mediated via 

covalent binding of PBDE quinone metabolites, as both Lai et al. (2011) and Huang et al. (2015) have 



   
 

    
 
 

 
 
 
 
 

 

   
 

     
 

 
     

 
 

     

 
 

    

 
 

    

 
 

 
 

    

   
 

  

 
      

 

 

 

 

 

 

PBDEs 245 

3. HEALTH EFFECTS 

Table 3-5.  Genotoxicity of Polybrominated Diphenyl Ethers (PBDEs) In Vivo 

Species (test system) Compound End point Results Reference 
Human peripheral Total PBDEs Micronucleous assay ± Yuan et al. 2008 
lymphocytes 
Human peripheral Total PBDEs Oxidative DNA damage − Yuan et al. 2008 
lymphocytes 
Human peripheral BDE 47 Telomere length − Shin et al. 2010 
lymphocytes 
Human peripheral BDE 99 Telomere length − Shin et al. 2010 
lymphocytes 
Mouse blood and bone PentaBDE Micronucleous assay − Witt et al. 2008 
marrow (unspecified) 
Mouse sperm BDE 209 DNA damage (sperm + Tseng et al. 2013 

chromatin structure analysis) 

+ = positive result; – = negative result; ± = inconclusive result; BDE = brominated diphenyl ether 



   
 

    
 
 

 
 
 
 
 

   

   

   

 

 

    

  

 

   
 

    
 

  
 

  

 

   

    

   

    

      

    

 

  

     

    

     

 

   
 

   

 

PBDEs 246 

3. HEALTH EFFECTS 

reported that PBDE quinone metabolites covalently bind to DNA in vitro to form DNA adducts.  These 

metabolites would result from oxidation of hydroxylated metabolites to dihydroxylated metabolites by 

microsomal cytochrome P450s.  A summary of the in vitro genotoxicity data for PBDEs is presented in 

Table 3-6. 

Overall, the information available from in vivo and in vitro studies with a few PBDE congeners is 

insufficient to make generalizations regarding the genotoxicity of PBDEs. 

3.4  TOXICOKINETICS 

3.4.1 Absorption 

3.4.1.1  Inhalation Exposure 

No studies were located regarding absorption of PBDEs in humans after inhalation exposure.  

Evidence for the inhalation absorption of lower-brominated PBDEs in animals was provided by 

observations of systemic toxicity in rats that were intermittently exposed to a commercial octaBDE 

product (bromine content 78.7%) as dust aerosol for 13 weeks (Great Lakes Chemical Corporation 2000).  

The absorption of the lower-brominated BDE congeners was indicated by the occurrence of hepatic, 

thyroid, and ovarian effects in rats following exposure to 16 or 202 mg/m3 for 6 hours/day, 5 days/week, 

for 13 weeks. 

No studies were located that quantified absorption of inhaled PBDEs, but Staskal et al. (2005) reported 

absorption efficiencies of 91% in mice given single intratracheal doses of 14C-BDE 47 in corn oil.  This 

estimate was derived by comparing the radioactivity profiles in urine, feces, and tissues 5 days after 

intratracheal or intravenous administration of 1 mg/kg doses of 14C-BDE 47. 

3.4.1.2  Oral Exposure 

Human Data.  No information was located regarding absorption of PBDEs in humans following 

controlled oral exposure.  
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Table 3-6.  Genotoxicity of Polybrominated Diphenyl Ethers (PBDEs) In Vitro 

Results 
With Without 

Species (test system) Compound End point activation activation Reference 
Prokaryotic organisms: 

Salmonella BDE 209 Gene mutation – – NTP 1986 
typhimurium, TA98, 
TA100, TA1535, 
TA1537 
S. typhimurium, TA98, 
TA100 

BDE 99 Gene mutation – – Evandri et al. 2003 

Escherichia coli, WP2 
uvrA 

BDE 99 Gene mutation – – Evandri et al. 2003 

Mammalian cells: 

Human L02 normal 
hepatocytes 

BDE 47 DNA damage 
(Comet assay) 

No data – An et al. 2011 

Human MCF-7 
mammary carcinoma 
cells 

BDE 47, 99, 
153, 183, 209 

Micronuclei No data + Barber et al. 2006 

Human SW 480 colon 
carcinoma cells 

BDE 209 DNA damage 
(Comet assay) 

No data + Curcic et al. 2014 

Human SH-SY5Y 
neuroblastoma cells 

BDE 47 DNA damage 
(Comet assay) 

No data + Gao et al. 2009 

Human SH-SY5Y BDE 47 Micronuclei No data + He et al. 2008a 
neuroblastoma cells 
Human SH-SY5Y 
neuroblastoma cells 

BDE 47 DNA damage 
(Comet assay) 

No data + He et al. 2008a 

Human SK-N-MC 
neuroblastoma cells 

BDE 47 DNA damage 
(Comet assay) 

No data + Pellacani et al. 2012 

Human SK-N-MC 
neuroblastoma cells 

BDE 209 DNA damage 
(Comet assay) 

No data + Pellacani et al. 2012 

Human HepG2 
hepatocellular 
carcinoma cells 

BDE 32, 47 DNA damage 
(Comet assay) 

No data + Saquib et al. 2016 

Human H295R 
adrenocortical 
carcinoma cells 

OH-BDE-47 
OH-BDE-85 

DNA damage 
(Comet assay) 

NA – Song et al. 2009 

Rat primary 
hippocampal neurons 

BDE 47 DNA damage 
(Comet assay) 

No data + He et al. 2008b 

Mouse lymphoma 
L5178Y cells 

BDE 209 Gene mutation – – NTP 1986 

Chinese hamster 
Sp5/V79 cells 

BDE 47 Gene 
recombination 

No data – Helleday et al. 1999 

Chinese hamster 
SPD8/V79 cells 

BDE 47 Gene 
recombination 

No data + Helleday et al. 1999 

Chinese hamster 
Sp5/V79 cells 

BDE 12 Gene 
recombination 

No data + Helleday et al. 1999 
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Table 3-6.  Genotoxicity of Polybrominated Diphenyl Ethers (PBDEs) In Vitro 

Results 
With Without 

Species (test system) Compound End point activation activation Reference 
Chinese hamster 
SPD8/V79 cells 

BDE 12 Gene 
recombination 

No data + Helleday et al. 1999 

Chinese hamster 
Sp5/V79 cells 

BDE 1 Gene 
recombination 

No data + Helleday et al. 1999 

Chinese hamster 
SPD8/V79 cells 

BDE 1 Gene 
recombination 

No data + Helleday et al. 1999 

Chinese hamster ovary 
cells 

BDE 209 Sister chromatid 
exchange 

− − NTP 1986 

Chinese hamster ovary 
cells 

BDE 209 Chromosomal 
aberrations 

− − NTP 1986 

Other cells 

Chicken DT40 cell line BDE 47 DNA damage 
(γ-H2AX focus 
formation) 

No data + Ji et al. 2011 

BDE 49 DNA damage 
(γ-H2AX focus 
formation) 

No data + Ji et al. 2011 

BDE 47 Chromosomal 
aberrations 

No data + Ji et al. 2011 

+ = positive result; C = negative result; BDE = brominated diphenyl ether; DNA = deoxyribonucleic acid; NA = not 
applicable 
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Animal Data 

Overview: Information regarding oral absorption in animals is available from studies of commercial 

PBDE mixtures and individual 14C-labeled tetra-, penta-, hexa-, and decaBDE congeners.  As summarized 

below, the most recent and best available estimates of oral absorption efficiencies following gavage 

administration in lipophilic vehicles indicate a range of 70–85% for tetra- (BDE 47), penta- (BDE 99, 

BDE 100), and hexa- (BDE 153, BDE 154) congeners, and 10–26% for decaBDE (BDE 209). 

Information on oral absorption of the commercial pentaBDE mixture DE-71 and the commercial 

octaBDE mixture DE-79 is available from studies in which male Sprague-Dawley rats were fed diets 

containing 0 or approximately 32–33 ng/day (≈120 ng/kg/day) of either mixture in peanut oil for 21 days 

(Hakk et al. 2001; Huwe et al. 2002b, 2007).  The doses were designed to mimic environmental exposure 

concentrations.  Liver, carcass, and feces were analyzed for major congeners in the penta- and octaBDE 

formulations 24 hours after the final feeding; urine was not evaluated. The study of the pentaBDE 

mixture (DE-71) assessed the following six congeners:  BDE 47, BDE 85, BDE 99, BDE 100, BDE 153, 

and BDE 154 (Hakk et al. 2001; Huwe et al. 2007).  Based on liver, carcass, and unrecovered 

concentrations of congeners, and assuming that excretion in the urine was negligible, absorption is 

estimated to have been 44.3% for penta congener BDE 85 and 84.3–92.4% for the other tetra- to 

hexaBDE congeners.  The study of the octaBDE mixture (DE-79) assessed the following eight congeners: 

BDE 153, BDE 154, BDE 183, BDE 190, an unknown heptaBDE, and three unknown octaBDEs (Huwe 

et al. 2002b).  Based on liver, carcass, and unrecovered concentrations of congeners, and assuming that 

excretion in the urine was negligible, absorption is estimated to have been 84.2–95.1% for the hexaBDEs, 

68.5–79.1% for the heptaBDEs, and 55.7–83.3% for the octaBDEs.  

Early studies with 14C-decaBDE (BDE 209) indicated that gastrointestinal absorption efficiency was low 

(~9 or <1%) in rats (El Dareer et al. 1987; Norris et al. 1973, 1975b; NTP 1986). Following treatment 

with a single 1 mg/kg dose of 14C-decaBDE in corn oil, administered as a low purity commercial mixture 

(77.4% decaBDE, 21.8% nonaBDE, 0.8% octaBDE) by gavage, 90.6 and >99% of the dose was 

eliminated in the feces within 24 and 72 hours post-dosing, respectively (Norris et al. 1973, 1975a).  An 

oral absorption efficiency estimate of about 9% is indicated, assuming that fecal radioactivity excreted in 

24 hours was nonabsorbed, and fecal radioactivity excreted between 24 and 72 hours was from biliary 

excretion of absorbed material. Two feeding studies were conducted in which rats were exposed to a 

commercial mixture as unlabeled decaBDE (92% pure) on days 1–7 and 14C-decaBDE (98.9% pure) on 

day 8, followed by unlabelled decaBDE on days 9, 9–10, or 9–11 (El Dareer et al. 1987; NTP 1986).  In 
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the first study, dietary concentrations ranged from 238 to 51,100 ppm (six levels) (≈20–4,500 mg/kg/day).  

Recovery of radioactivity in the feces ranged from 91.3±4.0 to 101±4% of the administered dose and was 

not related to dose level.  In the second study, rats were exposed to dietary concentrations of 277 or 

48,000 ppm (≈20 or 4,300 mg/kg/day).  Recovery of radioactivity in the feces ranged from 82.5±4.7 to 

86.4±8.5% of the dose and was not related to dose level or time of sacrifice (24, 48, or 72 hours after 
14C-decaBDE intake).  For both dose levels, the percent of 14C dose remaining in the gut contents (<4%) 

and gut tissue (<0.04%) decreased with time.  Of the radioactivity recovered, >99% was in the feces and 

gut contents.  Based on a comparison of average tissue concentrations following intravenous and oral 

administration, NTP (1986) estimated that oral absorption was 0.33±0.19% at the highest dietary level 

(50,000 ppm). 

More recent studies indicated that absorption efficiency of 14C-decaBDE (BDE 209) in rats can be 

influenced by vehicle and have reported absorption efficiencies in the 10–26% range using lipophilic 

vehicles (Hakk et al. 2002b; Morck and Klasson Wehler 2001; Morck et al. 2003; Riu et al. 2008; 

Sandholm et al. 2003).  In normal and bile duct-cannulated male Sprague-Dawley rats administered single 

3-µmol/kg (≈3 mg/kg) doses of 14C-decaBDE (>98% pure) in Lutrol F127/soya phospholipone (34:16, 

w/w)/water, radioactivity in feces collected for 72 hours accounted for about 90% of the administered 

dose in conventional rats (Morck and Klasson Wehler 2001; Morck et al. 2003).  In bile duct-cannulated 

rats, averages of 88 and 9.5% of the dose were recovered in feces and bile, respectively, within 3 days.  

Radioactivity recovered in urine was <0.1% of the dose in normal and bile-duct cannulated rats. The 

radioactivity in bile indicates that at least 10% of the dose was absorbed (Morck and Klasson Wehler 

2001; Morck et al. 2003).  Hakk et al. (2002b) reported similar results in another study in which four bile 

duct-cannulated male Sprague-Dawley rats were orally administered single 3-µmol/kg doses of 
14C-decaBDE (>98% pure) in Lutrol 127, soyaphospholipone, and water.  Radioactivity in bile and urine 

collected for 72 hours accounted for 9.2 and <0.1% of the administered dose, respectively.  Sandholm et 

al. (2003) reported an oral bioavailability of 26% for decaBDE from plasma concentration-time curves for 

144 hours following gavage and intravenous administration of single 2-µmol/kg doses of unlabeled 

decaBDE (purity >98%) in a DMA/polyethylene glycol/water vehicle (4:4:1) to Sprague-Dawley rats. 

DecaBDE concentrations in plasma samples were quantified by gas chromatography/mass spectrometry 

(GC/MS).  Oral bioavailability was calculated by dividing the area under the plasma concentration-time 

curve for oral exposure (AUCoral) by the AUCi.v.  Qualitative analysis by GC/MS of pooled plasma 

samples determined 3 major metabolites among 13 hydroxylated metabolites: a hydoxy-octaDDE, a 

hydroxyl-nonaBDE and a hydoxy-methoxy-hexaBDE.  The presence of these phenolic metabolites in the 

plasma samples indicates that the oral bioavailability (and hence oral absorption efficiency) of decaBDE 

http:0.33�0.19
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may have been higher than the calculated value of 26% based on parent-compound plasma concentration-

time curves (Sandholm et al. 2003).  Riu et al. (2008) reported that >19% of administered radioactivity 

was recovered in tissues (including fetuses) and carcasses, 24 hours after oral administration of 2-mg/kg 

doses of 14C-labeled decaBDE (>99.8% radiopurity) dissolved in peanut oil to pregnant Wistar rats on 

GDs 16, 17, 18, and 19.  This finding indicates an absorption efficiency of about 20%, assuming that 

radioactivity recovered in the feces (about 66% of the administered dose) was not absorbed.  Because 

biliary excretion of decaBDE has been demonstrated in rats, this value may underestimate the actual oral 

absorption that occurred in this study.  However, the aqueous fraction (which would contain hydroxylated 

metabolites and conjugates) accounted for only 4% of the radioactivity in the collected feces, and 97% of 

the radioactivity in the organic-solvent fraction of the feces was determined by high-performance liquid 

chromatography (HPLC) to be unchanged decaBDE. 

Estimates of oral absorption efficiencies for BDE 47 in rats and mice have ranged from about 75 to 95%, 

depending on species and employed measurement techniques (Örn and Klasson-Wehler 1998; Sanders et 

al. 2006a; Staskal et al. 2005).  A single 14.5-mg/kg (30-µmol/kg) gavage dose of 14C-BDE 47 in corn oil 

was well absorbed by male Sprague-Dawley rats and male C57Bl mice (Örn and Klasson-Wehler 1998).  

Approximately 5% of the dose in rats and 7% of the dose in mice was excreted as parent congener in the 

feces in 24 hours. The investigators concluded that these values represented the non-absorbed doses, 

indicating that absorption of BDE 47 was 93–95%.  Later studies with male F344 rats and male B6C3F1 

mice reported oral absorption efficiency estimates for BDE 47 of 75% in rats and 85% in mice (Sanders et 

al. 2006a).  Sanders et al. (2006a) used a more refined technique that compared profiles of radioactivity in 

urine, feces, and tissues 24 hours after gavage and intravenous administration of single 1-µmol/kg doses 

of 14C-BDE 47 in corn oil. Using a similar technique comparing radioactivity profiles in excreta and 

tissues 5 days after gavage and intravenous administration of single 1-mg/kg doses of 14C-BDE 47 in corn 

oil, Staskal et al. (2005) reported that oral absorption efficiency was approximately 82% in female 

C57BL/6J mice.  

Evidence for extensive oral absorption of pentaBDE congeners (BDE 99 and BDE 100) in rats and mice 

comes from studies that administered single oral doses of about ~28 µmol/kg 14C-BDE 100 (~98% pure) 

in peanut oil to male Sprague-Dawley rats (Hakk et al. 2006), about 2.2 mg/rat (~15 µmol/kg) of 
14C-BDE 99 (~98% pure) in corn oil to male Sprague-Dawley rats (Hakk et al. 2002a), or 1 µmol/kg body 

weight of 14C-BDE 99 (~96% pure) in corn oil to male F344 rats and male B6C3F1 mice (Chen et al. 

2006).  Seventy-two hours after administration of BDE 100, about 73 and 41% of the administered 

radioactivity remained in tissues of conventional and bile-duct cannulated rats, respectively; fecal 
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radioactivity accounted for about 20 and 26% of administered radioactivity in conventional and bile-duct 

cannulated rats, respectively (Hakk et al. 2006).  Assuming that radioactivity excreted in feces within 

24 hours was non-absorbed, reported values of 11.5% in conventional rats and 16.8% in bile duct

cannulated rats indicate oral absorption for BDE 100 of about 89 and 84%, respectively.  In the studies 

with BDE 99, radioactivity in 24-hour feces accounted for 22.3 and 52.5% of administered radioactivity 

in conventional and bile-cannulated rats, respectively, indicating absorption efficiencies for BDE 99 of at 

least 78 and 48% (Hakk et al. 2002a).  Chen et al. (2006) compared radioactivity profiles in 24-hour 

excreta and tissues after gavage and intravenous administration of 14C-BDE 99 to arrive at estimated oral 

absorption efficiencies of approximately 85% in both male rats and male mice.  

Results from rat and mouse studies with 14C-labeled hexaBDEs (BDE 153 and BDE 154) administered as 

single doses in oil vehicles also indicate extensive oral absorption (Hakk et al. 2009; Sanders et al. 

2006b). Hakk et al. (2009) estimated an oral absorption efficiency for BDE 154 of about 77% in male 

Sprague-Dawley rats, based on radioactivity profiles in 72-hour excreta and tissues after gavage 

administration of single 11.3-µmol/kg 14C-BDE 154 (>98% pure) to conventional and bile duct

cannulated rats.  Sanders et al. (2006b) estimated oral absorption efficiencies for BDE 153 of about 70% 

in male F344 rats and male B6C3F1 mice, based on comparison of radioactivity profiles in 24-hour 

excreta and tissues after gavage and intravenous administration of single 1-µmol/kg doses 14C-BDE 153 

(96% pure).  

3.4.1.3  Dermal Exposure 

No information was located regarding dermal absorption of PBDEs in humans. 

A dermal absorption efficiency of 62% was reported for female mice exposed to an occluded dermal dose 

of 1 mg/kg 14C-BDE 47) (Staskal et al. 2005).  Profiles of radioactivity in urine, feces, and tissues 5 days 

after dermal or intravenous administration were compared to estimate dermal absorption efficiency. 

Approximately 15% of the administered dose remained at the site of application 5 days after application.  

No other in vivo studies of dermal absorption with PBDE congeners or mixtures were located. 

In in vitro studies with human breast skin and mouse dorsal skin samples exposed to 14C-BDE 147 

(radiochemical purity=96.5%) for 24 hours in a flow-through diffusion cell apparatus, reported mean 

absorption efficiencies (percent of applied radioactivity collected in receptor compartment) were 1.88% 

for human skin (n=10) and 14.58% for rat skin (n=12) (Roper et al. 2006).  
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Limited dermal absorption of 14C-decaBDE by mouse skin was indicated in an in vitro study in which 
14C-decaBDE dissolved in tetrahydrofuran was applied (three dose levels) to dorsal skin excised from 

adult hairless female mice, and fractions of receptor fluid were collected over a 24-hour period (Hughes et 

al. 2001). Transfer of radioactivity to the receptor fluid was minimal, accounting for only 0.07–0.34% of 

the applied radioactivity.  Two to 20% of the radioactivity was found in the skin. The highest percentage 

of the dose in the skin was associated with application of the lowest dose.  Washing the skin with solvent 

24 hours after application removed 77–92% of the applied dose. 

3.4.2 Distribution 

3.4.2.1  Inhalation Exposure 

No information was located regarding distribution of PBDEs in humans following controlled inhalation 

exposure. 

The distribution of bromine was examined in tissues of rats after inhalation exposure to octaBDE (Great 

Lakes Chemical Corporation 1978).  Groups of rats were exposed to 0, 1.2, 12, 120, or 1,200 mg/m3 of 

dusts of octaBDE 8 hours/day for 14 days.  At necropsy, sections of the lungs, adipose tissue, and liver 

were collected for bromine analysis using a neutron activation technique. The results showed 

concentrations of bromine in the lungs and adipose tissue significantly higher in all groups relative to 

controls; the amounts of bromine detected were concentration-related.  In the liver, the concentration of 

bromine was also elevated in all groups relative to controls except in the 1.2 mg/m3 exposure group; the 

elevated concentrations in the liver were not as marked as in the lungs or in adipose tissue. 

3.4.2.2  Oral Exposure 

Human Studies.  

Overview: No studies were located that examined tissue distribution of PBDEs in humans following 

controlled oral exposure.  Evidence for the transfer of PBDEs from pregnant mothers to the developing 

fetus and for the transfer of PBDEs from maternal blood to breast milk and then to nursing infants comes 

from a number of studies of PBDE concentrations in maternal and cord serum samples and breast milk 

samples from groups of non-occupationally exposed women.  Although the contributions of different 

possible exposure routes experienced by these women are uncertain, it is thought that ingestion of PBDEs 

http:0.07�0.34
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in dust and food represented a significant exposure route.  In general, the tetra- and penta-brominated 

PBDEs have been the predominant congeners detected in maternal and cord serum samples and breast 

milk samples, but some recent studies assaying for a wider range of PBDE congeners have found 

evidence for distribution of hepta-, octa-, or decaBDEs into cord serum and breast milk. In evaluation of 

these studies, the location where the study was performed (e.g., Asia, Europe or North America) is very 

important, as the patterns of exposure to various congeners were different due to different usage patterns 

of commercial mixtures (see Section 6.5, General Population and Occupational Exposure, for more 

information). 

A number of studies have examined concentrations of PBDEs or hydroxylated PBDEs in maternal and 

cord blood samples in non-occupationally exposed groups of women from the United States (Chen et al. 

2013; Mazdai et al. 2003; Qiu et al. 2009), France (Antignac et al. 2009, 2008), China (Li et al. 2013a), 

Japan (Kawashiro et al. 2008), Spain (Vizcaino et al. 2011), the Netherlands (Meijer et al. 2008), and 

Korea (Wan et al. 2010). In the most recent of the U.S. studies, BDE 28, BDE 47, BDE 99, BDE 100, 

and BDE 153 were detected in 90, 90, 95, 85, and 100% of 20 maternal and 65, 65, 80, 90, and 85% of 

20 matched cord serum samples, respectively (Chen et al. 2013).  Percentages of samples above the limit 

of detection were lower for BDE 209 (55% maternal and 40% cord) and BDE 154 (25% maternal and 5% 

cord).  Chemical analyses for other PBDE congeners were not conducted in this study.  Median 

concentrations of congeners in maternal serum samples (ng/g lipid) were in the following order: BDE 47 

> BDE 153 > BDE 209 > BDE 99 > BDE 100 > BDE 28 > BDE 154. In cord serum samples, the order 

was: BDE 47 > BDE 99 > BDE 209 > BDE 28 > BDE 153 > BDE 100 > BDE 154.  Concentrations of 

four hydoxylated PBDEs (6-OH-BDE-47, 5-OH-BDE-47, 4'-OH-BDE-49 and 6'-OH-BDE-99) were also 

determined.  Geometric mean concentrations (ng/g lipid) of total BDEs and total OH-BDEs in cord 

samples were higher than those in maternal serum samples (~52% and 42 higher for OH-BDEs and 

BDEs, respectively).  Equal or higher concentrations of total OH-BDEs or total BDEs in cord serum, 

compared with maternal serum, were found in 85 and 80% of the matched mother-neonate pairs. The 

results suggest that each of the seven BDEs and four OH-BDEs can cross the placenta and distribute to 

the fetus, and that internal exposure via blood is equal to or higher in fetuses, compared with their 

mothers.  In contrast, BDE 209 was the most abundant congener detected in both maternal and cord blood 

samples from China, where industrial production of BDE 209 may result in exposure (Li et al. 2013a). 

Similar evidence for transplacental transfer of a set of PBDE congeners more enriched in higher

brominated PBDEs was reported in a recent study that measured concentrations of 19 PBDE congeners in 

maternal and cord serum samples from 29 mother-neonate pairs from a Wenzhou region of China that is 
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the major region for electronics dismantling and recycling in China (Li et al. 2013a).  In both maternal 

and cord serum samples, the congeners with the highest geometric mean concentrations (ranging from 

3.32 to 1.78 ng/g lipid in maternal samples) were BDE 207 > BDE 208 > BDE 209 > BDE 28.  

Geometric means for total cord serum concentrations of lower-brominated congeners (BDE 17 to 

BDE 154), higher-brominated congeners (BDE 183 to BDE 209), and all BDEs were higher than 

respective concentrations in maternal blood by about 15, 47, and 41%, respectively (Li et al. 2013a). 

Frederiksen et al. (2010) utilized a human ex vivo placenta perfusion system to study the kinetics of 

placental transfer of BDE 47, BDE 99, and BDE 209 to the fetus.  Placentas were perfused for 4 hours 

with 1 ng/mL concentrations of the non-labeled congeners.  Samples of maternal and fetal compartments 

were taken during the perfusion, and concentrations in samples were determined by GC/MS.  Placental 

transfer of BDE 47 and BDE 99 was demonstrated, and transfer of BDE 47 was faster and more extensive 

than BDE 99.  Transfer of BDE 209 across the placenta to the fetal compartment was not demonstrated 

with the detection limits of the techniques employed.  Frederiksen et al. (2010) proposed that future 

perfusion studies with BDE 209 should use 14C-labeled BDE 209 to increase sensitivity. 

Evidence for the transfer of PBDEs from maternal blood to breast milk and hence to nursing infants 

comes from a number of studies examining PBDE concentrations in breast milk samples.  Most studies of 

PBDEs in breast milk samples through 2002 measured concentrations of only lower-brominated 

congeners (tetra, penta and hexaBDEs) used in many commercial products up to that time: BDE 47, 

BDE 99, BDE 100, BDE 153, and BDE 154 (Hites 2004).  Additionally, higher brominated PBDEs 

(e.g., decaBDE; BDE 209) were often omitted from early human biomonitoring due to the inability to 

accurately measure them at that time. In these early studies, BDE 47 was the congener detected at the 

highest concentration.  A number of more recent studies have included chemical analysis for a greater 

number of PBDE congeners (including hepta-, octa- and deca-brominated congeners) in breast milk 

samples collected in the United States (Daniels et al. 2010; Park et al. 2011; Schecter et al. 2010, 2006), 

France (Antignac et al. 2009, 2008), and Philippines (Malarvannan et al. 2013).  The detection of higher

brominated congeners in some of these recent studies indicates that both lower and higher-brominated 

congeners can be distributed to breast milk (Antignac et al. 2008, 2009; Malarvannan et al. 2013; Park et 

al. 2011; Schecter et al. 2010). 

Further support for the transfer of PBDEs from mothers to nursing children comes from a report that 

average concentrations of BDE 47 and BDE 99 were statistically significantly (p < 0.05) increased by 

~5-fold in serum samples from 4-year-old Spanish children (n=202) who had been breastfed, compared 
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with formula-fed 4-year-old children (n=42) (Carrizzo et al. 2007). This study analyzed serum samples 

for 13 PBDE congeners including tri- (BDE 17, BDE 28), tetra- (BDE 47, BDE 66, BDE 71), penta

(BDE 85, BDE 99, BDE 100), hexa- (BDE 138, BDE 153, BDE 154), and hepta-brominated congeners 

(BDE 183, BDE 190).  BDE 47 and BDE 99 were the predominant congeners detected in both breastfed 

and formula-fed children; concentrations of BDE 47 and BDE 99 in breastfed children were about 16 and 

6 times higher than the congener with the next highest concentration, BDE 100.  The following congeners 

were not detected in the collected serum samples: BDE 17, BDE 28, BDE 66, BDE 71, BDE 85, BDE 

183, and BDE 190.  This study did not control for potential differences in other PBDE exposure 

pathways, such as ingestion of contaminated dusts or food. 

Animal Studies.  

Overview: Tissue distribution studies in animals orally exposed to 14C-labeled BDE 47, BDE 99, 

BDE 100, BDE 153, BDE 154, and BDE 209 indicate that decaBDE is distributed among tissues 

somewhat differently than tetra-, penta- and hexaBDEs.  While lower-brominated BDE congeners, 

following absorption and an initial wide distribution, are preferentially accumulated in adipose tissues, 

absorbed decaBDE is less readily distributed to adipose tissues and appears to preferentially distribute to 

highly perfused tissues.  Although less likely to partition to adipose tissues, decaBDE was still found in 

low quantities in adipose tissues in these studies, and has been shown to transfer from dams to fetuses and 

neonates from exposure during gestational and nursing periods.  Two studies with female Sprague-

Dawley rats given oral doses of nonlabeled BDE 209 in corn oil from GD 7 to postpartum day (PPD) 4 or 

8 demonstrated maternal transfer to developing fetuses and neonates by examining whole-body BDE 209 

concentrations in offspring, but another study with similarly exposed Sprague-Dawley rats found no clear 

evidence for maternal transfer by examining BDE 209 concentrations in blood from dams and offspring. 

Results from studies of rats or mice orally exposed to 14C-labeled decaBDE (BDE 209) indicate that 

decaBDE is not as readily distributed to adipose tissues as the lower-brominated BDEs and more readily 

distributed to highly perfused tissues (El Dareer et al. 1987; Morck and Klasson-Wehler 2001; Morck et 

al. 2003; Norris et al. 1975a; NTP 1986; Riu et al. 2008).  In male rats administered single gavage doses 

of 1 mg/kg of a 14C-labeled commercial decaBDE mixture (77.4% pure containing 21.8% nonaBDE and 

0.8% octaBDE), radioactivity could be detected on day 1 in all sampled tissues (adipose, skin, liver, heart, 

adrenals, spleen, pancreas) (Norris et al. 1975a).  On day 16 after dosing, radioactivity was only detected 

in adrenals and spleen (0.01 and 0.06% of the administered dose per gram of tissue, respectively).  In 

F344 rats fed diets containing a commercial mixture as unlabeled decaBDE (92% pure) on days 1–7, 
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14C-decaBDE (98.9% pure) on day 8, and unlabelled decaBDE on days 9, or 9–10, or 9–11, the levels of 

radioactivity remaining in tissues 72 hours after the exposure period ended had the following order: 

gastrointestinal tract > liver > kidney > lung > skin > adipose (El Dareer et al. 1987; NTP 1986).  In 

Sprague-Dawley rats given single 3-µmol/kg (≈3 mg/kg) gavage doses of 14C-decaBDE (>98% pure) in 

Lutrol F127/soya phospholipone (34:16, w/w)/water, concentrations of radioactivity remaining in tissues 

3 days after dose administration had the following order (14C nmol equivalents/g lipid concentrations in 

parentheses):  plasma (22 nmol/g) > liver (14.9 nmol/g) > heart ~ small intestine wall ~ adrenal (ranging 

from 5.6 to 4.0 nmol/g) > lung ~thymus ~ kidney (ranging from 2.1 to 1.8 nmol/g) > adipose 

(0.17 nmol/g) (Morck and Klasson-Wehler 2001; Morck et al. 2003).  In pregnant Wistar rats given single 

2-mg/kg doses of 14C-decaBDE (>99.8% pure) in peanut oil daily on GDs 16–19, concentrations of 

radioactivity on a wet weight basis (µg 14C-decaBDE equivalents/g tissue) were highest in adrenals 

(33 µg/g), ovaries (16 µg/g), and liver (11 µg/g); intermediate in kidneys > stomach > heart ~ placentas > 

lung > spleen > plasma > uterus > carcass (ranging from 3.90 to 1.11 µg/g); and lowest in adipose tissue 

(0.79 µg/g), fetuses (0.46 µg/g), brain (0.11 µg/g), and amniotic fluid (0.11 µg/g) (Riu et al. 2008).  

Results from studies of rats and mice exposed to oral doses of 14C-labeled BDE 47 indicate wide 

distribution to tissues following absorption with preferential accumulation in fatty tissues, contrasting the 

preferential distribution of decaBDE to highly perfused tissues (Örn and Klasson-Wehler 1998; Sanders 

et al. 2006a; Staskal et al. 2005, 2006a).  Five days after gavage administration of single 30-µmol/kg 

doses of 14C-BDE 47 in corn oil to male Sprague-Dawley rats, concentrations of radioactivity had the 

following order (14C-BDE 47 equivalent nmol/g wet tissue): adipose (706) > lung (12) > kidney (11) > 

liver (5) > brain (1.9) > plasma (0.76) (Örn and Klasson-Wehler 1998).  A similar order of wet tissue 

concentrations (nmol/g wet tissue) was observed in male C57Bl mice exposed to 14C-BDE 47: adipose 

(79) > liver (7) > lung (5) > kidney (3) > brain (1) > plasma (not detected) (Örn and Klasson-Wehler 

1998).  In another study that gave single 1-µmol/kg doses of 14C-BDE 47 to male and female F344 rats in 

corn oil, the following order of amounts of radioactivity remaining in tissues was observed 24 hours after 

dose administration (percentages of administered dose for male rats): adipose (24.6%) > skin (13.0%) > 

muscle (3.0%) > liver (1.3%) > blood (0.2%) > brain ~ kidney ~ lung (0.1% each) (Sanders et al. 2006a).  

A similar order was observed in female rats, but the amount of radioactivity in adipose in females (37%) 

was higher than in male rats (24.6%) (Sanders et al. 2006a).  Tissue distribution in male and female 

B6C3F1 mice exposed to 14C-BDE 47 was similar to distribution in F344 rats, with females showing 

higher accumulation of radioactivity in adipose than male mice (Sanders et al. 2006a).  Staskal et al. 

(2005) reported similar patterns for tissue distribution in female C57BL/6J mice 5 days after 

administration of single oral doses of 0.1, 1.0, 10, or 100 mg/kg 14C-BDE 47 in corn oil.  For all doses, 
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the reported order of remaining radioactivity in tissues was: adipose (8–14% of administered dose) > skin 

and muscle (~2–3%) > liver (~1%) > brain ~ kidneys ~ lungs (<0.05% each) (Staskal et al. 2005).  The 

same tissue distribution pattern was also observed in female C57BL/6J mice given nine 1-mg/kg/day 

doses of unlabeled BDE 47 in corn oil followed by single 1-mg/kg doses of 14C-BDE 47 (Staskal et al. 

2006a).  Using percent of dose/g of tissue as the dose metric to compare single-dose levels in rats reported 

by Staskal et al. (2005) with repeated-dose levels in tissues, the tissue concentrations from the repeated-

dose scenario with 1 mg/kg were comparable to tissue concentrations from single 10-mg/kg doses and 

about 2 times greater than concentrations from single 1-mg/kg doses (Staskal et al. 2006a).  The results 

indicate the potential for incremental accumulation of BDE 47 in fat with continued exposure. 

Results from studies of 14C-BDE 99 (Chen et al. 2006; Hakk et al. 2002a) and 14C-BDE 100 (Hakk et al. 

2006) indicate an initial wide distribution of penta-brominated congeners to tissues following absorption 

with preferential accumulation in fatty tissues, similar to results from studies with BDE 47.  In male F344 

rats given single doses of 0.1 µmol/kg 14C-BDE 99 (~96% pure) in corn oil, levels of radioactivity 

remaining in tissues 24 hours after dose administration had the following order (percent of administered 

dose): adipose (20.8%) > skin (7.0%) > muscle (5.2%) > liver (2.1%) > blood = brain (0.3% each) > lung 

= brain (0.1% each) (Chen et al. 2006).  Similar orders of tissue concentrations were seen 24 hours after 

oral administration in male rats given single 1, 10, 100, or 1,000 µmol/kg doses, and in female F344 rats 

and male and female B6C3F1 mice given single 1 µmol/kg doses (Chen et al. 2006).  Preferential 

accumulation in adipose also was found in male Sprague-Dawley rats 24 hours after administration of 

14.5 µmol/kg doses of 14C-BDE 99 (>98% pure) in corn oil (Hakk et al. 2002a).  In male Sprague-Dawley 

rats 72 hours after administration of single 25.2 µmol/kg doses of 14C-BDE 100 (>95% pure) in peanut 

oil, the adipose, gastrointestinal tract, and skin had the highest concentrations of radioactivity 

(>35 nmol/g fresh tissue weight), liver and lung had intermediate concentrations (~10–15 nmol/g), and 

other tissues, including lung, adrenals, testes, and muscle, had the lowest concentrations (<10 nmol/g) 

(Hakk et al. 2006). 

Preferential distribution and accumulation in adipose also has been found for hexa-brominated BDEs in 

studies with rats or mice exposed orally to 14C-BDE 153 (Sanders et al. 2006b) and 14C-BDE 154 (Hakk 

et al. 2009).  In male F344 rats given single doses of 1 µmol/kg 14C-BDE 153 (~96% pure) in corn oil, 

levels of radioactivity remaining in tissues 24 hours after dose administration had the following order of 

percent of administered dose: adipose (16.7%) > muscle (13.4%) > skin (8.3%) > liver (5.8%) > blood 

(0.9%) > kidney (0.4%) > lung = brain (0.2% each) (Sanders et al. 2006b).  Similar orders of tissue 

concentrations were observed in similarly exposed female F344 rats and male and female B6C3F1 mice 
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(Sanders et al. 2006b).  During repeated daily applications of 1-µmol/kg 14C-BDE 153 doses to male rats, 

supralinear increases in concentrations of radioactivity (nmol 14C equivalents/g wet tissue) were observed 

in adipose and skin (e.g., average concentrations in adipose after 1, 3, and 10 consecutive doses were 

1.57, 9.21, and 30.38 nmol/g, respectively) (Sanders et al. 2006b).  This observation suggests that adipose 

and skin serve as sinks for radioactivity initially distributed to other tissues.  In male Sprague-Dawley rats 

sampled 72 hours after administration of single 12.3 µmol/kg doses of 14C-BDE 154 (>95% pure) in 

peanut oil, levels of radioactivity remaining in tissues had the following order (percent of administered 

dose): carcass (24.3%) > gastrointestinal tract (3.77%) > adipose (1.82%) > liver (0.68) > thymus ~ testis 

~ lung ~ adrenal ~ kidney ~ plasma ~ heart ~ spleen (≤0.1% each) (Hakk et al. 2009).  Expression of the 

data on a concentration basis (nmol 14C equivalents/g wet tissue weight) showed the highest 

concentrations in lipid rich tissues: adrenals (29.56 nmol/g), adipose (21.79 nmol/g), skin (7.55 nmol/g), 

gastrointestinal tract (4.58 nmol/g), and thymus (4.48 nmol/g).  Concentrations in carcass, lung, and liver 

were intermediate (3.58, 2.26, and 1.80 nmol/g), and concentrations in testis, kidney, heart, spleen, and 

muscle ranged from 1.01 to 0.45 nmol/g.  The concentration in plasma was very low (0.04 nmol/g) (Hakk 

et al. 2009). 

Maternal transfer of decaBDE (BDE 209) has been demonstrated in female Sprague-Dawley rats given 

oral 5 µmol/kg/day doses of nonlabeled BDE 209 in peanut oil from GD 7 to PPD 4 (Cai et al. 2011).  

BDE 209 concentrations in blood of dams increased with duration of exposure: mean concentrations 

(standard error [SE]) were 358.17 (210.49) and 701.17 (63.43) µg/g lipid weight on GD 15 and PPD 4, 

respectively (Cai et al. 2011). Whole-body concentrations of BDE 209 in fetuses and neonates also 

increased with duration: mean BDE 209 concentrations (and SE) were 20.53 (7.9), 28.95 (3.57), and 

45.04 (10.23) µg/g lipid on GD 15, GD 21, and PPD 4, respectively (Cai et al. 2011).  Nona-brominated 

congeners (BDE 208, BDE 207, and BDE 206) were detected in dam blood samples and whole-bodies of 

fetuses and neonates at lower concentrations than BDE 209 and higher concentrations than octa

brominated BDEs (BDE 196, 197/204, 198/203).  In a related study by the same group of investigators, 

female Sprague-Dawley rats were exposed to 5 µmol/kg/day doses of nonlabeled BDE 209 from GD 7 to 

PPD 8 and from PPD 1 to 8 (Zhang et al. 2011).  Whole-body BDE 209 concentrations in pups exposed 

during gestation and lactation were about 2 times greater than concentrations of pup exposed only during 

lactation, suggesting that BDE 209 exposure and accumulation can occur during gestational and nursing 

periods (Zhang et al. 2011). 

In another study with female Sprague-Dawley rats given 1, 10, 100, 300 or 1,000 mg/kg/day of 

nonlabeled BDE 209 in corn oil from GD 7 to PPD 4, measurements of BDE 209 concentrations in blood 



   
 

    
 
 

 
 
 
 
 

    

  

  

  

    

   

   

   

 

   

   

     

       

     

     

  

   

      

     

    

  

 

  
 

 

 

 

     
 

   

   

     

    

  

   

PBDEs 260 

3. HEALTH EFFECTS 

samples of dams and offspring gave no clear evidence of maternal transfer, but whole-body 

concentrations in offspring were not measured (Biesemeier et al. 2010).  BDE 209 concentrations in 

blood (reported as ng/mL blood) collected on GD 20 were generally higher in exposed dams than in 

exposed fetuses, but mean concentrations of dams and fetuses in the 100-, 300-, and 1,000-mg/kg groups 

did not increase with increasing dose. Mean BDE 209 concentrations in maternal or offspring blood 

collected on PPD 4 also did not increase with increasing dose levels, but mean BDE 209 concentrations in 

exposed groups of PPD 4 pups were mostly higher than mean concentrations in dams from the same 

exposed groups (Biesemeier et al. 2010). 

Further evidence for different tissue distributions of decaBDE and lower-brominated congeners comes 

from a study in which neonatal NMRI mice were given single 0.7 mg/kg doses of 14C-decaBDE or 

0.8 mg/kg doses of 14C-BDE 99 in a 20% fat emulsion to simulate milk on PND 3, 10, or 19 (Eriksson et 

al. 2002b; Viberg et al. 2003a).  Neonatal mice exposed to 14C-BDE 209 on PND 3, 10, or 19 had about 

0.48, 0.40, and 0.06% of the total administered radioactivity in the brain, 24 hours after dose 

administration (Viberg et al. 2003a).  Seven days after exposure, radioactivity in the brain had increased 

approximately 2-fold in mice exposed on PND 3 or 10 (to 0.74 and 1.05% of the administered dose), but 

remained the same as previously measured in mice exposed on PND 19 (0.06% of administered dose).  

Mice exposed to 14C-BDE 99 on PND 3, 10, or 19 had about 0.37, 0.51, and 0.51% of the administered 

dose in the brain, 24 hours after dose administration; 7 days after dose administration, decreased levels in 

brains were seen in mice exposed on PNDs 3, 10, and 19 (about 0.18, 0.28, and 0.15% of the 

administered dose) (Eriksson et al. 2002b). 

3.4.2.3  Dermal Exposure 

No studies were located regarding distribution of PBDEs in humans or animals after controlled dermal 

exposure. 

3.4.3 Metabolism 

Oxidative hydroxylation of PBDEs is a principal metabolic transformation that occurs in humans and 

laboratory animals.  Hydroxylated PBDEs have been identified in samples of human biological fluids, 

including blood (Athanasiadou et al. 2008; Hovander et al. 2002; Lacorte and Ikonomou 2009; Qiu et al. 

2009; Rydén et al. 2012; Wan et al. 2009, 2010; Wang et al. 2012; Yu et al. 2010a) and breast milk 

(Lacorte and Ikonomou 2009).  Hydroxylated PBDEs also have been identified in feces or bile of 

laboratory rodents exposed to 14C-labeled tetra-, penta-, hexa- or decaBDEs, including: 
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•	 rats orally exposed to BDE 47 (Marsh et al. 2006; Orn and Klasson-Wehler 1998; Sanders et al. 
2006a); 

•	 female mice given single intravenous doses of BDE 47, BDE 99, BDE 100, or BDE 153 (Staskal 
et al. 2006b) 

•	 conventional or bile-duct cannulated male rats given oral or intravenous doses of BDE 99 (Chen 
et al. 2006; Hakk et al. 2002a); 

•	 conventional or bile-duct cannulated rats given oral doses of BDE 154 (Hakk et al. 2009); and 

•	 conventional or bile-duct cannulated rats given oral doses of BDE 209 (Morck et al. 2003; Riu et 
al. 2008).  

Hydroxylated metabolites have also been identified in feces and carcasses of male rats fed a commercial 

pentaBDE mixture (DE-71) for 21 days (Huwe et al. 2007), in plasma of rats given single intraperitoneal 

injections of an equimolar mixture of BDE 47, BDE 99, BDE 100, BDE 153, BDE 154, and BDE 183 

(Malmberg et al. 2005), and in plasma of mice after oral and subcutaneous exposure to DE-71 for 34 days 

(Qiu et al. 2007).  Oxidative hydroxylation of PBDEs also has been demonstrated and studied in in vitro 

metabolic systems with human liver microsomes or primary hepatocytes (Cheng et al. 2008; Erratico et 

al. 2012, 2013; Feo et al. 2013; Lupton et al. 2009; Stapleton et al. 2009) and rat liver microsomes or 

primary hepatocytes (Dong et al. 2010; Erratico et al. 2011). 

Metabolic cleavage of the ether bond in PBDEs to form brominated phenols and debromination to form 

lower-brominated PBDEs are other metabolic fates of PBDEs in mammals. Evidence for cleavage of the 

ether bond includes the identification of: 

•	 glucuronide- and sulfate-conjugates of 2,4-dibromophenol in male rats given single oral doses of 
14C-BDE 47 (2,2',4,4'-tetraBDE) (Sanders et al. 2006a); 

•	 unconjugated 2,4,5-tribromophenol in feces and urine and glucuronide-, sulfate-, and 
glutathionyl-conjugates of 2,4,5-tribromophenol in bile and urine in conventional and bile duct
cannulated male rats given single oral doses of 14C-BDE 99 (2,2',4,4',5-pentaBDE) (Chen et al. 
2006); and 

•	 2,4-dibromophenol and 2,4,5-tribromophenol as metabolites of BDE 47 and BDE 99 following in 
vitro incubation with human liver microsomes (Erratico et al. 2013, 2012). 
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Evidence for debromination includes the identification of: 

•	 hydroxylated triBDEs in feces of rats given single oral doses of 14C-BDE 47 (2,2',4,4'-tetraBDE) 
(Marsh et al. 2006); 

•	 hydroxylated tetraBDEs in feces of male rats given single oral doses of 14C-BDE 99
 
(2,2',4,4',5-pentaBDE) (Hakk et al. 2002a);
 

•	 mono- and di-hydroxylated tetraBDEs in feces of rats given single oral doses of 14C-BDE 100 
(2,2',4,4',6-pentaBDE) (Hakk et al. 2006); 

•	 hydroxylated tetra- and pentaBDEs in feces of rats given single oral doses of 14C-BDE 154 
(2,2',4,4',5,6'-hexaBDE) (Hakk et al. 2009); 

•	 several hydroxylated BDEs with five to seven bromines per molecule in feces of rats given single 
doses of 14C-BDE 209 (Morck et al. 2003); and 

•	 several hydroxylated BDEs with eight or nine bromines per molecule in male rats given single 
doses of 14C-BDE 209 (Sandholm et al. 2003). 

Information from in vivo toxicokinetic studies with rodents exposed to the best studied congeners 

(i.e., BDE 47, BDE 99, BDE 100, BDE 153, BDE 154, and BDE 209) is inadequate to describe detailed 

metabolic pathways, but is adequate to propose that cytochrome P450s are likely to be involved in the 

formation of hydroxylated metabolites and hydoxylated debrominated metabolites of BDE 47 (Sanders et 

al. 2006a), BDE 99 (Chen et al. 2006), BDE 100 and BDE 154 (Hakk et al. 2006, 2009), and BDE 209 

(Morck et al. 2003; Sandholm et al. 2003).  Recent in vitro studies with human or rat liver microsomes or 

hepatocytes, and human or rat recombinant CYPs, provide more detailed information adequate for 

proposing metabolic pathways for BDE 47, BDE 99, and BDE 100 in humans showing CYP2B6 

mediation for hydroxylation, debromination, and ether bond cleavage for BDE 47, hydroxylation and 

ether bond cleavage for BDE 99, and hydroxylation for BDE 100 (see Figures 3-4, 3-5, and 3-6); 

however, no clear metabolic pathways were identified for BDE 153 or BDE 209 using these methods. 

•	 BDE 47 was metabolized, principally by CYP2B6, in human liver microsomes (Erratico et al. 
2013; Feo et al. 2013; Lupton et al. 2009), producing 5-OH-BDE-47, 6-OH-BDE-47, an 
unidentified dihydroxylated tetrabrominated BDE and 2,4-dibromophenol as major metabolites, 
and several minor metabolites including three other hydroxylated tetrabrominated BDEs and two 
hydroxylated tribrominated BDEs (Erratico et al. 2013; see Figure 3-4).  The predominance of 
CYP2B6 involvement was demonstrated by inhibition of the production of all metabolites by a 
specific antibody to CYP2B6 (Erratico et al. 2013) and comparison of capabilities of 11 or 
12 recombinant human CYPs (Erratico et al. 2013; Feo et al. 2013).  
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Figure 3-4.  Structures and General Metabolic Scheme for Hydroxylated
 
Metabolites of BDE 47 Produced by Human Liver Microsomes*
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*M1 and M2 refer to general structures of unidentified hydroxylated and dihydroxylated tetrabrominated 
BDEs. Structures of other metabolites were determined with authentic chemical standards and ultra-
performance liquid chromatography-mass spectrometry techniques. Bold arrows indicate major 
metabolites. CYP2B6 is proposed to be involved in production of all metabolites, based on inhibition of 
BDE 47 metabolism by a specific antibody to CYP2B6, and higher rates of BDE 47 metabolism in human 
liver microsomes incubated with specific human recombinant CYP2B6, compared with 11 other human 
recombinant CYPs. 

Reprinted (adapted) with permission from Erratico et al. (2013).  Copyright 2013 American Chemical 
Society. 
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Figure 3-5.  Structures and General Metabolic Scheme for Hydroxylated
 
Metabolites of BDE 99 Produced by Human Liver Microsomes*
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*M1-3 and M4 refer to general structures of unidentified hydroxylated and dihydroxylated 
pentabrominated BDEs. Structures of other metabolites were determined with authentic chemical 
standards and ultra-performance liquid chromatography-mass spectrometry techniques. CYP2B6 is 
proposed to be involved in production of all metabolites, based on inhibition of BDE 99 metabolism by a 
specific antibody to CYP2B6, and higher rates of BDE 99 metabolism in human liver microsomes 
incubated with human recombinant CYP2B6, compared with11 other human recombinant CYPs. 

Source: Erratico et al. 2012 
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Figure 3-6.  Structures and General Metabolic Scheme for Hydroxylated
 
Metabolites of BDE 100 Produced by Human Liver Microsomes and 


Human CYP2B6*
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*Structures of 3-OH-BDE-100, 5’-OH-BDE-100, 6’OH-BDE-100, and 4’-OH-BDE-103 were determined 
using commercial reference standards and ultra-performance liquid chromatography-mass spectrometry 
techniques.  The two remaining mono-OH-pentaBDE metabolites were hypothesized using mass spectral 
fragmentation characteristics of derivatized OH-BDEs. Additional information based on theoretical boiling 
point calculations using COnductor-like Screening MOdel for Realistic Solvents (COSMO-RS) and 
experimental chromatographicretention times were used to identify the hypothesized metabolites as 
2′-hydroxy-2,3′,4,4′,6-pentabromodiphenyl ether (2′-OHBDE-119) and 4-hydroxy-2,2′,4′,5,6-penta
bromodiphenyl ether (4-OH-BDE-91), respectively.  CYP2B6 is proposed to be involved in production of 
all metabolites, based on inhibition of BDE 99 metabolism by a specific antibody to CYP2B6, and higher 
rates of BDE 100 metabolism in human liver microsomes incubated with human recombinant CYP2B6, 
compared with nine other human recombinant CYPs. 

Source: Gross et al. 2015 
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•	 BDE 47 was metabolized by liver microsomes from phenobarbital (PB)-induced and 
dexamethasone (DEX)-induced rats, producing five hydroxylated tetrabrominated BDEs with PB-
induction and two hydroxylated tetrabrominated BDEs with DEX induction (Erratico et al. 2011).  
The major metabolites identified were 4'-OH-BDE-49 and 3-OH-BDE-47 (with PB or DEX 
induction), and 4-OH-BDE-42 (PB induction only).  No evidence for debromination or ether 
bond cleavage was found. These data and a comparison of metabolic capabilities of 
14 recombinant rat CYP enzymes indicate that rat liver metabolism of BDE 47 involves 
CYP1A1, CYP2A2, and CYP3A1 (Erratico et al. 2011), 

•	 BDE 99 was metabolized, principally by CYP2B6, in human liver microsomes (Erratico et al. 
2012; Lupton et al. 2009; Stapleton et al. 2009), producing 2,4,5-tribromophenol, 5'-OH-BDE-99 
and 4'-OH-BDE-101 as major metabolites and seven minor hydroxylated pentaBDEs (4-OH
BDE-90, 6'-OH-BDE-99, and 2-OH-BDE-123, three unidentified monohydroxy pentabrominated 
BDEs, and one dihydroxy pentabrominated BDE) (Erratico et al. 2012; see Figure 3-5).  No 
evidence for debromination of BDE 99 was found.  CYP2B6 was the only CYP among a panel of 
12 human recombinant CYPs showing metabolic activity with BDE 99, and a specific antibody to 
CYP2B6 inhibited the production of all BDE 99 metabolites by human liver microsomes 
(Erratico et al. 2012). 

•	 BDE 99 was metabolized to hydroxylated metabolites in primary rat hepatocytes (Dong et al. 
2010) and in liver microsomes from DEX- and PB-induced rats (Erratico et al. 2011).  Liver 
microsomes from DEX- and PB-induced rats produced 4-OH-BDE-99 as the major metabolite 
and lesser amounts (in decreasing order) of 5'-OH-BDE-99, 6'-OH-BDE-99, 2,4,5-tribromo
phenol, 4'-OH-BDE-101, and 2-OH-BDE-123.  No evidence for debromination was found.  
These data and a comparison of metabolic capabilities of 14 recombinant rat CYP enzymes 
indicated that rat liver metabolism of BDE 99 involves CYP1A1, CYP2A2, CYP2B1, and 
CYP3A1 (Erratico et al. 2011). 

•	 BDE 100 was metabolized by recombinant human P450s and pooled human liver 
microsomes (Gross et al. 2015).  As with BDE 47 and BDE 99, human CYP2B6 was found 
to be the predominant enzyme responsible for nearly all formation of six mono-OH
pentaBDE and two di-OH-pentaBDE metabolites.  Four metabolites were identified as 
3-hydroxy-2,2′,4,4′,6-pentabromodiphenyl ether (3-OH-BDE-100), 5′-hydroxy
2,2′,4,4′,6-pentabromodiphenyl ether (5′-OHBDE-100), 6′-hydroxy-2,2′,4,4′,6-penta
bromodiphenyl ether (6′-OH-BDE-100), and 4′-hydroxy-2,2′,4,5′,6-pentabromodiphenyl 
ether (4′-OH-BDE-103) through use of reference standards (see Figure 3-6).  The two 
remaining mono-OH-pentaBDE metabolites were hypothesized using mass spectral 
fragmentation characteristics of derivatized OH-BDEs, which allowed prediction of an 
ortho-OH-pentaBDE and a para-OH-pentaBDE positional isomer.  Additional information 
based on theoretical boiling point calculations using COnductor-like Screening MOdel for 
Realistic Solvents (COSMO-RS) and experimental chromatographic retention times were 
used to identify the hypothesized metabolites as 2′-hydroxy-2,3′,4,4′,6-penta
bromodiphenyl ether (2′-OHBDE-119) and 4-hydroxy-2,2′,4′,5,6-pentabromodiphenyl 
ether (4-OH-BDE-91), respectively (Simpson et al. 2015).  Kinetic studies of BDE 100 
metabolism using P450 2B6 and HLMs revealed Km values ranging from 4.9 to 7.0 μM 
and 6−10 μM, respectively, suggesting a high affinity toward the formation of OH-BDEs. 
Compared to the metabolism of BDE 47 and BDE 99 reported in previous studies, 
BDE 100 appears to be more slowly metabolized by P450s due to the presence of a third 
ortho-substituted bromine atom. 
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•	 BDE 153 was not metabolized by human liver microsomes under conditions that produced 
hydroxylated metabolites from BDE 47 (a dihydroxylated BDE 47 and 2,4-dibromophenol), and 
BDE 99 (2,4,5- tribromophenol, a dihydroxlated BDE 99, and 1,3-dibromo benzene) (Lupton et 
al. 2009). 

•	 BDE 209 was not metabolized by human primary liver hepatocytes under conditions that 
produced 2,3,5-tribromophenol, two hydroxylated pentabrominated BDE metabolites and an 
unidentified hydroxylated tetrabrominated metabolite from BDE 99 (Stapleton et al. 2009).  

In summary, Feo et al. (2013) and Gross et al. (2015) characterized the in vitro metabolism of BDE 47 

and BDE 100 by pooled human liver microsomes and recombinant human CYPs, identifying a number of 

hydroxylated BDE metabolites; however, no brominated phenols were detected by the methods utilized 

by these investigators.  In other studies, CYP2B6-mediated metabolism of BDE 47 and BDE 99 produces 

multiple hydroxylated metabolites via hydroxylation and ether bond cleavage, based on in vitro studies 

with human liver microsomes or hepatocytes and human recombinant CYPs (Erratico et al. 2012, 2013).  

The major metabolites of BDE 47 and BDE 99 formed by human liver microsomes were not the same as 

those identified using rat liver microsomes (Erratico et al. 2013, 2012, 2011).  It is important to note that 

all studies consistently identified CYP2B6 as the primary human CYP responsible for the formation of 

hydroxylated metabolites of BDE 47, BDE 99, and BDE 100 (Erratico et al. 2012, 2013; Feo et al. 2013; 

Gross et al. 2015), while different classes of CYP enzymes appear to be involved in in vitro rat liver 

metabolism of BDE 47 and BDE 99: CYP1A1, CYP2A2, and CYP3A1 for BDE 47 and CYP1A1, 

CYP2A2, CYP2B1, and CYP3A1 for BDE 99 (Erratico et al. 2011).  Production of hydroxylated 

metabolites of BDE 153 (Lupton et al. 2009) and BDE 209 (Stapleton et al. 2009) has not been 

demonstrated with human liver microsomes or hepatocytes, respectively.  It is uncertain if these latter 

findings are reflective of a limited in vivo capacity of humans to metabolize these BDE congeners or 

because the proper in vitro conditions for metabolizing these congeners were not provided.  Currently, 

studies of metabolism of BDE 47 and BDE 99 with in vitro human and rat systems have found evidence 

of metabolic oxidative debromination only with BDE 47 in human liver microsomes.  In contrast, a 

number of in vivo studies have found evidence for oxidative debromination in feces collected from rats 

exposed to BDE 47 (Marsh et al. 2006), BDE 99 (Hakk et al. 2002a), BDE 100 (Hakk et al. 2006), 

BDE 154 (Hakk et al. 2009), and BDE 209 (Morck et al. 2003; Sandholm et al. 2003). 

3.4.4 Elimination and Excretion 

3.4.4.1  Inhalation Exposure 

No studies were located regarding excretion of PBDEs in humans or animals after inhalation exposure. 
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3.4.4.2  Oral Exposure 

Oral Exposure Elimination Overview. Apparent half-lives of PBDE congeners in blood of PBDE-

exposed workers during non-exposed vacation periods ranged from 15 days for BDE 209, 18–39 days for 

nonabrominated congeners, and 37–94 days for octabrominated congeners. The detection of PBDEs in 

human breast milk samples indicates that elimination via milk is an elimination route for women, but 

several studies examining PBDE concentrations during lactation do not provide a clear account of the 

degree to which PBDEs are cleared from the body during lactation.  Results from animal studies given 

single oral doses of 14C-labeled PBDE congeners or PBDE mixtures indicate that biliary excretion into the 

feces is the principal route of elimination in rats, and that the urine and feces are principal routes of 

elimination of orally absorbed PBDEs in mice. 

No studies were located regarding excretion of PBDEs in humans after controlled oral exposure. 

Apparent half-lives of several PBDEs in blood were estimated for eight PBDE-exposed workers (four 

electronics dismantlers and four workers in a factory making flame-retarded rubber) from measurements 

of hepta-, octa-, nona- and decaBDE concentrations in blood collected during 28–29-day vacation periods 

without occupational exposure (Thuresson et al. 2006).  After fitting the data to a single-phase 

exponential model, calculated apparent half-lives were: 15 days for BDE 209; 28, 39, and 18 days for 

nonabrominated congeners BDE 208, BDE 207, and BDE 206; 37, 72, 85, and 91 days for BDE 203 and 

three other octabrominated congeners of uncertain chemical structure; and 94 days for BDE 183. 

The detection of PBDEs in human breast milk samples suggests that breast milk represents an elimination 

route of absorbed PBDEs in women (see Jakobsson et al. 2012 and Frederiksen et al. 2009 for reviews of 

PBDE levels in breast milk).  Several studies have examined changes in PBDE concentrations (and other 

persistent lipophilic chemicals) in breast milk during lactation, but the results do not provide a clear 

account of the degree to which PBDEs are cleared from the body during breast feeding (Hooper et al. 

2007; Jakobsson et al. 2012; LaKind et al. 2009; Thomsen et al. 2010). 

Studies with rats given single oral doses of 14C-labeled PBDE congeners or PBDE mixtures indicate that 

ingested PBDEs are principally excreted in the feces with <2% of administered radioactivity excreted in 

the urine within 3 days of dose administration. This pattern has been observed in male and female rats 

exposed to BDE 47 (Orn and Klasson-Wehler 1998; Sanders et al. 2006a), male and female rats exposed 
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to BDE 99 (Chen et al. 2006; Hakk et al. 2002a), male rats exposed to BDE 100 (Hakk et al. 2006), male 

and female rats exposed to BDE 153 (Sanders et al. 2006), male rats exposed to BDE 154 (Hakk et al. 

2009), pregnant female and male rats exposed to BDE 209 (Morck et al. 2003; Riu et al. 2008), and male 

and female rats exposed to a mixture with 77.4% 14C-BDE 209, 21.8% nonabrominated BDE, and 0.8% 

octabrominated (Norris et al. 1973, 1975b).  Studies with bile duct-cannulated male rats indicated that 

radioactivity excreted in feces of conventional rats included bile duct-delivered metabolites (i.e., absorbed 

material) and unabsorbed compound.  Cumulative biliary excretion represented about 3.9% of 

administered dose with BDE 99 (Hakk et al. 2002a), 1.7% with BDE 100 (Hakk et al. 2006), 1.3% with 

BDE 154, and about 10% with BDE 209 (Morck et al. 2003).  

A different elimination pattern has been observed in mice, especially with BDE 47.  In mice given single 

oral doses of 14C-labeled PBDE congeners, fecal and urinary elimination were principal routes of 

elimination for BDE 47 (Orn and Klasson-Wehler 1998; Sanders et al. 2006a), whereas fecal elimination 

appeared to be more important than urinary elimination with BDE 99 (Chen et al. 2006) and BDE 153 

(Sanders et al. 2006b).  Male C57Bl mice excreted 20% of administered radioactivity in feces and 33% in 

urine within 5 days of administration of 14C-BDE 47 (Orn and Klasson-Wehler 1998). Male and female 

B6C3F1 mice excreted about 30 and 20% of administered 14C-BDE 47 dose in urine and about 22% and 

25% in feces, within 24 hours (Sanders et al. 2006a).  In B6C3F1 mice given 14C-BDE 99, males excreted 

7.8% in urine and 27.1% in feces within 24 hours, and females excreted 4.1% in urine and 32.4% in feces 

(Chen et al. 2006). Twenty-four hours after administration of 14C-BDE 153, male B6C3F1 mice excreted 

1% of administered dose in urine and 31.5% in feces, and females excreted 0.3% in urine and 26.0% in 

feces (Sanders et al. 2006b). 

Complementary studies with female C57BL/6J given single intravenous 1-mg/kg doses of 14C-labeled 

BDE 47, BDE 99, BDE 100, or BDE 153 also indicate that the degree of urinary excretion in mice is 

congener specific (Staskal et al. 2006b).  Cumulative percentages of administered radioactivity excreted 

in urine within 5 days were 40, 16, 6, and 2% for BDE 47, BDE 99, BDE 100, and BDE 153, 

respectively.  Relatively greater amounts of parent compound were found in urine from BDE 47-exposed 

mice, compared with mice exposed to the other congeners.  Ratios of cumulative percentage dose 

excreted as parent compound or metabolite in urine were 1.5, 0.5, 0.4, and 0.2 for BDE 47, BDE 99, 

BDE 100, and BDE 153, respectively.  In feces, respective ratios of parent compound:metabolite were 

0.7, 0.2, 0.2, and 0.3 for these congeners, respectively. 
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The mechanism for the relatively high elimination of BDE 47 in the urine of mice is unknown, but has 

been hypothesized to involve binding to mouse major urinary protein (m-MUP) in the blood (Sanders et 

al. 2006a; Staskal et al. 2006b) and other membrane transporting polypeptides (Emond et al. 2013; 

Pacyniak et al. 2010, 2011). 

3.4.4.3  Dermal Exposure 

No studies were located regarding excretion of PBDEs in humans or animals after dermal exposure. 

3.4.5 Physiologically Based Pharmacokinetic (PBPK)/Pharmacodynamic (PD) Models 

Physiologically based pharmacokinetic (PBPK) models use mathematical descriptions of the uptake and 

disposition of chemical substances to quantitatively describe the relationships among critical biological 

processes (Krishnan et al. 1994).  PBPK models are also called biologically based tissue dosimetry 

models.  PBPK models are increasingly used in risk assessments, primarily to predict the concentration of 

potentially toxic moieties of a chemical that will be delivered to any given target tissue following various 

combinations of route, dose level, and test species (Clewell and Andersen 1985).  Physiologically based 

pharmacodynamic (PBPD) models use mathematical descriptions of the dose-response function to 

quantitatively describe the relationship between target tissue dose and toxic end points.  

PBPK/PD models refine our understanding of complex quantitative dose behaviors by helping to 

delineate and characterize the relationships between: (1) the external/exposure concentration and target 

tissue dose of the toxic moiety, and (2) the target tissue dose and observed responses (Andersen and 

Krishnan 1994; Andersen et al. 1987).  These models are biologically and mechanistically based and can 

be used to extrapolate the pharmacokinetic behavior of chemical substances from high to low dose, from 

route to route, between species, and between subpopulations within a species.  The biological basis of 

PBPK models results in more meaningful extrapolations than those generated with the more conventional 

use of uncertainty factors. 

The PBPK model for a chemical substance is developed in four interconnected steps: (1) model 

representation, (2) model parameterization, (3) model simulation, and (4) model validation (Krishnan and 

Andersen 1994).  In the early 1990s, validated PBPK models were developed for a number of 

toxicologically important chemical substances, both volatile and nonvolatile (Krishnan and Andersen 

1994; Leung 1993).  PBPK models for a particular substance require estimates of the chemical substance-

specific physicochemical parameters, and species-specific physiological and biological parameters. The 
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numerical estimates of these model parameters are incorporated within a set of differential and algebraic 

equations that describe the pharmacokinetic processes.  Solving these differential and algebraic equations 

provides the predictions of tissue dose.  Computers then provide process simulations based on these 

solutions.  

The structure and mathematical expressions used in PBPK models significantly simplify the true 

complexities of biological systems. If the uptake and disposition of the chemical substance(s) are 

adequately described, however, this simplification is desirable because data are often unavailable for 

many biological processes.  A simplified scheme reduces the magnitude of cumulative uncertainty. The 

adequacy of the model is, therefore, of great importance, and model validation is essential to the use of 

PBPK models in risk assessment. 

PBPK models improve the pharmacokinetic extrapolations used in risk assessments that identify the 

maximal (i.e., the safe) levels for human exposure to chemical substances (Andersen and Krishnan 1994). 

PBPK models provide a scientifically sound means to predict the target tissue dose of chemicals in 

humans who are exposed to environmental levels (for example, levels that might occur at hazardous waste 

sites) based on the results of studies where doses were higher or were administered in different species. 

Figure 3-7 shows a conceptualized representation of a PBPK model. 

If PBPK models for PBDEs exist, the overall results and individual models are discussed in this section in 

terms of their use in risk assessment, tissue dosimetry, and dose, route, and species extrapolations. 

Emond et al. (2010) developed a PBPK model for BDE 47 in male and female (nonpregnant and 

pregnant) adult rats.  The model included eight compartments: liver, brain, adipose tissue, kidney, 

placenta, fetus, blood, and the remaining body.  The model was calibrated with tissue concentration data 

from adult male and maternal-fetal toxicokinetic studies. Other data sets were then used to evaluate the 

model’s performance.  Model evaluations indicated that simulated BDE 47 tissue concentrations in adult 

male, adult female, and fetal compartments were within the standard deviations of the empirical data. 

Emond et al. (2013) developed a PBPK model for BDE 47 in adult mice to describe the distribution of 

BDE 47 in tissues and its elimination in feces and urine, and to evaluate the role of transporters in 

elimination of BDE 47. The structure of the model was similar to the rat model developed by Emond et 

al. (2010), without the gestational submodel.  In addition, binding to transporters proposed to facilitate 
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Figure 3-7.  Conceptual Representation of a Physiologically Based
 
Pharmacokinetic (PBPK) Model for a 


Hypothetical Chemical Substance
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Note:  This is a conceptual representation of a physiologically based pharmacokinetic (PBPK) model for a 
hypothetical chemical substance.  The chemical substance is shown to be absorbed via the skin, by inhalation, or by 
ingestion, metabolized in the liver, and excreted in the urine or by exhalation. 

Source:  Krishnan and Andersen 1994 
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urinary excretion in mice were added:  mouse major urinary protein (m-MUP) in blood and 

P-glycoprotein, a membrane transporter in brain, liver, and kidneys.  The model was used to investigate 

the roles that m-MUP and P-glycoprotein may play in BDE 47 elimination in mice. 

No reports were located on the development of PBPK models for PBDEs in humans. 

3.5  MECHANISMS OF ACTION 

3.5.1 Pharmacokinetic Mechanisms 

Absorption.  Information regarding oral absorption in animals is available from studies of commercial 

PBDE mixtures and individual 14C-labeled tetra-, penta-, hexa-, and decaBDE congeners.  The most 

recent and best available estimates of oral absorption efficiencies following gavage administration in 

lipophilic vehicles indicate a range of 70–85% for tetraBDE (BDE 47), pentaBDE (BDE 99, BDE 100), 

and hexaBDE (BDE 153, BDE 154) congeners, and 10–26% for decaBDE (BDE 209) (Hakk et al. 2001, 

2002b, 2006, 2009; Huwe et al. 2002b, 2007; Morck and Klasson Wehler 2001; Morck et al. 2003; Örn 

and Klasson-Wehler 1998; Riu et al. 2008; Sanders et al. 2006a, 2006b; Sandholm et al. 2003; Staskal et 

al. 2005).  Underlying mechanisms for oral absorption (e.g., active transport, diffusion, protein binding) 

have not been described. 

Studies using in vitro gastrointestinal digestion models have evaluated bioaccessibility of PBDEs in 

environmentally relevant sources.  In a study by Yu et al. (2010b), the bioaccessibility of lower

brominated PBDEs in 13 types of food (fish, meat, rice, flour, and vegetables) ranged from 2.6 to 41.3% 

in food.  Dietary fat was the most important factor affecting the bioaccessibility of PBDEs, with 

bioavailability increasing with increased fat content, likely due to the lipophilic nature of PBDEs (Yu et 

al. 2010b).  Bioavailability was also increased with increasing carbohydrate content, potentially due to the 

formation of micelles (Yu et al. 2010b).  However, bioavailability decreased with increasing protein and 

fiber content, potentially due to adsorption to dietary fiber and ionic strength effect of amino acids leading 

to decreased partition of PBDEs in the aqueous phase (Yu et al. 2010b).  Lepom et al. (2010) evaluated 

the bioaccessibility of PBDEs in ingested dust, which is expected to be the predominant source of human 

exposure in the United States (EPA 2010).  In this study, the bioavailability of PBDEs in ingested dust 

was <50%, with higher bioavailability for the lower-brominated PBDEs (27–42%) compared with 

BDE 209 (10%) (Lepom et al. 2010).  A similar study by Abdallah et al. (2012) showed comparable 

results for the bioaccessibility of PBDEs in ingested dust, with higher bioavailability for the lower

brominated PBDEs (32–58%) compared with BDE 209 (14%). 
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A dermal absorption efficiency of 62% was reported for female mice exposed to an occluded dermal dose 

of 1 mg/kg 14C-BDE 47) (Staskal et al. 2005). In vitro studies have evaluated diffusion of PBDEs across 

human, rat, and mouse skin.  For 14C-BDE 47, the mean absorption efficiencies (percent of applied 

radioactivity collected in receptor compartment) were 1.88% for human skin and 14.58% for rat skin 

(Roper et al. 2006).  For 14C-decaBDE, mean absorption efficiency for mouse skin in vitro was reported 

to be only 0.07–0.34% of the applied dose (Hughes et al. 2001). Underlying mechanisms for dermal 

absorption (e.g., active transport, diffusion, protein binding) specific to PBDEs have not been described. 

Distribution. Evidence for the transfer of PBDEs from pregnant mothers to the developing fetus and for 

the transfer of PBDEs from maternal blood to breast milk and then to nursing infants comes from a 

number of studies of PBDE concentrations in maternal and cord serum samples and breast milk samples 

from groups of non-occupationally exposed women (Antignac et al. 2009, 2008; Chen et al. 2013; 

Kawashiro et al. 2008; Li et al. 2013b; Malarvannan et al. 2013; Mazdai et al. 2003; Meijer et al. 2008; 

Park et al. 2011; Qiu et al. 2009; Schecter et al. 2010; Vizcaino et al. 2011; Wan et al. 2010).  In general, 

the tetra- and penta-brominated PBDEs have been the predominant congeners detected in maternal and 

cord serum samples and breast milk samples, but some recent studies analyzing a wider range of PBDE 

congeners have found evidence for distribution of hepta-, octa-, or decaBDEs into cord serum and breast 

milk. Frederiksen et al. (2010) utilized a human ex vivo placenta perfusion system to study the kinetics of 

placental transfer of BDE 47, BDE 99, and BDE 209 to the fetus.  Placentas were perfused for 4 hours 

with 1 ng/mL concentrations of the nonlabeled congeners.  Samples of maternal and fetal compartments 

were taken during the perfusion, and concentrations in samples were determined by GC/MS.  Placental 

transfer of BDE 47 and BDE 99 was demonstrated, and transfer of BDE 47 was faster and more extensive 

than BDE 99.  Transfer of BDE 209 across the placenta to the fetal compartment was not demonstrated 

with the detection limits of the techniques employed.  Frederiksen et al. (2010) proposed that future 

perfusion studies with BDE 209 should use 14C-labeled BDE 209 to increase sensitivity. 

Tissue distribution studies in animals orally exposed to 14C-labeled BDE 47, BDE 99, BDE 100, 

BDE 153, BDE 154, and BDE 209 indicate that decaBDE is distributed among tissues somewhat 

differently than tetra-, penta- and hexaBDEs.  While lower-brominated BDE congeners, following 

absorption and an initial wide distribution, are preferentially accumulated in adipose tissues, absorbed 

decaBDE is less readily distributed to adipose tissues and appears to preferentially distribute to highly 

perfused tissues (Chen et al. 2006; El Dareer et al. 1987; Eriksson et al. 2002b; Hakk et al. 2002a, 2006; 

Morck and Klasson-Wehler 2001; Morck et al. 2003; Norris et al. 1975a; NTP 1986; Örn and Klasson

http:0.07�0.34
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Wehler 1998; Riu et al. 2008; Sanders et al. 2006a, 2006b; Staskal et al. 2005, 2006a; Viberg et al. 

2003a).  Although less likely to partition to adipose tissues, decaBDE was still found in low quantities in 

adipose tissues in these studies, and has been shown to transfer from dams to fetuses and neonates from 

exposure during gestational and nursing periods (Cai et al. 2011; Zhang et al. 2011).  

Metabolism. Oxidative hydroxylation of PBDEs is a principal metabolic transformation that is thought to 

occur in humans and laboratory animals.  Hydroxylated PBDEs have been identified in samples of human 

biological fluids including blood (Athanasiadou et al. 2008; Hovander et al. 2002; Lacorte and Ikonomou 

2009; Qiu et al. 2009; Rydén et al. 2012; Wan et al. 2009, 2010; Wang et al. 2012; Yu et al. 2010a) and 

breast milk (Lacorte and Ikonomou 2009).  Hydroxylated PBDEs also have been identified in feces or 

bile of laboratory rodents exposed to 14C-labeled tetra-, penta-, hexa- or decaBDEs (Chen et al. 2006; 

Hakk et al. 2002a, 2009; Marsh et al. 2006; Morck et al. 2003; Orn and Klasson-Wehler 1998; Riu et al. 

2008; Sanders et al. 2006a; Staskal et al. 2006b). Oxidative hydroxylation of PBDEs also has been 

demonstrated and studied in in vitro metabolic systems with human liver microsomes or primary 

hepatocytes (Cheng et al. 2008; Erratico et al. 2012, 2013; Feo et al. 2013; Lupton et al. 2009; Stapleton 

et al. 2009) and rat liver microsomes or primary hepatocytes (Dong et al. 2010; Erratico et al. 2011).  

Metabolic cleavage of the ether bond in PBDEs to form brominated phenols and debromination to form 

lower-brominated PBDEs are other metabolic fate processes for PBDEs in mammals (Chen et al. 2006; 

Erratico et al. 2013, 2012; Hakk et al. 2002a, 2006, 2009; Marsh et al. 2006; Morck et al. 2003; Sanders 

et al. 2006a; Sandholm et al. 2003). 

Information from in vivo toxicokinetic studies with rodents exposed to the best studied congeners 

(i.e., BDE 47, BDE 99, BDE 100, BDE 153, BDE 154, and BDE 209) is inadequate to describe detailed 

metabolic pathways, but is adequate to propose that cytochrome P450s are likely to be involved in the 

formation of hydroxylated metabolites and hydoxylated debrominated metabolites.  In vitro studies with 

human liver microsomes or hepatocytes and human recombinant CYPs indicate that CYP2B6-mediated 

metabolism of BDE 47, BDE 99, and BDE 100 produced multiple metabolites via hydroxylation (Erratico 

et al. 2012, 2013; Feo et al. 2013; Gross et al. 2015) and ether bond cleavage (Erratico et al. 2012, 2013).  

The major metabolites of BDE 47 and BDE 99 formed by human liver microsomes were not the same as 

those identified using rat liver microsomes (Erratico et al. 2011, 2012, 2013).  Different sets of CYP 

enzymes appear to be involved in in vitro rat liver metabolism of BDE 47 and BDE 99: CYP1A1, 

CYP2A2, and CYP3A1 for BDE 47 and CYP1A1, CYP2A2, CYP2B1, and CYP3A1 for BDE 99 

(Erratico et al. 2011).  Production of hydroxylated metabolites of BDE 153 (Lupton et al. 2009) and BDE 

209 (Stapleton et al. 2009) has not been demonstrated with human liver microsomes or hepatocytes.  It is 
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uncertain if these latter findings are reflective of a limited in vivo capacity of humans to metabolize these 

BDE congeners or because the proper in vitro conditions for metabolizing these congeners were not 

provided.  While rat studies provide evidence for metabolic oxidative debromination of BDE 47, BDE 99, 

BDE 100, BDE 154, and BDE 209, studies with human liver microsomes only found evidence supporting 

the oxidative debromination of BDE 47. 

Elimination. Apparent half-lives of PBDE congeners in blood of PBDE-exposed workers during non-

exposed vacation periods ranged from 15 days for BDE 209, 18–39 days for nonabrominated congeners, 

and 37–94 days for octabrominated congeners (Thuresson et al. 2006).  The detection of PBDEs in human 

breast milk samples indicates that elimination via milk is an elimination route for women, but several 

studies examining PBDE concentrations during lactation do not provide a clear account of the degree to 

which PBDEs are cleared from the body during lactation (Hooper et al. 2007; Jakobsson et al. 2012; 

LaKind et al. 2009; Thomsen et al. 2010).  Results from animal studies given single oral doses of 
14C-labeled PBDE congeners or PBDE mixtures indicate that biliary excretion into the feces is the 

principal route of elimination in rats (Chen et al. 2006; Hakk et al. 2002a, 2006; Morck et al. 2003; Norris 

et al. 1973, 1975b; Orn and Klasson-Wehler 1998; Riu et al. 2008; Sanders et al. 2006a), and that the 

urine and feces are principal routes of elimination of orally absorbed PBDEs in mice (Chen et al. 2006; 

Orn and Klasson-Wehler 1998; Sanders et al. 2006a).  In mice, the importance of urinary excretion is 

congener-specific, with BDE 47 showing the greatest ratio of cumulative percentage dose excreted as 

parent compound or metabolite (Staskal et al. 2006b). The mechanism for the relatively high elimination 

of BDE 47 in the urine of mice is unknown, but has been hypothesized to involve binding to mouse major 

urinary protein (m-MUP) in the blood (Sanders et al. 2006a; Staskal et al. 2006b) and other membrane 

transporting polypeptides (Emond et al. 2013; Pacyniak et al. 2010, 2011). 

3.5.2 Mechanisms of Toxicity 

Overview. As summarized in Section 2.2 (Summary of Health Effects) and detailed in Chapter 3 (Health 

Effects), the main targets of concern following PBDE exposure in humans are the developing nervous and 

reproductive systems, the developing and mature endocrine system, the liver, and the male reproductive 

system.  Other potential targets are the female reproductive system, the adult nervous system, and the 

developing and adult immune system; however, evidence for these end points is limited. Numerous 

studies have been conducted to identify potential mechanisms of toxicity for PBDE exposure. These 

studies include evaluations of general mechanisms (e.g., hepatic enzyme induction, AhR-mediated 

effects) as well as target-specific mechanisms.  For specific targets, the majority of mechanistic studies 
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have focused on endocrine disruption and neurological effects; however, definitive mechanisms 

underlying these effects have not been elucidated.  For other effects, including reproductive toxicity, 

immunotoxicity, and hepatotoxicity, only limited mechanistic data are available. Mechanistic data 

relevant to toxic effects of PBDEs are reviewed below. 

General Mechanisms of Toxicity.  PBDEs share some toxicological properties with other structurally 

similar polyhalogenated aromatic compounds, particularly PBBs, PCBs, PCDDs, and PCDFs (ATSDR 

1994, 1998, 2000).  Although these chemicals are structurally similar in two dimensions, PBDEs (and 

polychlorinated diphenyl ethers or PCDEs) differ from the other classes on a three-dimensional basis.  In 

particular, the oxygen bridge of the ether linkage in the diphenyl ether molecule increases the distance 

between the biphenyl rings, introduces a 120° bend in the alignment of the biphenyl rings, and serves as a 

barrier to rotation that inhibits the two aromatic rings from assuming a coplanar configuration (Hardy 

2002a; Howie et al. 1990). Furthermore, halogen substitution of the ortho positions in the diphenylether 

molecule, as occurs for some congeners, pushes the aromatic rings to be orthoganol to each other (i.e., 

offset by 90°) (Hardy 2002a).  Because the toxicity of TCDD and related compounds is related to their 

ability to assume a coplanar configuration for binding to AhR, this suggests that PBDEs are unlikely to 

display similar toxic potency (Hardy 2002a).  Assays conducted by Chen et al. (2001) to compare AhR 

binding affinity and EROD activity of PBDE congeners and mixtures found that activities were very low 

relative to TCDD and related compounds, but also that, unlike for PCBs, AhR binding affinity was not 

correlated with planarization energies of the congeners (the calculated energy needed to force coplanarity 

of the PBDE molecule). The researchers speculated that the large size of the bromine atoms may distort 

the AhR binding site so that coplanar configuration is not required.  However, even in studies of 

chlorinated analogs (PCDEs), it was found that increasing ortho substitution is less effective in decreasing 

the activity of these congeners than for PCBs (Howie et al. 1990).  The authors attributed this difference 

to the increased bond length between the phenyl rings in PCDEs relative to PCBs. 

In other words, the ether bridge makes PBDEs more non-coplanar in nature, which reduces AhR binding 

affinity relative to similar compounds, but also less sensitive to the influence of ortho substitutions that 

inhibit AhR binding of PBBs or PCBs.  This has implications not only for dioxin-type toxicities, which 

are mediated by the AhR pathway, but also for non-dioxin-type effects.  For example, Chen et al. (2001) 

found that the induction of CYP1A1 by PBDEs is AhR-mediated, as it is for numerous organochlorines, 

even though PBDEs do not readily adopt the coplanar conformation usually considered characteristic of 

AhR ligands.  Structure-activity relationships have been incompletely elucidated for non-dioxin-like 

effects of PBDEs such as neurotoxicity.  However, based on limited available data, it can be speculated 
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that di-ortho-substituted PBDEs might follow the neurotoxic potency of ortho-PCBs (Eriksson et al. 

2002b; Kodavanti and Derr-Yellin 2002; Mariussen and Fonnum 2002, 2003). 

There are also geometrical differences in PCBs, PBBs, and PBDEs due to the higher atomic weight and 

considerably larger molecular volume of bromine compared to chorine (Hardy 2000a, 2002a).  These 

differences contribute to dissimilar physical/chemical properties that can influence the relative 

bioavailability, absorption, tissue accumulation, receptor interactions, and toxicities of the chemicals.  For 

example, a comparison of a series of isosteric 3,3',4,4'-tetrahalobiphenyls in rats showed that relative 

toxicity (growth rate and thymic atrophy), AhR binding affinity, and aryl hydrocarbon hydroxylase 

(AHH) and EROD induction potencies increased with increasing bromine substitution (Andres et al. 

1983).  Possible explanations for this effect included the increased polarizability of bromine versus 

chlorine and differences in the electronic, hydrophobic, and hydrogen bonding characteristics of bromine 

and chlorine (Andres et al. 1983). 

The enzyme induction properties of PBDEs have been studied to a lesser extent than the enzyme 

induction properties of other structurally similar chemicals.  Existing information suggests that PBDEs 

can be classified as mixed-type inducers of hepatic microsomal monooxygenases, although the mixed 

induction properties of the commercial mixtures are likely due to contamination with polybrominated

p-dibenzodioxins (PBDDs) and polybrominated dibenzofurans (PBDFs) (Darnerud et al. 2001; de Wit 

2002; Hardy 2002b).  Few studies have examined the structure-induction relationships for PBDEs. Chen 

et al. (2001) examined the ability of 12 PBDE congeners and 3 commercial mixtures to induce EROD 

activity in chick and rat hepatocytes, in liver cell lines from rainbow trout, rat, and human, and in a 

human intestinal cell line.  The number of bromine substitutions in the congeners tested ranged from 3 to 

7. In all cell types, BDE 77, 2,2',4,4',6-pentaBDE, BDE 66, and BDE 126 were the strongest inducers.  

BDE 153 and 2,2',3,4,4',5',6-heptaBDE were weak inducers in all cell types, whereas BDE 66 and 

BDE 85 were very weak inducers in rat hepatocytes and inactive in the other cells.  BDE 47 and 

2,2'4,4',5-pentaBDE, which are prominent in the environment, were not inducers in any cell line, and 

neither were BDE 28, 2,2',4,4',5,6'-hexaBDE, or the penta-, octa-, or decaBDE mixtures.  For those 

congeners that had measurable EROD induction activity, their relative potencies were 10-3–10-6 that of 

2,3,7,8-TCDD.  In general, the EROD induction activity paralleled the strength of the AhR binding with 

the notable exception of BDE 85, which despite its relatively strong AhR binding affinity (see above), 

showed no evidence of activating the AhR to its DRE binding form and was only a weak EROD inducer. 
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As discussed in the introduction to this section, bromination at the ortho position does not appear to 

significantly change the biological effects of PBDE molecules.  Structure-activity studies have shown that 

some PBDE congeners can bind to the AhR, although binding affinities and induction of AhR-mediated 

responses are very weak or negligible, particularly for commercial PBDE mixtures and environmentally 

relevant congeners. 

For example, Meerts et al. (1998) indirectly examined the AhR-mediated (dioxin-like) properties of 

17 PBDE congeners in a recombinant H4II rat hepatoma cell line showing AhR-mediated expression of a 

luciferase reporter gene.  The tested congeners varied from dibromo- to heptabromo- substituted 

compounds, and with the exception of BDE 15 and BDE 77, all had at least one ortho substitution.  Seven 

of the congeners showed luciferase expression, indicating their ability to activate the AhR.  The only 

discernable pattern of receptor activation that appeared to emerge from these results was that greater 

receptor activation was obtained with the penta- and hexaBDEs than with tri- and tetraBDEs. 

Another study also examined the AhR induction potency of PBDE congeners using the in vitro luciferase 

assay with H4IIE-luc recombinant rat hepatoma cells (Villeneuve et al. 2002).  Only 1 of 10 tested 

congeners (BDE 126) induced a significant response for AhR-mediated gene expression in the H4IIE-luc 

cells, but the magnitude of induction was 87% less compared with the response induced by 

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).  With the exception of BDE 105, which induced a response 

of 1.7% of the TCDD maximum, no other congener, including the environmentally prominent congeners, 

BDE 47, BDE 99, and BDE 153, yielded a response greater than 1% of TCDD.  Overall, the tested PBDE 

congeners were at least 200,000 times less potent than TCDD for inducing AhR-mediated gene 

expression in this test system.  Using the same test system (H4IIE-luc recombinant rat hepatoma cells), 

Behnisch et al. (2003) reported AhR activities 5–6 orders of magnitude lower than TCDD for BDE 77, 

BDE 105, BDE 126, BDE 119, BDE 190, and BDE 209; BDE 47, BDE 66, BDE 85, BDE 99, BDE 100, 

BDE 153, and BDE 183 were inactive.  Similarly, Hamers et al. (2006) reported AhR activities 6 orders 

of magnitude lower than TCDD for 7/19 PBDE congeners tested (BDE 38, BDE 49, BDE 79, BDE 99, 

BDE 181, BDE 183, and BDE 190), as well as the hydroxylated metabolite, 6OH-BDE-47.  In another 

study, several hydroxylated and methoxylated PBDEs (19 out of 34 tested) were also shown to activate 

the AhR receptor in the H4IIE-luc assay, with potencies 4–12 orders of magnitude less than TCDD (Su et 

al. 2012). 

Chen et al. (2001) studied the affinities of a series of 18 PBDE congeners and 3 commercial PBDE 

mixtures for rat hepatic AhR by using competitive AhR-ligand and EROD induction assays. The analysis 
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showed that both the congeners and octa- and pentaBDE commercial mixtures had binding affinities of 

10-2–10-5 times that of 2,3,7,8-TCDD.  The congener with the highest affinity among the tested congeners 

was BDE 85, although its relative binding affinity was only 2% that of 2,3,7,8-TCDD.  No binding 

activity could be determined for the decaBDE mixture.  In contrast with PCBs, the binding affinities did 

not appear to relate to the planarity of the molecule, which according to Chen et al. (2001), was possibly 

due to the fact that the large size of bromine atoms expands the receptor binding site.  The dioxin-like 

activity of the PBDE congeners and commercial mixtures was subsequently more completely 

characterized, by determining whether they act as AhR agonists or antagonists at sequential stages of the 

AhR signal transduction pathway leading to CYP1A1 expression in rat hepatocytes (Chen and Bunce 

2001).  BDE 77, BDE 119, and BDE 126 were moderately active towards dioxin-response element (DRE) 

binding and induced responses of both CYP1A1 mRNA and CYP1A1 protein analogous to the maximal 

response of TCDD, although at concentrations 3–5 orders of magnitude greater than TCDD.  These 

congeners showed additive behavior towards DRE binding with TCDD (i.e., an increased response 

compared to TCDD alone), whereas most of the other congeners antagonized the action of TCDD.  BDE 

100, BDE 153, and BDE 183 were very weak activators of DRE binding, and other congeners and the 

three commercial BDE mixtures were inactive.  In particular, the environmentally prominent congeners 

BDE 47 and BDE 99 were among the least active with respect to dioxin-like behavior (i.e., were inactive 

at all stages of signal transduction), and the commercial pentaBDE mixture had negligible EROD 

induction activity.  The PBDE congeners that bound most strongly to the AhR were also the strongest 

inducers of CYP1A1 mRNA and CYP1A1 protein, indicating that the induction of CYP1A1 was AhR

mediated.  Considering all of the end points evaluated in the Chen et al. (2001) and Chen and Bunce 

(2001) studies, it was concluded that the relative induction potencies (REPs) of the most active PBDEs 

toward CYP1A1 are ≈10-4 that of TCDD, which is similar to some mono-ortho-PCBs and two orders of 

magnitude less than those of coplanar PCBs, but the REPs for the environmentally prominent congeners 

are essentially zero.  Consistent with these findings, Behnisch et al. (2003) also reported REPs of 10-4– 

10-6 that of TCDD for BDE 25, BDE 77, BDE 100, BDE 126, and BDE 183 in the H4IIE-EROD 

bioassay, while BDE 154, BDE 99, BDE 47, and BDE 28 were inactive. 

Mechanism of Endocrine Disruption.  PBDE-induced endocrine disruption is likely to involve multiple 

mechanisms, including altered synthesis/clearance, transport, and/or receptor binding of endocrine 

hormones. 

The apparent lack of effect of PBDEs on serum TSH suggests that direct effects on the thyroid leading to 

inhibition of T4 synthesis are unlikely.  However, Wu et al. (2016) present in vitro data that BDE 47 
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inhibits iodide uptake in rat thyroid follicular FRTL-5 cells via non-competitive inhibition of the 

sodium/iodide symporter (NIS).  Additionally, mRNA expression levels of thyroid peroxidase (TPO) was 

decreased by BDE 47.  Together, NIS and TPO are considered critical molecules in thyroid hormone 

synthesis, and are targets of many thyroid disruptors (e.g., perchlorate and thiocyanate) (Wu et al. 2016).  

No additional data regarding the potential for PBDEs to interfere with thyroid hormone synthesis were 

located. 

PBDEs are hepatic microsomal enzyme inducers, but there is little evidence that increased enzyme 

activity leads to greater clearance of thyroid hormones.  The induction of hepatic UDPGT by PBDEs has 

been demonstrated in several studies (Fowles et al. 1994; Hallgren and Darnerud 2002; Hallgren et al. 

2001; Skarman et al. 2005; Stoker et al. 2004; Szabo et al. 2009; Zhou et al. 2001, 2002) and this could 

increase the UDPGT-catalyzed deactivation and excretion of T4 (i.e., the conjugation of T4 with 

glucuronic acid).  An indication that increased UDPGT activity may not be the main mechanism for the 

reduced T4 levels is provided by Hallgren et al. (2001), who found that exposure to ≥18 mg/kg/day 

pentaBDE for 14 days caused serum T4 reductions in both mice and rats with no effect on UDPGT 

activity in the mice, and increased UDPGT in the rats only at higher dose levels.  In contrast, the 

decreases in serum T4 correlated with the induction of microsomal phase I enzymes (EROD and MROD).  

Increased microsomal enzyme activity (discussed above) could also increase the formation of 

hydroxylated PBDE metabolites that can bind to T4 plasma transport proteins. This would serve to 

increase the number of occupied sites on T4-binding proteins and subsequently result in decreased serum 

levels of T4; however, this mechanism is not fully elucidated.  

Several studies have demonstrated that PBDE metabolites compete with T4 for binding thyroid hormone 

transport proteins (TTR, thyroxine-binding globulin [TBG]). Meerts et al. (1998, 2000) tested 17 PBDE 

congeners and 3 hydroxylated PBDEs for possible interaction with T4 binding to human TTR, a plasma 

transport protein of thyroid hormones, in an in vitro competitive binding assay.  None of the pure 

congeners competed with T4 for binding to human TTR without metabolic activation.  Incubation of the 

congeners with rat liver microsomes induced by PB (CYP2B enriched), β-napthoflavone (CYPIA 

enriched), or clofibrate (CYP4A3 enriched) indicated that 9 of the 17 pure congeners generated 

metabolites (not identified) that were able to displace T4 from TTR (>60% competition):  BDE 15, 

BDE 28, BDE 30, BDE 47, BDE 51, BDE 75, BDE 77, BDE 100, and BDE 119.  Testing of the three 

known hydroxylated PBDEs, used for their structural resemblance with the thyroid hormones 

3,5-diiodothyronine (3,5-T2), 3,3',5-triiodothyronine (T3), and 3,3',5,5'-tetraiodothyronine (T4) showed 

that the T4-like (2,6-dibromo-4-[2,4,6-tribromophenoxy]phenol) and T3-like (2-bromo-4-[2,4,6-tri
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bromophenoxy]phenol) hydroxylated PBDEs were 1.42- and 1.22-fold more potent, respectively, than T4; 

the T2-like hydroxylated PBDE (4-[2,4,6-tribromophenoxy]phenol) showed low affinity for TTR 

(0.41-fold less potent than T4).  Consistent with these findings, Hamers et al. (2006) reported that 

6OH BDE-47, but none of the 19 PBDE congeners, competed with the natural ligand T4 for TTR binding 

(4-fold less potent than T4).  Additionally, Ren and Guo (2012) reported that 5 of the 11 OH-PBDEs 

tested bound to TTR with 1.2–2-fold greater potency than T4 and 1 of the 11 OH-PBDEs tested bound to 

TBG with 1.5-fold greater potency than T4. In another study, all OH-PBDEs tested were considered 

strong binders of TTR (relative potency compared with T4 between 0.1 and 1) and moderate-to-strong 

binders of TBR (relative potency compared with T4 between 0.01 and 1), including 3-OH-BDE 47, 

5-OH-BDE 47, 6-OH-BDE 47, 4-OH-BDE 49, and 6-OH-BDE 99 (Marchesini et al. 2008). Parent 

compounds (BDE 47, BDE 49, BDE 68, and BDE 99) and MeO-PBDEs (6-MeO BDE 57, 

2’-MeO-BDE 68) showed no-to-weak binding (<0.01 relative potency compared with T4). Marsh et al. 

(1998) tested the affinity of 4'-hydroxyl derivatives of 1,3,5-triBDE, 1,3,3',5'-tetraBDE, and 

1,3,3',5,5'-pentaBDE were tested for human thyroid hormone receptor subunits THR-α and THR-β in 

vitro. These congeners were tested because they theoretically show the highest structural similarity to T4 

and T3. None of the hydroxylated derivatives effectively competed with the thyroid hormones for binding 

to either receptor (affinities were 41–>1,000 times less than for T4 and T3). 

Studies also suggest that PBDEs and/or their metabolites can alter thyroid hormone binding to thyroid 

receptors.  In a reporter gene assay in Chinese hamster ovary (CHO) cells, 4OH-BDE-90 was antagonistic 

to both THR-α and THR-β receptors, with a potency 2-fold less potent in the THR-α assay and ~30% 

more potent in the THR-β assay than the reference compound tetrabrominated bisphenol A (TBBPA) 

(Kojima et al. 2009). However, receptor antagonism was not observed for the other three OH-PBDEs 

tested (4OH-BDE-17, 4OH-BDE-42, 4OH-BDE-49) or any of the eight PBDEs or four MeO-PBDEs 

tested (Kojima et al. 2009).  In another reporter gene assay in fibroblast-derived CV-1 cells, T3-dependent 

THR-α- and THR-β-responsive gene expression was decreased by BDE 100, BDE 153, BDE 154, 

BDE 290, and DE-71 in fibroblast-derived CV-1 cells by 35–45% (Ibhazehiebo et al. 2011).  Thyroid 

responsive element (TRE) dissociation from TRs was also significantly increased by BDE 100, BDE 154, 

and BDE 290 by 30–45%; however, no changes in THR-α and THR-β cofactor recruitment were 

observed for 11 PBDEs, 2 OH-PBDEs, or DE-71 (Ibhazehiebo et al. 2011). In contrast, in a THR-α and 

THR-β cofactor recruitment assay, 4 of the 10 OH-PBDEs tested were TR agonists (2OH-BDE-28, 

3OH-BDE-28, 5OH-BDE-47, 6OH-BDE-47), showing 70–90% of the maximal response induced by T3 

(Ren et al. 2013). 
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In general, lower-brominated PBDEs, and their hydroxylated (OH-PBDEs) and methoyxylated 

(MeO-PBDEs) metabolites, show estrogenic activities 5–7 orders of magnitude lower than the natural 

ligand 17β-estradiol (E2) in reporter gene assays, and higher-brominated PBDEs and their metabolites 

show anti-estrogenic activities that are 1–6 orders of magnitude lower than reference antiestrogenic 

compounds (Hamers et al. 2006; Kojima et al. 2009; Li et al. 2013b; Meerts et al. 2001; Mercado-

Feliciano and Bigsby 2008b).  A good correlation has been shown between estrogenic activity and ER 

binding affinity of low-brominated PBDEs (Li et al. 2013b; Mercado-Feliciano and Bigsby 2008b).  One 

study reported no estrogenic activity in an ER-dependent gene transcriptional activation assay for 

“PBDEs” in human HeLa 9903 cells stably transfected with the human ERα receptor; however, the 

specific congener(s) were not identified (Kim et al. 2011b). 

For two OH-PBDEs that have bromine substitution patterns similar to the thyroid hormones T2 

[3,5-diiodothyronine] and T3 [3,3’,5-triiodothyronine] (i.e., 4-(2,4,6-tribromophenoxy)phenol and 

2-bromo-4-(2,4,6-tribromophenoxy) phenol, respectively), estrogenic activities were 2–10 times more 

potent than E2 (Meerts et al. 2001).  The T2-like hydoxylated PBDE 4-(2,4,6-tribromophenoxy)phenol 

also showed estrogenic activity in ERα- and ERβ-like human embryonic kidney cells, with maximum 

inductions of 50–95% of the maximum induction by E2 (Meerts et al. 2001). 

Estrogenic effects were also demonstrated using cell proliferation assays in breast cancer cells exposed to 

the commercial pentaBDE mixture DE-71 (Mercado-Feliciano and Bigsby 2008b).  Basal cell 

proliferation was significantly increased by up to 10-fold with DE-71 exposure (compared with increases 

up to 15-fold with exposure to the natural ligand E2).  Co-exposure of cells to DE-71 and E2 significantly 

decreased proliferation relative to E2-only exposure in a concentration-dependent manner, suggesting an 

antagonistic effect of DE-71 on E2-induced cell proliferation (Mercado-Feliciano and Bigsby 2008b).  

However, neither basal nor E2-induced cell proliferation were altered in breast cancer cells exposed to 

BDE 47, BDE 99, BDE 100, or BDE 209 (Kwiecińska et al. 2011).  Caspase-9 activity (apoptotic marker) 

was significantly decreased by ~40–60% in tests with all congeners compared with decreases of ~25% 

with exposure to E2 (Kwiecińska et al. 2011). 

Estrogenic effects have also been reported in other in vitro and in vivo assays, including increased uterine 

mRNA expression of ERα and ERβ in adult female offspring of rats given subcutaneous injections of 

BDE 99 at 1 mg/kg/day (but not 10 mg/kg/day) from GD 10 to 18 (Ceccatelli et al. 2006); increased 

uterine mRNA and protein levels of calbindin-D9k, a biomarker for estrogenic compounds, in immature 

female rats exposed to BDE 47 at 50–200 mg/kg/day from PND 16 to 18 (Dang et al. 2007); increased 
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gene and protein expression of ERα and ERβ in porcine ovarian follicles by 5-OH-BDE-47 and 

6-OH-BDE-47 (Karpeta et al. 2014); inhibition of E2 metabolism in rat liver microsomes by 

11 OH-PBDEs and 1 MeO-BDE (Lai and Cai et al. 2012); inhibition of E2 sulfation (E2SULT) in 

V79 cells by 6-OH-BDE-47, BDE 19, BDE 47, and BDE 49 (Hamers et al. 2006); and increased 

production of vitellogenin in trout hepatocytes exposed to BDE 47, BDE 99, or BDE 205 (Nakari and 

Pessala 2005).  However, estrogenic effects were not observed with exposure to BDE 47, BDE 99, or 

BDE 205 in recombinant yeast assays with human estrogen receptor (hER) (Nakari and Pessala 2005). In 

a human cohort study, total serum PBDE in adult females were positively associated with ERα and ERβ 

mRNA expression levels in the blood; however, BDE 47 serum levels were negatively associated with 

ERα and ERβ mRNA expression levels (Karmaus et al. 2011). Similarly, ERβ gene and protein 

expression were decreased in porcine ovarian follicles exposed go BDE 47; however, no change was 

observed in ERα gene or protein expression levels (Karpeta et al. 2014). 

Anti-androgenic and anti-prostagenic activity was observed in reporter gene assays in human osteoblast 

cells following exposure to 16 different PBDE congeners, 6OH-BDE-47, and 2 commercial PBDE 

mixtures (DE-71, Octa LM) (Hamers et al. 2006).  The most potent antiandrogens, BDE 19 and BDE 100, 

were 21 and 13 times less potent than the reference antiandrogenic drug flutamide.  BDE 19 was also the 

most potent antiprostagen, and was 3 orders of magnitude lower in potency than the reference compound 

RU-486 (Hamers et al. 2006).  Neither antiandrogenic nor antiprogestagenic activity were observed for 

BDE 169, BDE 206, or BDE 209 (Hamers et al. 2006).  Antiandrogenic activity was also observed in two 

of five PBDEs tested (BDE 47, BDE 100) and the commercial pentaBDE mixture DE-71 tested in human 

breast cells (Stoker et al. 2005), and in five of eight PBDEs tested, three of four OH-PBDEs tested, and 

four of four MeO PBDEs (all low-brominated) tested in CHO cells (Kojima et al. 2009).  In contrast, 

Christen et al. (2010) reported that BDE 100 and BDE 155 enhanced DHT-dependent activation of 

androgen receptor (AR)-responsive gene expression in human breast cells (no other congeners tested).  

However, findings were not concentration-dependent, with the greatest enhancement (~50%) at 10 nM 

(highest concentration used was 10 µM) (Christen et al. 2010). This suggests that very low 

concentrations of PBDEs may be androgenic, while higher concentrations appear to be antiandrogenic.  

No changes in AR gene or protein expression were observed in porcine ovarian follicular cells exposed to 

BDE 47, 5-OH-BDE-47 or 6-OH-BDE-47 (Karpeta et al. 2014).  Anti-progestagenic activity was also 

observed in an in vivo study, where adult female offspring of rats given subcutaneous injections of PBDE 

99 at 1 or 10 mg/kg/day from GD 10 to 18 had significantly decreased uterine mRNA expression levels of 

progesterone receptor (Ceccatelli et al. 2006). 
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The ability of the commercial pentaBDE mixture DE-71 and the pure congeners, BDE 47, BDE 99, 

BDE 100, BDE 153, and BDE 154 to compete with 1.0 nM [3H]R1881 for binding to the rat AR was 

evaluated using a cytosolic extract prepared from rat ventral prostate tissue (Stoker et al. 2005).  Relative 

binding curves suggested that all of the compounds competed with [3H]R1881 for binding to the AR, with 

inhibition up to 80 and 98% for DE-71 and BDE 100, respectively.  In order to determine if this inhibition 

was competitive, additional in vitro binding tests for BDE 100 were conducted to calculate the inhibition 

constant (Ki).  These experiments showed that BDE 100 was a competitive inhibitor with a Ki value of 

1 µM (Stoker et al. 2005).  

Anti-glucocortogenic activity was observed in 3/8 PBDEs (PBDE 85, PBDE 99, PBDE 100), 

2/4 OH-PBDEs (4OH-BDE-17, 4OH-BDE-49), and 1/4 MeO-PBDEs (4MeO-BDE-49) in a 

glucocorticoid receptor-mediated reporter gene assay with CHO cells (Kojima et al. 2009).  Anti

glucocortogenic potencies were 3 orders of magnitude lower than for the reference compound RU-486. 

In summary, the mechanistic studies show that PBDEs and/or their metabolites are capable of acting as 

thyroid hormone transporters or receptors and are weakly estrogenic, anti-androgenic, anti-prostagenic, 

and anti-glucocortogenic.  However, these findings were not always consistent between different 

congeners, metabolites, and studies. Therefore, mechanisms of endocrine disruption by PBDEs have not 

been fully elucidated. 

Mechanisms of Neurotoxicity.  As detailed in Section 3.2.2.4 Neurological Effects, developmental 

exposure to PBDEs has been associated with altered neurodevelopment and behavior later in life in both 

humans and animals. The mechanisms for these behavioral and cognitive effects have not been 

elucidated; however, proposed mechanisms include neuroendocrine disruption (including altered thyroid 

hormone homeostasis), alterations in neurotransmitter systems (cholinergic, dopaminergic, glutamatergic, 

and/or gabaergic), altered calcium homeostatic mechanisms, altered intracellular communication, 

oxidative stress, and cell death. Additionally, monohydroxylated metabolites are more potent than the 

parent BDE in several of the mechanistic assays, suggesting that bioactivation by oxidative metabolism 

contributes to the neurotoxic potential of PBDEs. 

Since altered thyroid hormone levels have been reported in both animals and humans (see Section 3.2.2.2 

Systemic Effects, Endocrine subsection), one possible mechanism of neurotoxicity involves the well-

documented key role of thyroid hormones in brain development.  In support of this mechanism, BDE 99 

down-regulates the transcription of the thyroid receptors α1 and α2 (TRα, TRα2) in cultured rat cerebellar 
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granular cells, leading to disruption in the expression of T3-mediated genes, including decreased brain-

derived neurotrophic factor (BDNF) (Blanco et al. 2011).  BDE 99 and hydroxylated PBDE metabolites 

(3-OH-BDE-47, 6-OH-BDE-47, and 5’-OH-BDE-99) have also been shown to significantly decrease the 

activity of the selenodeiodinase type 2 iodothyronine deiodinase (DIO2), which converts T4 to T3 in the 

brain, in primary human astrocytes and H4 glioma cells; BDE 47 did not affect DIO2 activity (Roberts et 

al. 2015).  Decreased DIO2 activity associated with exposure to BDE 99 and OH-PBDEs was attributed 

to multiple mechanisms, including observed downregulation of DIO2 mRNA, competitive inhibition of 

DIO2, and enhance post-translational degradation of DIO2. Ibhazehiebo et al. (2011) showed that the 

TR-antagonist, BDE 209 (see Mechanisms of Endocrine Disruption section above), inhibits T4-induced 

dendritic arborization in cultured rat cerebellar Purkinje cells.  However, BDE 47, which was not found to 

be a TR-antagonist (see Mechanisms of Endocrine Disruption section above), did not alter dendritic 

arborization (Ibhazehiebo et al. 2011).  Study authors indicate that other PBDEs and OH-PBDEs were 

evaluated for dendritic developmental effects; however, results were not reported (Ibhazehiebo et al. 

2011).  Additionally, Schreiber et al. (2010) showed that reduced migration and differentiation observed 

in cultured fetal human neural progenitor cells (hNPCs) following exposure to BDE 47 and BDE 99 was 

prevented with co-exposure to T3.  These findings indicate that in vitro neurodevelopmental changes were 

due to disruption of cellular thyroid hormone signaling. However, BDE 209 did not significantly 

interfere with the T3-mediated response in either a human embryonic kidney reporter cell line expressing 

mouse TRα (HEK293-Gal4TRα) or a mouse cerebellar neural reporter cell line expressing TRα 

(C17.2α-HRLuc), with or without metabolic activation (Guyot et al. 2014).  Preliminary studies also did 

not show altered T3-mediated responses in C17.2α-HRLuc cells incubated with a commercial PBDE 

mixture (BDE-CM, AccuStandard, Inc.; according to manufacturer datasheet, the mixture contains equal 

parts BDE 28, 47, 99, 100, 153, 154, 183, and 209) (Guyot et al. 2014).  Additionally, only slight, but 

statistically significant, changes were observed in the expression of T3-responsive genes in C17.2α cells 

following exposure to BDE 209 and T3, compared with T3 exposure alone (Guyot et al. 2014). 

Some studies suggest that the neurological effects of PBDEs might be related to alterations in cholinergic 

functions.  For example, neonatal exposure to a single oral dose of BDE 99 (8 mg/kg) on PND 10 or a 

single oral dose of BDE 209 (≥5.76 mg/kg) on PND 3 altered the behavioral response to cholinergic 

agents (nicotine or paraoxen) in adult mice (Buratovic et al. 2014; Johansson et al. 2008; Viberg et al. 

2002, 2007).  Neonatal exposure to nicotine and adult exposure to BDE 99 (single 8 mg/kg oral dose at 

age 5 months) also affected behavior in mice, although the change was not seen in mice only exposed to 

BDE 99 as adults or mice only exposed to nicotine as neonates (Ankarberg et al. 2001).  Additionally, the 

densities of cholinergic nicotinic receptors in the brain hippocampus and/or cortex were decreased by 7– 
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31% in adult mice exposed once to BDE 99 or BDE 153 at ≥0.8 mg/kg on PND 10 (Fischer et al. 2008; 

Viberg and Eriksson 2011;Viberg et al. 2003a, 2004b, 2005) and increased transcription of cholinergic 

receptors nAchR-β2, AChR5, and nAChR-α4 were observed in the cortex of 2-month-old mice exposed 

to BDE 99 at 12 mg/kg on PND 10 (Hallgren et al. 2015). However, no exposure-related effects were 

observed in any cholinergic parameters in 6- or 27-week-old mink from mink sows exposed to dietary 

pentaBDE at 0, 0.01, 0.05, or 0.25 mg/kg/day from pre-mating day 28 to PNW 6 (Bull et al. 2007).  In rat 

neuroendocrine pheochromocytoma (PC12) cells and rat neuroblastoma (B35) cells, BDE 209 

significantly decreased the Ach-evoked response in vitro (Hendriks et al. 2014).  Additionally, in vitro 

exposure to BDE 99 led to altered neurotransmitter phenotype differentiation in rat PC12 cells, resulting 

in a decreased number of cholinergic cells and a greater number of dopaminergic cells; this was not 

observed with exposure to BDE 47 (Dishaw et al. 2011; Slotkin et al. 2013). BDE 47 also did not 

modulate human α4β2 nicotinic acetylcholine (nACh) receptor function (expressed in Xenopus oocytes); 

however, its hydroxylated metabolite, 6-OH-PBDE-47, was a nACh antagonist (Hendriks et al. 2010).  

Other studies have reported alterations in the dopaminergic system.  Alterations have been observed in the 

striatum of mice exposure to 30 mg/kg/day of the pentaBDE mixture DE-71 for 30 days via gavage, 

including reductions in dopamine levels, altered dopamine handling (i.e., altered dopamine breakdown 

into DOPAC and HVA), and reductions in the striatal dopamine transporter (DAT) and 

vesicularmonoamine transporter 2 (VMAT2) (Bradner et al. 2013).  DE-71 also inhibited the in vitro 

uptake of the neurotransmitter dopamine into rat brain synaptic vesicles; however, inhibition was not 

observed with commercial mixtures of octaBDE (DE-79) or decaBDE (DE-83R) (Mariussen and Fonnum 

2002, 2003; Mariussen et al. 2003).  Similarly, DE-71 reduced synaptosomal dopamine concentrations 

and increased medium dopamine concentrations in striatal synaptosomes derived from PND 7–21 rats 

(Dreiem et al. 2010). However, in contrast to the cholinergic system, acute neonatal exposure to BDE 99 

(12 mg/kg) on PND 10 did not significantly affect dopaminergic gene transcription in the cortex or 

hippocampus on PND 11 or at 2 months of age; genes evaluated included tyrosine hydroxylase (TH), 

DAT, and dopamine receptors D1, D2, and D5 (DRD1, DRD2, and DRD5) (Hallgren and Viberg 2016). 

Additional evidence suggests that alterations in the glutamatergic system may also contribute to observed 

neurological effects following PBDE exposure. Neonatal exposure to BDE 209 via gavage doses of 

20 mg/kg/day from PND 3 to 10 resulted in significant upregulation of NR1 mRNA in the frontal cortex 

and hippocampus of PND 11 and PND 60 mice, as well as decreased binding of the regulatory complex 

REST/NRST (Repressor Element Silencing Transcription Factor/Neuron-Restrictive Silencer Factor) to 

the NR1 promotor (Verma et al. 2015).  Additionally, extracellular glutamate levels (along with oxidative 
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stress and cell death) were significantly elevated in cultured mouse cerebellar neurons following in vitro 

exposure to BDE 47 (Costa et al. 2016).  Antagonists of ionotropic glutamate receptors, but not 

metabotropic, prevented BDE 47-induced oxidative stress and cell death, providing additional evidence 

for a role of glutamatergic signaling in PBDE neurotoxicity (Costa et al. 2016).  In rats, exposure to BDE 

47 at doses ≥0.1 mg/kg/day for 30 days via gavage resulted in altered mRNA expression of the glutamate 

receptor subunits NR(1), NR(2)B, and NR(2)C (Yan et al. 2012). 

Limited evidence suggests that alterations in the gabaergic system may also contribute to observed 

neurological effects following PBDE exposure.  A commercial pentaBDE mixture (DE-71) caused a 

slight inhibition of in vitro uptake of the neurotransmitter GABA into rat brain synaptic vesicles, but 

commercial mixtures of octaBDE (DE-79) or decaBDE (DE-83R) did not alter GABA uptake (Mariussen 

and Fonnum 2003).  Additionally, the metabolite, 6-OH-PBDE-47, was a partial agonist for the human 

GABAA receptor expressed in Xenopus oocytes; however, its parent compound (BDE 47) did not 

modulate GABAA receptor activity (Hendriks et al. 2010). 

Effects of PBDEs on the function and development of the nervous system could also involve disruption of 

calcium homeostatic mechanisms and intracellular signaling events. In human neural progenitor cells 

(hNPCs), in vitro exposure to BDE 47 or 6-OH-BDE-47 led to transient increases in intracellular Ca+2 

levels due to increased influx of extracellular Ca+2 as well as intracellular release from the endoplasmic 

reticulum (Gassmann et al. 2014).  Based on additional studies using multiple inhibitors/stimulators of 

presumably involved signaling pathways, the increase in extracellular influx appears to be due to 

interference with the cell membrane, rather than alterations of Ca+ ion channel dynamics, and the 

increased ER release was associated with activation of protein lipase C and inositol 1,4,5-trisphophate 

receptor, independent of the ryanodine receptors (Gassmann et al. 2014).  A series of studies evaluated 

the effects of in vitro exposure to PBDEs and their metabolites on calcium homeostasis in rat PC12 cells 

(Dingemans et al. 2008, 2010a, 2010b).  Collectively, these studies show that hydroxylated metabolites of 

PBDEs lead to increased basal Ca+2 levels due to Ca+2 release from the endoplasmic reticulum and 

mitochondria as well as decreased depolarization-evoked Ca+2 levels.  BDE 47 was shown to have 

similar, but less potent effects, while no effects on calcium homeostasis were observed with BDE 49, 

BDE 99, BDE 100, BDE 153, or methylated metabolites (Dingemans et al. 2008, 2010a, 2010b). In a 

similar study, BDE 209 did not alter calcium homeostasis in rat PC12 or B35 cells (Hendriks et al. 2014).  

BDE 49, OH-BDE-47, and 4’OH-BDE-49 have also been shown to be potent modulators of ryanodine 

receptors type 1 and 2, which regulate essential aspects of Ca+2 signaling; BDE 47 was without activity in 

this assay (Kim et al. 2011c; Pessah et al. 2010).  In culture systems, BDE 47 and BDE 209 were shown 
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to increased intracellular Ca+2 content in mouse cerebellar granule cells and rat neonatal hippocampal 

neurons, respectively (Chen et al. 2010; Costa et al. 2016).  In vitro exposure to DE-71 or BDE 47 also 

stimulated arachidonic acid release in rat cerebellar granule neurons; this effect was not seen with DE-79 

(Kodavanti 2003; Kodavanti and Derr-Yellin 2002).  The release of arachidonic acid appeared to be 

mediated by the activation of both Ca+2-dependent and Ca+2-independent cytosolic phospholipase A2. In 

vitro exposure to DE-71and BDE 47 also caused translocation of protein kinase C, as indicated by 

increased phorbol ester binding; DE-79 did not induce this effect (Kodavanti and Derr-Yellin 2002; Rao 

et al. 2003).  Other effects of penta mixture DE-71 and tetra congener BDE 47 included decreases in 

intracellular calcium buffering by microsomes and mitochondria (Kodavanti and Derr-Yellin 2002).  The 

tetra- congener BDE 47 was generally more potent than the DE-71 mixture (mainly comprised of tetra-

and penta- congeners) in these tests. All commercial mixtures and congeners tested (DE-71, DE-79, BDE 

47, BDE 77, BDE 99, BDE 153) elevated phosphorylated extracellular signal-regulated kinase (pERK) ½, 

with congeners having a greater effect than mixtures (Fan et al. 2010).  pERK ½ is a widely studied 

MAPK cascade known to be involved in learning and memory.  

Neurotoxicity may be mediated by cell death, perhaps in response to oxidative stress, as increased 

apoptosis and upregulation of apoptotic proteins and markers of oxidative have been observed in the 

hippocampus, cortex, and cerebellum of rats following developmental exposure to PBDEs (He et al. 

2009; Chen et al. 2014; Cheng et al. 2009; Costa et al. 2015; see Section 3.2.2.6, Developmental Effects 

for more details).  In support, ROS were increased in rat cerebellar granular cells exposed to 25 µM 

BDE 99, and this increase was correlated with a decrease in the gene expression of the anti-apoptotic 

protein Bcl-2 (Blanco et al. 2011). Another study found that DE-71 was more toxic than octa- and deca

congeners in inducing cell death and free radical formation in cerebellar granule cells (Reistad et al. 

2002).  In cultured rat cortical cells, a high concentration of BDE 99 (30 µM) induced cell death without 

any apparent increase in caspase-3 activity (Alm et al. 2008).  BDE 47 also induced apoptosis in primary 

cultured rat hippocampal neurons; changes in oxidative stress parameters included increased ROS levels, 

malondialdehyde content, glutathione peroxidase levels and decreased glutathione and superoxide 

dismutase levels (He et al. 2008c).  BDE 47-induced apoptosis in human SH-SY5Y was shown to be 

mediated via the mitochondrial p53 pathway, as evidenced by up-regulation of p53 and Bax, down-

regulation of Bcl-2 and Bcl-2/Bax ratio, enhancement of Cyt c release from mitochondria into the cytosol, 

and activation of caspase-3, as well as by ultrastructural abnormalities of mitochondria (Zhang et al. 

2013c).  In mouse cerebral granule cells, PBDE exposure caused decreased cell viability, induced 

apoptotic cell death, and increased ROS and lipid peroxidation following exposure to BDE 47, BDE 99, 

BDE 100, BDE 153, and BDE 209 (Costas et al. 2015, 2016; Huang et al. 2010).  Huang et al. (2010) 
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reported a congener potency ranking of BDE 100 > BDE 47 > BDE 99 > BDE 153 >> BDE 209. 

Similarly, in cultured rat neonatal hippocampal neurons, BDE 209 decreased cell viability and increased 

the rate of apoptosis, ROS levels, malondialdehyde (MDA) content, and NO content (MAPKs) (Chen et 

al. 2010). In rat B35 cells, increased ROS generation in the absence of decreased cell viability was 

observed following exposure to BDE 209; no changes in ROS generation or cell viability were observed 

in rat PC12 cells (Hendriks et al. 2014). 

Proteomic and genomic studies have identified multiple systems/pathways in the brain that can be altered 

following PBDE exposure; however, strong conclusions regarding mechanisms of neurotoxicity from 

these studies cannot be made at this point.  In laboratory animals, in vivo exposure to ≥12 mg/kg/day of 

DE-71, BDE 99, BDE 203, BDE 206, or BDE 209 for 1–30 days has been shown to alter expression of 

proteins involved in mediating GABA and glutamate neurotransmission in the frontal cortex; neuronal 

survival, growth, and synaptogenesis in the cortex, hippocampus, cerebellum, and striatum; cytoskeletal 

proteins in the cortex and hippocampus; oxidative stress and apoptosis in the cerebellum and 

hippocampus; and metabolism and energy production in the hippocampus and cerebellum (Alm et al. 

2008, 2006; Buratovic et al. 2014; Bradner et al. 2013; Kodavanti et al. 2015; Verma et al. 2015; Viberg 

2009a, 2009b; Viberg and Eriksson 2011; Viberg et al. 2008). In mice exposed to 0.45 mg/kg/day for 

28 days, combined analysis of proteomic and genomic data using biological network analysis indicated 

disturbances in the following functional categories: nervous system development and function, 

neurological disease, and behavior (Rasinger et al. 2014). Gene ontogeny analysis showed significant 

changes in mitochondrion morphogenesis, Wnt receptor signaling pathway, ʟ-glutamate transport, and 

calcium ion transport into cytosol, while proteomics identified differential expression of dynamin 1, 

calcium/calmodulin-dependent protein kinase II delta, and alpha 4a tubulin (Rasinger et al. 2014).  In 

culture systems, proteomic analysis of neonatal hippocampal neural stem/progenitor cells following 

exposure to BDE 47 and/or BDE 209 showed differential expression of 19 proteins, including proteins 

involved in metabolism, signal transduction, transcription, transport, and cell structures (Song et al. 

2014).  Key proteins showing downregulation were cofilin-1, which is associated with cell cycle and 

neuronal migration, and vimentin, which is implicated in nervous system repair mechanisms. 

Epigenetic changes may also contribute to neurotoxicity following exposure to PBDEs.  Byun et al. 

(2015) examined this hypothesis in mice exposed perinatally to BDE 47 by evaluating DNA methylation 

patterns in mitochondrial genes involved in respiration (cytochrome c oxidase I, II, and III), nuclear 

genome methylation markers (5hmc, L1Rn), and nuclear candidate genes related to behavioral and brain 

functions (BDNF, corticotropin releasing hormone receptor 1, melanocortin 2 receptor, nuclear receptor 
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subfamily 3 group C member 1, and alpha-synuclein). Significant changes in methylation were not 

observe in DNA methylation patterns for the majority of genes examined, although slight (<2-fold), but 

statistically significant, methylation decreases were observed in cytochrome c oxidase II, L1Rn, BDNF, 

and nuclear receptor subfamily 3 group C member 1 (NR3CL) in mice exposed to BDE 47, compared 

with control (Byun et al. 2015).  However, global DNA methylation was significantly decreased in 

female, but not male, offspring of mouse dams exposed to tetraBDE from premating day 28 to PND 21 

(Woods et al. 2012).  

Mechanisms of Reproductive Toxicity.  As discussed above (see Mechanisms of Endocrine Disruption), 

PBDEs have been shown to be weakly estrogenic and anti-androgenic.  Additionally, altered 

steroidogenesis has been observed in vitro. Limited data are available regarding other potential 

mechanisms of reproductive toxicity, such as altered placental function due to increased prostaglandin 

synthesis and impaired mitochondrial function in sperm cells. 

Testosterone secretion was increased by up to 3-fold in cultured rat Leydig cells exposed to a mixture of 

tetra- and pentaBDEs (PBDE-710) (Wang et al. 2011c) or BDE 47 alone (Zhao et al. 2011).  These 

studies suggest that PBDEs may stimulate testosterone secretion by acting directly on Leydig cells to 

activate the cAMP pathway and increased expression of steroidogenic acute regulatory protein (StAR), as 

evidence by increased gene and protein expression of StAR (Wang et al. 2011c, Zhao et al. 2011) as well 

as increased intracellular levels of cAMP, increased PKAα nuclear translocation, and increased activity of 

CYP 11A1 (Wang et al. 2011c).  In support, the observed increase in testosterone secretion was blocked 

in the presence of the adenylyl cyclase inhibitor SQ22536 (Wang et al. 2011c).  However, gene 

expression of StAR was not upregulated in mouse Leydig cells exposed to BDE 47 (testosterone secretion 

was not evaluated) (Schang et al. 2016). 

Testosterone production was also significantly increased by ~2–4.5-fold in porcine ovarian follicles 

exposed in vitro to BDE 47, BDE 99, or BDE 100 (Karpeta et al. 2011).  Androstenedione (A4) and 

progesterone production was also significantly increased, but responses were not concentration-

dependent.  No exposure-related changes were observed in E2 production.  Potential mechanisms 

underlying increased testosterone production were judged to be congener-specific.  For BDE 47, observed 

increases in 17β-HSD protein expression and activity and decreases in CYP19 (aromatase) activity 

suggest that increased testosterone production is due to increased conversion of A4 to testosterone by 

17β-HSD and decreased conversion of testosterone to E2 by CYP 19.  For BDE 100, observed increases 

in CYP17 protein expression and activity and decreases in CYP19 activity suggest increased testosterone 
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production is due to increased conversion of progesterone to A4 by 17β-HSD (which is later converted 

into testosterone) and decreased conversion of testosterone to E2 by CYP 19.  BDE 99 did not alter 

protein expression or activity of 17β-HSD, CYP 17, or CYP 19.  The study authors suggest that the 

mechanism of action for BDE 99 is prior to the secretion of progesterone (i.e., StAR or 3β-HSD). In 

contrast, OH-PBDEs (5OH-BDE-47, 6OH-BDE-47) did not alter testosterone or A4 production in 

porcine ovarian follicles; however, E2 production was significantly increased for both metabolites by 2.4– 

2.9-fold (Karpeta et al. 2013).  Additionally, the OH-PBDEs increased protein expression and activity of 

CYP 19, suggesting that the increase in E2 may be due to increased aromatase-mediated conversion of 

testosterone to E2.  Similarly, changes in E2 secretion in mid-phase porcine luteal cells (increased) and 

late-phase porcine luteal cells (decreased) following in vitro exposure to BDE 47 was significantly 

correlated with CYP 19 activity, although neither 5-OH-BDE-47 nor 6-OH-BDE-47 altered E2 secretion 

(Gregoraszczuk et al. 2015).  In an in vivo study, CYP 19 activity in the ovaries of female rats was not 

altered with exposure to BDE 209 doses up to 60 mg/kg/day for 28 days via gavage; however, CYP 17 

activity in the adrenal glands was significantly decreased by up to 97% in females, but not males (Van der 

Ven et al. 2008a). 

Progesterone production was significantly increased by 1.3–2.1-fold in mid-phase porcine luteal cells 

exposed to BDE 47 (≥250 ng/mL) or BDE 99 (≥50 ng/mL) for 24 hours, but not 48 hours (Gregorasczuk 

et al. 2012). Exposure to BDE 100 did not alter progesterone levels at concentrations up to 500 ng/mL at 

either time point.  Following exposure for 24 hours, cells exposed to BDE 99 also showed a significant 

increase in the activity and protein level of 3β-HSD (which converts pregnenolone into progesterone); no 

changes in protein levels or activity of CYP11A1 (which converts 25-hydroxycholesterol into 

progesterone) were observed for any congener.  Increased gene expression of 3β-HSD was also observed 

in mouse Leydig cells exposed to BDE 47; however, no exposure-related changes were observed in 

progesterone secretion (Schang et al. 2016).  Another study did not observe increased progesterone 

production in early-, mid-, or late-phase porcine luteal cells exposed to BDE 47 for 24 hours at doses up 

to 50 ng/mL (lower than the lowest effective dose in the previous study) (Gregorasczuk et al. 2015).  

However, metabolites of BDE 47 (5-OH-BDE-47 and 6-OH-BDE-47) significantly decreased 

progesterone secretion in mid- and late-phase cells, respectively; 6-OH-BDE-47 also significantly 

inhibited 3β-HSD activity in late-phase cells (Gregorasczuk et al. 2015).  Gregorasczuk et al. (2012) also 

measured activity of caspases 3, 8, and 9 in porcine luteal cells collected during the middle luteal phase 

following exposure to BDE 47, 99, or 100.  Increased activation of both intrinsic (caspase 9) and extrinsic 

(caspase 8) apoptotic pathways was observed at 24 hours, with additional activation of caspase 3 at 

48 hours, was observed with all congeners, indicating premature apoptosis of middle luteal cells 
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(apoptosis should occur during late luteal phase).  The study authors proposed that the combined effects 

of altered steroidogenesis and premature apoptosis observed following in vitro exposure to PBDEs could 

negatively impact the estrous cycle by shortening the luteal phase, and potentially fecundability.  

Several studies have also evaluated steroidogenesis in human adrenocortical carcinoma cells following 

exposure to PBDEs or their metabolites.  The parent compound, BDE 47, did not alter testosterone, 

androstenedione, E2, pregnenolone, 17α-OH-pregnenolone, progesterone, or 17α-OH- progesterone 

levels in human adrenocortical carcinoma cells (van den Dungen et al. 2015).  As observed in porcine 

follicular cells, increased E2 production accompanied by increased CYP 19 gene expression and activity 

was observed in human adrenocortical carcinoma cells following exposure to the methyoxylated 

metabolites 6Cl-2MeO-BDE-68 and 6MeO-BDE852/10 (He et al. 2008c).  However, other tested 

metabolites (6Cl-2OH-BDE-7, 5Cl-6OH-BDE-47, 2MeO-BDE-28) showed decreased E2 production (He 

et al. 2008c). Testosterone production was increased by 2/10 tested MeO-PBDEs (6MeO-BDE85, 

6MeO-BDE137), but 0/10 tested OH-PBDEs (He et al. 2008c).  The activity of the steroidogenic enzyme 

CYP 19 was also evaluated in cultured H295R human adrenocortical carcinoma cells exposed to 

19 PBDEs, 5 OH-PBDEs, and one methoxylated (MeO-)PBDE (Canton et al. 2005).  Two low

brominated PBDEs (BDE 19, BDE 28) induced CYP 19 by 200%, while two higher-brominated PBDEs 

(BDE 206, BDE 209) inhibited CYP 19 by 61–64%.  6OH-BDE-99 and 6MeO-BDE-47 also inhibited 

CYP 19 by 46–67%.  The 6OH-BDE-47 metabolite showed minimal inhibition accompanied by 

cytotoxicity.  In another study evaluating 11 OH-PBDEs and 11 MeO-PBDEs, all OH-PBDEs inhibited 

CYP 19 (Canton et al. 2008).  The most potent aromatase inhibitors were 6OH-BDE-49 and 

3OH-BDE-47, which decreased CYP 19 activity by 54 and 27%, respectively.  No CYP 19 inhibition was 

observed with the MeO-PBDEs. 

Park and Loch-Caruso (2015) evaluated the effects of BDE 47 exposure on prostaglandin E2 synthesis in 

first trimester human extravillous trophoblast cells (HTR-8/SVneo), as prostaglandin E2 is a pro-

inflammatory regulator of trophoblast cellular functions critical for successful placentation.  Significantly 

increased prostaglandin E2 release was following in vitro exposure to BDE 47.  mRNA expression of 

enzymes involved in prostaglandin synthesis and catabolism were also significantly altered, including 

increases in prostaglandin synthase 2 and COX-2 (rate-limiting enzyme of prostaglandin synthesis) and 

decreased 15-hydroxyprostaglandin dehydrogenase and prostaglandin E synthase. Prostaglandin changes 

were completely blocked following treatment with a COX-2 inhibitor, confirming that prostaglandin 

upregulation was COX-dependent.  Additionally, significant ROS generation was observed following 

BDE 47 exposure.  The peroxyl radical scavenger, α-tocopherol, blocked both ROS generation and 
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prostaglandin release; however, it had no effect on COX-2 mRNA levels.  The study authors proposed 

that generation of ROS in the placenta following BDE 47 exposure stimulates prostaglandin E2 

production via post-translational modifications of a COX-2-dependant pathway, and may lead to placental 

dysfunction (Park and Loch-Caruso 2015).  

Following 8-week oral exposure to BDE 47, increased apoptosis was observed in early leptotene 

spermatocytes of adult male rats (Huang et al. 2015). Proteomic analysis of testicular tissue indicated 

differential expression of 64 proteins, including 20 proteins related to apoptosis.  Of these 15/20 apoptotic 

proteins were located in the mitochondria.  Protein expression data from cultured testicular mouse cells 

(GC1-spg cells) were consistent with in vivo results, showing significant decreases in Uqcrc1, Atp5b, 

Tufm, Sucla2, and Lap3, indicating mitochondrial dysfunction and apoptosis, and a significant decrease 

in the anti-apoptotic factor Bcl-2 (Huang et al. 2015). 

Mechanisms of Immunotoxicity.  As discussed in Section 3.2.2.3, Immunological and Lymphoreticular 

Effects, limited evidence from animal studies suggest that PBDEs may cause immunosuppression 

(Darnerud and Thuvander 1998; Feng et al. 2016b; Fowles et al. 1994; Watanabe et al. 2008, 2010b).  

Lundgren et al. (2009) suggested that decreased immune response to infection may be due to suppression 

of cytokines by PBDE exposure.  In mice infected with human coxsackievirus B3 (CVB3), serum levels 

of IL-12, MIP-1β, RANTES, IFN-γ, and KC were markedly decreased (or completely lacking) in mice 

exposed to BDE 99 or Bromkal 70-5 DE (37% BDE 47, 35% BDE 99), compared with infected controls. 

No information regarding potential mechanisms of immunotoxicity for PBDEs were located.  Howie et al. 

(1990) examined the immunotoxic potencies of various polychlorinated diphenyl ether congeners on the 

inhibition of the plaque-forming splenic cell response to sheep red blood cell antigen in mice. The 

observed potency order (2,3,3',4,4',5-hexaCDE > 3,3',4,4',5-pentaCDE > 2,3',4,4',5-pentaCDE > 

3,3',4,4'-tetraCDE > 2,2',4,4',5,5'-hexaCDE > 2,2',4,5,5'-pentaCDE > 2,2',4,4',5,6'-hexaCDE) generally 

paralleled the congener-specific potencies for induction of hepatic microsomal AHH and EROD.  Worth 

noting is the fact that the resulting ranking order of potency did not follow the order that would have been 

expected for a response known to be AhR-mediated, such as the inhibition of the plaque-forming splenic 

cell response to challenge with sheep red blood cells antigen.  For example, the laterally substituted 

congeners 3,3',4,4'-tetraCDE and 3,3',4,4',5-pentaCDE were less immunotoxic than their respective 

monoortho-substituted analogs; this was true also for their enzyme induction potencies.  These findings 

showed that increasing ortho- substitution is less effective in reducing the “dioxin-like” activity of these 

compounds.  Howie et al. (1990) suggested that the ether bridge in the polychlorinated diphenyl ether 
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molecules increases the bond length between the two phenyl rings, thus diminishing the effects of ortho 

substituents on the biochemical and toxic potencies of these compounds. However, these findings may or 

may not be relevant to immunotoxic activities of PBDEs because of the considerable difference in the 

molecular size of brominated and chlorinated analogues, which may influence receptor-mediated effects, 

as well as potential toxicokinetic differences. 

Mechanisms of Hepatotoxicity. As discussed in Section 3.2.2.2 Systemic Effects (hepatic subsection), 

liver effects have been reported in adult, pregnant, and developing animals exposed to lower-brominated 

PBDEs.  Evidence for hepatic effects in animals following exposure to decaBDE is less consistent. 

Existing information suggests that PBDEs can be classified as mixed-type inducers of hepatic microsomal 

monooxygenases (see General Mechanisms of Toxicity Section).  Observed effects of liver enlargement 

and hepatocellular hypertrophy are consistent with enzymatic induction. However, oxidative stress, 

inflammatory processes, and induction of apoptosis may also contribute to hepatotoxicity of PBDEs.  In 

12-week gavage studies in mice, administration of troxerutin, an antioxidant and anti-inflammatory agent, 

prevented tetraBDE-induced hepatotoxicity (increased liver weight, increased serum ALT, hepatocyte 

hypertrophy and vacuolization, and inflammatory cell infiltration) (Zhang et al. 2015a, 2015b). 

Moreover, tetraBDE-mediated induction of protein and genetic markers of oxidative stress, inflammation, 

proteasomal subunits, ER-stress pathways, and apopotisis are prevented by troxerutin.  Zhang et al. 

(2015b) proposed that upregulation of NF-kB via the tetraBDE-induction of histone 3 acetylation at 

lysine 9 (H3K9) is due to tetraBDE-mediated decreases in SirT1 (which mediates deacetylation), and that 

this upregulation of NF-kB leads to the observed increases in mRNA levels of inflammation-related 

genes. Additionally, Zhang et al. (2015a) suggested that oxidative stress leads to apoptosis via 

proteasome dysfunction-mediated ER stress. Taken together, the therapeutic mechanism of actions for 

troxerutin could include antioxidant actions and restoration of proteasomal function, as well as the 

activation of SirT1. These are supported by similar decreases in markers of oxidative stress following 

vitamin E treatment as well as the blunting of troxerutin-mediate effects with concurrent EX527 

injections (a SirT1-specific inhibitor) or epoxomicin injections (a selective proteasome inhibitor) (Zhang 

et al. 2015a, 2015b).  In vitro studies also report elevated ROS levels, depleted GSH levels, mitochondrial 

damage and dysfunction, and apoptosis in HepG2 human hepatocellular carcinoma cells exposed to BDE 

47 (Liu et al. 2015; Saquib et al. 2016; Yeh et al. 2015).  As observed in vivo, known antioxidants 

(eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) protect cultured HepG2 human 

hepatocellular carcinoma cells from BDE-47-induced oxidative stress and mitochondrial dysfunction 

(Yeh et al. 2015). However, Pereira et al. (2014) suggest that apoptosis may be mediated via direct 
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interaction of PBDEs with mitochondria, rather than secondary to PBDE-mediated oxidative stress.  In 

isolated rat liver mitochondria, BDE 154 directly interacted with the mitochondrial membrane, 

permeabilizing the membrane and leading to ATP depletion.  These events occurred in the absence of 

ROS accumulation in the mitochondria, suggesting that BDE 154 impairs mitochondrial bioenergetics 

and permeabilizes the mitochondria, potentially leading to cell death, in the absence of oxidative stress 

(Pereira et al. 2014). BDE 47 and BDE 99 have also been shown to directly interact with the 

mitochondrial membrane in isolated rat liver mitochondria, resulting in altered mitochondrial 

bioenergetics and ATP depletion (Pazin et al. 2015). 

3.5.3 Animal-to-Human Extrapolations 

Residues of PBDEs in humans reflect multiple exposure pathways and congener-specific elimination and 

thus, in general, represent steady-state body burdens that do not match the congener profiles in the 

original exposure sources.  For example, profiles of PBDE congeners in human milk do not resemble the 

pattern of any of the previously used commercial mixtures, which were predominantly pentaBDE, 

octaBDE, and/or decaBDE, as illustrated by the finding that the major PBDE congener in milk from 

Swedish mothers was 2,2',4,4'-tetraBDE (BDE 47), which comprised approximately 55% of the total 

PBDEs (Darnerud et al. 1998).  As discussed in Chapter 6, residue analyses indicate that tetra- to hexa

congeners predominate in humans, aquatic mammals, birds, fish, and other biota, indicating that the 

biological fate of PBDE congeners is qualitatively similar in various animal species. The wildlife residue 

data also indicate that different species have different tissue ratios of congeners, possibly reflective of 

interspecies differences in metabolic capabilities as well as potential differences in exposure.  The 

likelihood of interspecies differences in the quantitative disposition of PBDEs is illustrated by the 

observation that metabolism and urinary excretion of a single oral dose of BDE 47 was significantly 

slower in rats than in mice (Orn and Klasson-Wehler 1998; Staskal et al. 2006b). 

While alterations in thyroid hormone levels are consistently altered in in PBDE-exposed animals, human 

data are less consistent.  Humans are possibly less sensitive than rats to effects of PBDEs on circulating 

levels of thyroid hormones.  This difference is thought to derive from the rat thyroid having a smaller 

store of iodinated thyroglobulin that is more easily depleted when the availability of iodide is limited, and 

from a more rapid clearance of T4 from the rat circulation; the latter resulting from rats not having a high 

affinity binding protein for T4 in serum analogous to TBG in humans (Capen 1997).  If the production of 

T4 and T3 is impaired sufficiently to deplete the thyroid of stored iodinated thyroglobulin, the thyroid 

cannot produce or secrete amounts of T4 and T3 needed to support physiological demands, circulating 
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levels of T4 (free T4) and T3 decrease, and a state of thyroid hormone insufficiency ensues. TTR is the 

major thyroid hormone binding protein in rats, but not in man.  In most mammals, including humans, 

TBG is the principal thyroid hormone binding protein; 74% of the total bound-T4 is bound to TBG, and 

TTR and albumin bind only 11 and 15%, respectively, of the total (Schussler 2000).  In contrast to most 

mammals, the rat utilizes TTR as the major T4 plasma binding protein; approximately 75% of T4 in rat 

serum is bound to TTR and only 25% to albumin.  Both circulating T3 and T4 are highly protein bound 

with only a small fraction of their total present as free hormone, and this high degree of protein binding 

serves to maintain equilibrium between the extracellular and intracellular pools of these hormones 

(O’Connor et al. 1999).  

Less is known about the relative sensitivities of humans and experimental animals to developmental 

effects of PBDEs.  Outstanding uncertainties include potential differences in kinetics of maternal-fetal 

and maternal-infant transfer of PBDEs, as well as potential differences in the degree to which the fetus of 

the human, in comparison to experimental animals, is dependent on maternal thyroid hormone for 

development, particularly during the period of gestation prior to the onset of fetal hormone production. 

3.6  TOXICITIES MEDIATED THROUGH THE NEUROENDOCRINE AXIS 

Recently, attention has focused on the potential hazardous effects of certain chemicals on the endocrine 

system because of the ability of these chemicals to mimic or block endogenous hormones.  Chemicals 

with this type of activity are most commonly referred to as endocrine disruptors. However, appropriate 

terminology to describe such effects remains controversial.  The terminology endocrine disruptors, 

initially used by Thomas and Colborn (1992), was also used in 1996 when Congress mandated the EPA to 

develop a screening program for “...certain substances [which] may have an effect produced by a 

naturally occurring estrogen, or other such endocrine effect[s]...”. To meet this mandate, EPA convened a 

panel called the Endocrine Disruptors Screening and Testing Advisory Committee (EDSTAC), and in 

1998, the EDSTAC completed its deliberations and made recommendations to EPA concerning endocrine 

disruptors.  In 1999, the National Academy of Sciences released a report that referred to these same types 

of chemicals as hormonally active agents. The terminology endocrine modulators has also been used to 

convey the fact that effects caused by such chemicals may not necessarily be adverse.  Many scientists 

agree that chemicals with the ability to disrupt or modulate the endocrine system are a potential threat to 

the health of humans, aquatic animals, and wildlife.  However, others think that endocrine-active 

chemicals do not pose a significant health risk, particularly in view of the fact that hormone mimics exist 

in the natural environment.  Examples of natural hormone mimics are the isoflavinoid phytoestrogens 
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(Adlercreutz 1995; Livingston 1978; Mayr et al. 1992).  These chemicals are derived from plants and are 

similar in structure and action to endogenous estrogen.  Although the public health significance and 

descriptive terminology of substances capable of affecting the endocrine system remains controversial, 

scientists agree that these chemicals may affect the synthesis, secretion, transport, binding, action, or 

elimination of natural hormones in the body responsible for maintaining homeostasis, reproduction, 

development, and/or behavior (EPA 1997).  Stated differently, such compounds may cause toxicities that 

are mediated through the neuroendocrine axis.  As a result, these chemicals may play a role in altering, 

for example, metabolic, sexual, immune, and neurobehavioral function.  Such chemicals are also thought 

to be involved in inducing breast, testicular, and prostate cancers, as well as endometriosis (Berger 1994; 

Giwercman et al. 1993; Hoel et al. 1992). 

Concern has been raised that many industrial chemicals, including PBDEs, are endocrine-active 

compounds capable of having widespread effects on humans and wildlife (Colborn et al. 1993; Crisp et al. 

1998; Daston et al. 1997; Safe and Zacharewski 1997).  Particular attention has been paid to the 

possibility of these compounds mimicking or antagonizing the action of estrogen.  Estrogen influences the 

growth, differentiation, and functioning of many target tissues, including female and male reproductive 

systems, such as mammary gland, uterus, vagina, ovary, testes, epididymis, and prostate.  In addition, 

there is evidence that some of these environmentally-persistent chemicals alter the thyroid hormone 

system, which is a very important system for normal structural and functional development of sexual 

organs and the brain. 

As discussed in Chapter 2 and Section 3.2.2.2. (Systemic Effects), the thyroid is a target of concern 

following exposure to PBDEs, with adverse effects including altered thyroid hormone expression 

(predominantly reduced serum T4) and histological changes in the thyroid indicative of glandular 

stimulation (e.g., follicular cell hyperplasia similar to that induced by a hypothyroid state).  Additionally, 

as discussed in Chapter 2 and Section 3.2.2.6 (Developmental Effects), the developing nervous system 

and the developing reproductive system are also targets of concern.  Since these effects could be mediated 

by the neuroendocrine axis, several studies have tested PBDEs and their metabolites in in vitro endocrine 

disruption screens and in vivo gene expression assays. These studies, and their results, are summarized in 

Section 3.5.2 (Mechanisms of Toxicity) in the subsections on Mechanisms of Endocrine Disruption 

(thyroid hormone assays; anti-estrogenic, -androgenic, -progestagenic, and -glucocortogenic assays) and 

Mechanisms of Reproductive Toxicity (steroidogenesis assays).  While results are not always consistent 

between studies, the data collectively indicate that there is a potential for some PBDEs to disrupt thyroid 

and other endocrine system functions in humans. 
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Additionally, a few studies specifically evaluated neuroendocrine disruption in vitro. BDE 47 and 

BDE 99 altered neurodevelopment of cultured fetal hNPCs (Schreiber et al. 2010).  The migration 

distance of the hNPCs was reduced by up to 30% by BDE 47 and up to 35% by BDE 99.  Differentiation 

of hNPCs into neurons was reduced up to 50% by BDE 47 and up to 68% by BDE 99, and differentiation 

of hNPCs into oligodendrocytes was reduced up to 51% by BDE 47 and up to 93% by BDE 99.  Co-

exposure with T3 prevented the effects of PBDE exposure on migration and differentiation, indicating that 

neurodevelopmental changes were due to endocrine disruption of cellular thyroid hormone signaling.  

Similarly, Ibhazehiebo et al. (2011) showed that the TR-antagonist, BDE 209 (see discussion in 

Mechanisms of Endocrine Disruption), inhibits T4-induced dendritic arborization in cultured rat cerebellar 

Purkinje cells.  However, BDE 47, which was not found to be a TR-antagonist (see discussion in 

Mechanisms of Endocrine Disruption), did not alter dendritic arborization (Ibhazehiebo et al. 2011). 

Study authors indicate that other PBDEs and OH-PBDEs were evaluated for dendritic developmental 

effects, but results were not reported (Ibhazehiebo et al. 2011). In another study, hyperosmotic-stimulated 

somatodendritic vasopressin release in supraoptic tissue from the hypothalamus of rats was significantly 

reduced by 40–50% by BDE 46, BDE 77, and the commercial pentaBDE mixture DE-71 (no other 

PBDEs tested) (Coburn et al. 2007).  The neuropeptide vasopressin, which is synthesized in 

magnocellular neuroendocrine cells, functions to maintain body fluid homeostasis, cardiovascular control, 

learning and memory, and nervous system development. 

3.7  CHILDREN’S SUSCEPTIBILITY 

This section discusses potential health effects from exposures during the period from conception to 

maturity at 18 years of age in humans, when all biological systems will have fully developed.  Potential 

effects on offspring resulting from exposures of parental germ cells are considered, as well as any indirect 

effects on the fetus and neonate resulting from maternal exposure during gestation and lactation.  

Relevant animal and in vitro models are also discussed. 

Children are not small adults.  They differ from adults in their exposures and may differ in their 

susceptibility to hazardous chemicals.  Children’s unique physiology and behavior can influence the 

extent of their exposure.  Exposures of children are discussed in Section 6.6, Exposures of Children. 

Children sometimes differ from adults in their susceptibility to hazardous chemicals, but whether there is 

a difference depends on the chemical (Guzelian et al. 1992; NRC 1993).  Children may be more or less 
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susceptible than adults to health effects, and the relationship may change with developmental age 

(Guzelian et al. 1992; NRC 1993).  Vulnerability often depends on developmental stage.  There are 

critical periods of structural and functional development during both prenatal and postnatal life, and a 

particular structure or function will be most sensitive to disruption during its critical period(s).  Damage 

may not be evident until a later stage of development. There are often differences in pharmacokinetics 

and metabolism between children and adults.  For example, absorption may be different in neonates 

because of the immaturity of their gastrointestinal tract and their larger skin surface area in proportion to 

body weight (Morselli et al. 1980; NRC 1993); the gastrointestinal absorption of lead is greatest in infants 

and young children (Ziegler et al. 1978).  Distribution of xenobiotics may be different; for example, 

infants have a larger proportion of their bodies as extracellular water, and their brains and livers are 

proportionately larger (Altman and Dittmer 1974; Fomon 1966; Fomon et al. 1982; Owen and Brozek 

1966; Widdowson and Dickerson 1964).  The fetus/infant has an immature (developing) blood-brain 

barrier that past literature has often described as being leaky and poorly intact (Costa et al. 2004).  

However, current evidence suggests that the blood-brain barrier is anatomically and physically intact at 

this stage of development, and the restrictive intracellular junctions that exist at the blood-CNS interface 

are fully formed, intact, and functionally effective (Saunders et al. 2008, 2012). 

However, during development of the blood-brain barrier, there are differences between fetuses/infants and 

adults which are toxicologically important. These differences mainly involve variations in physiological 

transport systems that form during development (Ek et al. 2012).  These transport mechanisms (influx and 

efflux) play an important role in the movement of amino acids and other vital substances across the 

blood-brain barrier in the developing brain; these transport mechanisms are far more active in the 

developing brain than in the adult.  Because many drugs or potential toxins may be transported into the 

brain using these same transport mechanisms—the developing brain may be rendered more vulnerable 

than the adult.  Thus, concern regarding possible involvement of the blood-brain barrier with enhanced 

susceptibility of the developing brain to toxins is valid.  It is important to note however, that this potential 

selective vulnerability of the developing brain is associated with essential normal physiological 

mechanisms; and not because of an absence or deficiency of anatomical/physical barrier mechanisms. 

The presence of these unique transport systems in the developing brain of the fetus/infant is intriguing; as 

it raises a very important toxicological question as to whether these mechanisms provide protection for 

the developing brain or do they render it more vulnerable to toxic injury.  Each case of chemical exposure 

should be assessed on a case-by-case basis.  Research continues into the function and structure of the 

blood-brain barrier in early life (Kearns et al. 2003; Saunders et al. 2012; Scheuplein et al. 2002). 
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Many xenobiotic metabolizing enzymes have distinctive developmental patterns. At various stages of 

growth and development, levels of particular enzymes may be higher or lower than those of adults, and 

sometimes unique enzymes may exist at particular developmental stages (Komori et al. 1990; Leeder and 

Kearns 1997; NRC 1993; Vieira et al. 1996).  Whether differences in xenobiotic metabolism make the 

child more or less susceptible also depends on whether the relevant enzymes are involved in activation of 

the parent compound to its toxic form or in detoxification.  There may also be differences in excretion, 

particularly in newborns who all have a low glomerular filtration rate and have not developed efficient 

tubular secretion and resorption capacities (Altman and Dittmer 1974; NRC 1993; West et al. 1948).  

Children and adults may differ in their capacity to repair damage from chemical insults.  Children also 

have a longer remaining lifetime in which to express damage from chemicals; this potential is particularly 

relevant to cancer. 

Certain characteristics of the developing human may increase exposure or susceptibility, whereas others 

may decrease susceptibility to the same chemical.  For example, although infants breathe more air per 

kilogram of body weight than adults breathe, this difference might be somewhat counterbalanced by their 

alveoli being less developed, which results in a disproportionately smaller surface area for alveolar 

absorption (NRC 1993). 

Body burden data, as well as intake modeling, suggest that infants and toddlers have higher exposures to 

PBDEs as compared to older children or adults (EPA 2010; Lorber 2008; Trudel et al. 2011; Wong et al. 

2013).  Exposure during development may occur by transfer of PBDEs that have accumulated in women’s 

bodies to the fetus across the placenta (Antignac et al. 2009, 2008; Chen et al. 2013; Kawashiro et al. 

2008; Li et al. 2013a; Mazdai et al. 2003; Meijer et al. 2008; Qiu et al. 2009; Vizcaino et al. 2011; Wan et 

al. 2010).  Placental transfer, although it may be limited in absolute amounts (Frederiksene et al. 2010), is 

a concern because of possible effects of PBDEs on sensitive immature tissues, organs, and systems, with 

potentially serious long-lasting consequences.  Because PBDEs are lipophilic substances, they can 

additionally accumulate in breast milk and be transferred to nursing infants (Antignac et al. 2008, 2009; 

Malarvannan et al. 2013; Park et al. 2011; Schecter et al. 2010).  Transfer of PBDEs via breast milk could 

be considerable and, like prenatal exposure, has the potential to contribute to altered development. 

Toddlers and older children are exposed to PBDEs in the same manner as the general population, 

primarily via ingestion of contaminated dust and consumption of contaminated foods (EPA 2010; Lorber 

2008).  However, exposure from these sources may be greater in young children due to: (1) greater hand-

to-mouth behavior, increasing the risk of ingestion of contaminated dust and/or residues from PBDE
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treated materials; and (2) increased exposure relative to their body weight via diet due to increased caloric 

intake normalized to body weight and a higher general intake of animal fats. Additionally, children may 

be particularly vulnerable to PBDEs because, compared to adults, they are growing more rapidly and are 

generally expected to have lower and distinct profiles of biotransformation enzymes, as well as much 

smaller fat depots for sequestering these lipophilic chemicals. 

In human studies, significant associations between umbilical cord and placental PBDE (BDE 28, BDE 47, 

BDE 99, BDE 153, BDE 183, and total) and adverse birth outcomes were reported in a comparison of 

128 normal births and 25 cases of adverse birth outcomes (low birth weight, premature birth, still birth) 

(Wu et al. 2010; Xu et al. 2015a).  Elevated maternal serum BDE 47 levels were also significantly 

associated with an increased risk of preterm birth in a case-control study of 197 full-term births and 

82 pre-term births in Nashville, Tennessee (Peltier et al. 2015).  A study of births from 20 healthy 

pregnant women in Taiwan found that elevated PBDE concentrations (BDE 47, BDE 99, BDE 100, and 

BDE 209) in breast milk was associated with significantly reduced infant birth weight, length, chest 

circumference, and Quetelet’s index (i.e., BMI) (Chao et al. 2007).  A significant negative association 

between breast milk PBDE concentrations (BDE 47, BDE 99, BDE 100, BDE 153, and their sum) and 

birth weight was also identified in a Swedish cohort of 254 women with median total PBDE levels of 

2.4 ng/g lipid (Lignell et al. 2013).  Several studies have also reported a negative association between one 

or more PBDE congeners in maternal serum and birth weight, length, and/or head circumference: a 

prospective reproduction study of 234 couples in Michigan and Texas (Robledo et al. 2015a), a birth 

cohort of 215 Chinese women with a median total PBDE level of 21.68 ng/g lipid (Chen et al. 2015), and 

a birth cohort of 686 Spanish women (Lopez-Espinosa et al. 2015).  In other studies, no significant 

associations were observed between birth weight, length, or head circumference and maternal or cord 

serum PBDE concentrations (Foster et al. 2011; Harley et al. 2011; Mazdai et al. 2003; Miranda et al. 

2015; Serme-Gbedo et al. 2016; Tan et al. 2009).  In another study, a positive association between birth 

weight and length and colostrum PBDE (BDE 47, BDE 99, BDE 100, BDE 153, and their sum) was 

observed in a Tanzanian cohort of 95 women with a median total PBDE concentration of 19.8 ng/g lipid 

(Müller et al. 2016).  

In general, available data from animal studies do not indicate that PBDEs are embryotoxic or fetotoxic at 

PBDE doses below doses that elicited maternal toxicity, although occasional observations of reduced pup 

weight were reported (Argus Research Laboratories 1985a, 1985b; Biesemeier et al. 2011; Bowers et al. 

2015; Branchi et al. 2001, 2002, 2005; Breslin et al. 1989; Ellis-Hutchings et al. 2009; Fujimoto et al. 

2011; Hardy et al. 2001, 2002; Kodavanti et al. 2010; Koenig et al. 2012; Life Science Research Israel 
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Ltd. 1987; Poon et al. 2011; Rice et al. 2007; Saegusa et al. 2012; Ta et al. 2011; Talsness et al. 2005, 

2008; Tseng et al. 2008, 2013; Wang et al. 2011a; Watanabe et al. 2008, 2010b; WIL Research 

Laboratories 1986; Woods et al. 2012; Zhou et al. 2002).  At PBDE doses that elicited maternal toxicity 

(15 mg/kg/day in rabbits, 50 mg/kg/day in rats), developmental effects observed included increased post-

implantation loss due to late resorptions and skeletal variations commonly associated with maternal 

toxicity (Breslin et al. 1989; WIL Research Laboratories 1986).  A few studies did report effects at doses 

below maternal toxicity, including delayed ossification and an increased incidence of internal variations 

in GD 20 rat fetuses exposed to pentaBDE at 2 mg/kg/day from GD 6 to 19 (Blanco et al. 2012), 

increased postimplantation loss and number of resorptions and decreased number of live fetuses/litter in 

mice exposed to decaBDE at ≥750 mg/kg/day from GD 7 to 9 (Chi et al. 2011), and subcutaneous edema 

and delayed ossification in rats exposed to a low purity (77%) decaBDE mixture at 1,000 mg/kg/day from 

GD 6 to 15 (Dow Chemical Co. 1985; Norris et al. 1975a). 

A major target of concern in infants and children is the developing nervous system.  Numerous studies 

have reported results suggestive of an effect of PBDE on neurodevelopment in children.  PBDE levels in 

cord blood, maternal or infant serum, and/or breast milk have been correlated with cognitive score and 

adaptive behavior deficits in infants (Chao et al. 2011; Gascon et al. 2012; Shy et al. 2011); mental and 

physical development deficits in infants/toddlers at ages 12, 24, and 36 months (Herbstman et al. 2010); 

language and social developmental score deficits in toddlers at 24 months (Ding et al. 2015); increased 

impulsivity in toddlers at 24–36 months (Adgent et al. 2014; Hoffman et al. 2012); poor social 

competence and ADHD or increased attention problems in 4-year-old children (Cowell et al. 2015; 

Gascon et al. 2011); decreased IQ and increased hyperactivity in 5-year-old children (Chen et al. 2014); 

impaired fine motor coordination, verbal memory and comprehension, and sustained attention in 5– 

7-year-old children (Eskenazi et al. 2013; Roze et al. 2009); and poor attention and executive function 

deficits in 9–12-year-old children (Sagiv et al. 2015).  In one birth cohort, no associations were observed 

between maternal serum PBDEs and neonatal behavior in 5-week-old infants (Donauer et al. 2015) or 

autistic behaviors at 4–5-year-old children (Braun et al. 2014); however, children from the same cohort 

showed associations between maternal serum PBDEs and decreased IQ and increased hyperactivity at 

5 years of age (Chen et al. 2014) and executive function deficits at 5–8 years of age (Vuong et al. 2016a).  

Pre- and peri-natal studies in animals also consistently reported neurodevelopmental effects following 

exposure to lower-brominated PBDEs and decaBDE at doses ≥0.06 and ≥2.22 mg/kg/day, respectively, 

including neurobehavioral alterations, delayed ontogeny of reflexes, ultrastructural changes, altered 

nicotinic receptor density, altered electrophysiology, and altered gene and protein expression levels 

(Biesemeier et al. 2011; Blanco et al. 2013; Bowers et al. 2015; Branchi et al. 2001, 2002, 2005; 



   
 

    
 
 

 
 
 
 
 

   

       

    

     

 

 

   

   

 

    

 

      

    

    

  

  

  

    

     

   

    

    

    

       

    

 

     

     

   

     

    

 

  

PBDEs 304 

3. HEALTH EFFECTS 

Buratovic et al. 2014; Chen et al. 2014; Cheng et al. 2009; Eriksson et al. 2001, 2002b, 2006; Fischer et 

al. 2008; Fujimoto et al. 2011; Gee and Moser 2008; He et al. 2009, 2011; Johansson et al. 2008; Koenig 

et al. 2012; Kuriyama et al. 2004, 2005; Rice et al. 2007; Sand et al. 2004; Ta et al. 2011; Viberg et al. 

2002, 2003a, 2003b, 2004a, 2004b, 2005, 2006, 2007; Woods et al. 2012; Xing et al. 2009).  Consistent 

reports of neurological effects have not been found in adult animal studies, and the only studies that did 

report neurological effects in adults observed altered neurobehavior at doses above those that cause 

neurodevelopmental effects in pre- and peri-natal studies (26.2 mg/kg/day of pentaBDE and 

≥0.1 mg/kg/day of tetraBDE) (Driscoll et al. 2009; Yan et al. 2012). 

Neurodevelopmental effects may be mediated through the neuroendocrine axis, as thyroid hormones 

regulate cell proliferation, migration, and differentiation during development, and maintenance of normal 

levels is essential to normal growth and development.  In support, neuronal migration and differentiation 

of fetal human neural progenitor cells (hNPCs) were significantly impaired following in vitro exposure to 

tetraBDE (Schreiber et al. 2010), and decaBDE was shown to be a thyroid hormone receptor antagonist 

that significantly inhibited T4-induced dendritic arborization in cultured rat cerebellar Purkinje cells 

(Ibhazehiebo et al. 2011).  Additionally, PBDE-induced alterations in thyroid hormone binding to 

transport proteins and receptors have been demonstrated in several in vitro studies (Hamers et al. 2006; 

Ibhazehiebo et al. 2011; Marsh et al. 1998; Meerts et al. 1998, 2000; Ren and Guo 2012; Ren et al. 2013).  

In humans, evidence for thyroid hormone disruption in infants is inconclusive.  Some studies reported 

negative associations between developmental exposure to PBDEs and infant serum or cord blood T4 

levels (Abdelouahab et al. 2013; Herbstman et al. 2010; Kim et al. 2011a); however, other studies 

reported no association (Kim et al. 2011d, 2012a, 2012b, 2015; Lignell et al. 2016; Lin et al. 2011; 

Mazdai et al. 2003; Shy et al. 2012).  Associations between developmental PBDE exposure and infant 

serum or cord blood T3 and TSH were similarly inconsistent (Abdelouahab et al. 2013; Eggesbo et al. 

2011; Kim et al. 2011d, 2012a, 2012b, 2015; Lignell et al. 2016; Lin et al. 2011; Mazdai et al. 2003; Shy 

et al. 2012; Stapleton et al. 2011; Turyk et al. 2008).  In contrast, reduced serum T4 levels have been 

consistently reported in animals exposed to lower-brominated PBDEs during development (Bansal et al. 

2014; Blanco et al. 2013; Bondy et al. 2011, 2013; Bowers et al. 2015; Ellis-Hutchings et al. 2006; 

Kodavanti et al. 2010; Kuriyama et al. 2007; Miller et al. 2012; Poon et al. 2011; Shah et al. 2011; 

Skarman et al. 2005; Szabo et al. 2009; Wang et al. 2011a; Zhang et al. 2009; Zhou et al. 2002).  Some 

studies also reported reduced serum T3 levels, although findings are less consistent (Blanco et al. 2013; 

Bondy et al. 2013; Bowers et al. 2015; Shah et al. 2011; Zhang et al. 2009).  Consistent changes in 

thyroid hormones were not found in animals exposed to decaBDE during development (Fujimoto et al. 

2011; Rice et al. 2007; Tseng et al. 2008).  
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Disruption of circulating hormone levels can have markedly different effects, depending on the stage of 

development, and even transient disruptions can produce permanent effects, such as mental retardation, 

impaired motor skills, and hearing and speech impediments (Boyages 2000; Fisher and Brown 2000).  

Several factors might contribute to a high vulnerability of the fetus and neonate to PBDEs.  Relatively 

brief periods of thyroid hormone insufficiency (e.g., 14 days) can produce measurable neurological 

deficits in newborn infants (van Vliet 1999).  Furthermore, unlike the adult thyroid gland, which contains 

a relatively large store of T4 that is sufficient to support circulating levels of hormone for several months, 

the neonatal thyroid contains only enough hormone to support circulating levels of hormone for ≥1 day 

(van den Hove et al. 1999; Vulsma et al. 1989).  Thus, even acute exposures to a dose of lower

brominated PBDEs sufficient to suppress thyroid hormone production could potentially result in thyroid 

insufficiency in the neonate.  The absorbed dose of lower-brominated PBDEs per unit of body mass is 

also likely to be higher in infants compared to adults exposed to similar levels of PBDEs because of 

higher intakes per unit of body mass and exposure from breast milk.  It should be noted that screening of 

all newborn children for hypothyroidism is already a widely accepted and legislatively mandated practice 

(LaFranchi 1999; Landenson et al. 2000).  Newborns are tested for thyroid hormone levels within the first 

few days of life in the United States and most other developed countries, and treatment is started 

immediately if indicated (LaFranchi 1999; Landenson et al. 2000). 

The human relevance of the thyroid effects of lower-brominated BDEs in animals is unclear.  Humans are 

generally regarded as being less sensitive than rats to effects of PBDEs on circulating thyroid hormones. 

This is thought to be related to a smaller and more rapid turnover of the hormone pool in the rat thyroid, 

and to a more rapid clearance of secreted hormone in the rat; the latter being, in part, related to the 

absence of TBG in rats (Capen 1997).  TTR is the major thyroid hormone binding protein in rats, whereas 

TBG is the main binding protein in man and most other mammals.  However, although TTR is a minor 

thyroid hormone binding protein in humans, it is the principal protein involved in T4 transport to the brain 

in both rats and man (Blay et al. 1993; Sinjari et al. 1998).  TTR does not transport T4 from the 

bloodstream to the brain, but rather is the main T4 binding protein in cerebral spinal fluid (CSF) in rats 

and humans.  In the rat, T4 is transported to the brain primarily through the blood-brain barrier, and not 

via the choroid plexus and CSF (Blay et al. 1993).  Also, the mechanism by which lower-brominated 

BDEs cause decreased serum T4 might involve hepatic microsomal enzyme induction and consequent 

increased metabolic formation of hydroxy signaling-metabolites, but humans are not particularly sensitive 

to this effect. 
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Based on limited findings from human and animal studies, another target of concern in infants and 

children exposed to PBDEs is the developing reproductive system.  Main et al. (2007) found a significant 

positive relationship between levels of PBDE in breast milk and congenital cryptorchidism (undescended 

testes) in male offspring. The study compared levels of 14 PBDE congeners in breast milk of mothers of 

62 Danish and Finnish boys with cryptorchidism to mothers of 68 controls from the same population.  

Significant elevation of concentrations in cases versus controls were seen for the sum of all 14 congeners, 

for the sum of the 7 most prevalent congeners found in all mothers (BDE 28, BDE 47, BDE 66, BDE 99, 

BDE 100, BDE 153, BDE 154), and for 5 of the 7 most prevalent congeners.  No significant associations 

were observed between PBDE concentrations in children’s adipose tissue and cryptorchidism 

(Koskenniemi et al. 2015). Other studies of reproductive development found no relationship between 

concentrations of individual PBDE congeners (BDE 28, BDE 47, BDE 99, BDE 100, BDE 153) in mid-

pregnancy serum samples from California mothers and hypospadias in their male offspring (Carmichael 

et al. 2010) and no relationship between current serum levels of PBDE and various measures of sexual 

maturation (e.g., age at thelarche, current breast development, age at menarche) in a small cohort of teen-

aged Dutch children (Leijs et al. 2008).  However, serum PBDE levels in 6–8-year-old females were 

significantly associated with delayed onset of puberty in a longitudinal cohort of U.S. girls (Windham et 

al. 2015a). A study of 55 Dutch boys found significant positive associations between maternal serum 

levels of BDE 154 collected on week 35 of pregnancy (but not other congeners measured, including 

BDE 47 and BDE 153, that occurred at higher levels) and serum levels of the sex hormones, E2, free E2, 

and inhibin B (but not testosterone, LH, FSH, or sex hormone binding globulin) in the baby boys at 

3 months of age and testes volume in the boys at 18 months of age, but no effect on penile length at either 

age (Meijer et al. 2012).  Additionally, Warembourg et al. (2016) reported an inverse association between 

cord serum BDE 209 and total testosterone (but not free testosterone, E2, aromatase index, sex hormone 

binding globulin, or Anti-Müllerian hormone) in 141 French boys. 

In animal studies, reproductive effects were observed in adult F1 offspring exposed to a single dose of 

pentaBDE at 0.06 mg/kg on GD 6, including reductions in testicular weight, sperm/spermatid number, 

and daily sperm production in males and a decreased number of secondary follicles and ultrastructural 

changes in the ovaries in females (although F1 fertility when mated to an unexposed animal was not 

impaired) (Kuriyama et al. 2005; Talsness et al. 2005, 2008).  In animals exposed pre- or perinatally to 

decaBDE, one study reported reproductive effects in adult male offspring exposed to decaBDE doses of 

10–1,500 mg/kg/day from GD 0 to 17, including testicular lesions, decreased AGD, and altered sperm 

parameters (Tseng et al. 2013); however, no exposure-related changes in AGD, onset of puberty, or 

reproductive organ weight and histology were reported in offspring exposed to decaBDE at doses up to 
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1,000 mg/kg/day during gestation and lactation (Biesemeier et al. 2011; Fujimoto et al. 2011) or doses up 

to 20 mg/kg/day from PND 2 to 15 (Rice et al. 2007).  In females, no exposure-related changes in 

reproductive development were reported in offspring exposed to decaBDE at doses up to 

1,000 mg/kg/day during gestation and lactation (Biesemeier et al. 2011; Fujimoto et al. 2011) or doses up 

to 20 mg/kg/day from PND 2 to 15 (Rice et al. 2007).  In in vitro assays, lower-brominated PBDEs have 

been shown to be mildly estrogenic, anti-androgenic, anti-progestagenic, and anti-glucocorticogenic and 

higher-brominated PBDEs have been shown to be mildly anti-estrogenic (Hamers et al. 2006; Kojima et 

al. 2009; Meerts et al. 2001; Mercado-Feliciano and Bigsby 2008a, 2008b; Stoker et al. 2005).  PBDEs 

have also been shown to alter expression and activity of steroidogenic enzymes in vitro (Canton et al. 

2005, 2008; He et al. 2008a; Karpeta et al. 2011, 2013; Wang et al. 2011c; Zhao et al. 2011).  

The developing immune system may also be a target of concern in infants and children exposed to 

PBDEs.  In a one-generation study in rats, F0 rats were exposed to pentaBDE at 0, 0.5, 5, or 

25 mg/kg/day via gavage for 70 days prior to mating, through mating, gestation, and lactation (PND 21), 

and PND 43 F1 rats were assessed for serum immunoglobin levels, B and T lymphocyte quantification in 

the spleen, spleen cell proliferation in vitro, and immune organ weight and histology and PND 56 rats 

were assessed for immune function in the KLH antigen immune challenge (Bondy et al. 2013).  Observed 

effects at PND 43 included reduced serum IgE and IgG1 levels in females; a significant, dose-related 

reduction in the proportion of B cells and a significant concomitant increase in the proportion of T cells in 

the spleen in males and females; increased proliferation of unstimulated spleen cells harvested from males 

and females; and histopathological changes in the thymic cortex in males.  No exposure-related changes 

were observed in immune function in PND 56 rats (Bondy et al. 2013).  Two studies examined immune 

function in PND 28 mice was assessed using the RSV intranasal infection test following exposure to 

decaBDE from GD 10 to PND 21 at doses ranging from 3.3 to 3,000 mg/kg/day (Watanabe et al. 2008, 

2010b).  At doses ≥260 mg/kg/day, RSV pulmonary viral titers were elevated at 1–5 days post-infection, 

and exposure to 3,100 mg/kg/day exacerbated the histopathological changes in the lung caused by RSV 

infection.  In the only developmental immune study in humans, a reduced risk of atopic dermatitis was 

found in Japanese infants (diagnosed at 7 months of age by questionnaire) with higher PBDE 

concentrations in umbilical cord blood (Ochiai et al. 2014).  
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3.8  BIOMARKERS OF EXPOSURE AND EFFECT 

Biomarkers are broadly defined as indicators signaling events in biologic systems or samples. They have 

been classified as markers of exposure, markers of effect, and markers of susceptibility (NAS/NRC 

1989). 

A biomarker of exposure is a xenobiotic substance or its metabolite(s) or the product of an interaction 

between a xenobiotic agent and some target molecule(s) or cell(s) that is measured within a compartment 

of an organism (NAS/NRC 1989).  The preferred biomarkers of exposure are generally the substance 

itself, substance-specific metabolites in readily obtainable body fluid(s), or excreta.  However, several 

factors can confound the use and interpretation of biomarkers of exposure.  The body burden of a 

substance may be the result of exposures from more than one source. The substance being measured may 

be a metabolite of another xenobiotic substance (e.g., high urinary levels of phenol can result from 

exposure to several different aromatic compounds).  Depending on the properties of the substance (e.g., 

biologic half-life) and environmental conditions (e.g., duration and route of exposure), the substance and 

all of its metabolites may have left the body by the time samples can be taken.  It may be difficult to 

identify individuals exposed to hazardous substances that are commonly found in body tissues and fluids 

(e.g., essential mineral nutrients such as copper, zinc, and selenium).  Biomarkers of exposure to PBDEs 

are discussed in Section 3.8.1. 

Biomarkers of effect are defined as any measurable biochemical, physiologic, or other alteration within an 

organism that, depending on magnitude, can be recognized as an established or potential health 

impairment or disease (NAS/NRC 1989). This definition encompasses biochemical or cellular signals of 

tissue dysfunction (e.g., increased liver enzyme activity or pathologic changes in female genital epithelial 

cells), as well as physiologic signs of dysfunction such as increased blood pressure or decreased lung 

capacity.  Note that these markers are not often substance specific. They also may not be directly 

adverse, but can indicate potential health impairment (e.g., DNA adducts).  Biomarkers of effects caused 

by PBDEs are discussed in Section 3.8.2. 

A biomarker of susceptibility is an indicator of an inherent or acquired limitation of an organism’s ability 

to respond to the challenge of exposure to a specific xenobiotic substance.  It can be an intrinsic genetic or 

other characteristic or a preexisting disease that results in an increase in absorbed dose, a decrease in the 

biologically effective dose, or a target tissue response. If biomarkers of susceptibility exist, they are 

discussed in Section 3.10, Populations That Are Unusually Susceptible. 
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3.8.1 Biomarkers Used to Identify or Quantify Exposure to PBDEs 

PBDEs are persistent environmental contaminants that accumulate in adipose tissue, serum, and breast 

milk serum of the general population (see Section 3.4, Toxicokinetics).  Therefore, PBDE concentrations 

in these tissues are indicators of general exposure for PBDEs, and PBDE concentrations in maternal 

adipose tissue, serum, breast milk, and cord serum are useful as markers of maternal body burdens as well 

as lactational and in utero exposures (Ahn et al. 2009; CDC 2015; Huwe et al. 2008; Kim et al. 2012a; 

Marchitti et al. 2013; Mazdai et al. 2003; Meironyté Guvenius et al. 2001). The National Report on 

Human Exposure to Environmental Chemicals (CDC 2015) has methods for many PBDE congeners to 

identify exposure and provides reference values representative of U.S. population for comparison with 

exposures to potentially more exposed populations; it is continually updated on-line (see 

http://www.cdc.gov/exposurereport/ to look for the most recent U.S. human PBDE exposure 

information). Studies have also proposed that PBDE concentrations in hair are also useful markers of 

exposure (Aleksa et al. 2012a, 2012b; Kucharska et al. 2015; Liu et al. 2016; Malarvannan et al. 2013; 

Poon et al. 2014), although Zheng et al. (2011) reported that PBDE concentrations in hair were not 

correlated with PBDE concentrations in indoor dust from urban, e-waste, and rural areas in South China. 

It is not clear if the lack of correlation between PBDE concentrations in indoor dust and hair reported by 

Zheng et al. (2011) indicates that hair is a poor monitor of exposure or if exposure via dust was not 

significant for the Chinese subjects involved in the study.  Other potential exposure sources, including 

outdoor dust for individuals living near an e-waste area or ingestion of contaminated food, were not 

controlled for in this study. Urinary bromophenols have also been suggested as potential biomarkers of 

human exposure to PBDEs (Feng et al. 2016a; Ho et al. 2015). 

Estimates of PBDE serum concentrations among electronics-dismantling workers before and after 

exposure-free vacation (median duration 28 days, range 21–35 days) indicate that the higher-brominated 

congeners have shorter half-lives than lower-brominated congeners (Sjödin et al. 1999b).  The medians 

and ranges of percentage decreases in serum concentrations, based on 5–11 measurements per congener, 

were 14 (range 3.5–39), 14 (2.1–38), 14 (6.7–42), 30 (7.9–52), and 66 (47–100) for BDE 47, BDE 153, 

BDE 154, BDE 183, and BDE 209, respectively.  Although actual half-lives were not calculated, the data 

suggest that the half-lives of the lower-brominated congeners were <1 year.  Similar findings were found 

in another study of eight PBDE-exposed workers (four electronics dismantlers and four workers in a 

factory making flame-retarded rubber), where calculated apparent half-lives were: 15 days for BDE 209; 

28, 39, and 18 days for nonabrominated congeners BDE 208, BDE 207, and BDE 206; 37, 72, 85, and 

http://www.cdc.gov/exposurereport
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91 days for BDE 203 and three other octabrominated congeners of uncertain chemical structure; and 

94 days for BDE 183 (Thuresson et al. 2006). 

A study in Sweden examined the feasibility of using feces as a noninvasive matrix to determine serum 

concentrations of PBDEs in toddlers for biomonitoring purposes (Sahlström et al. 2015).  The cohort 

consisted of 22 healthy toddlers 11–15 months of age. Twelve (tri- to decabrominated) BDEs were 

analyzed, but only nine could be quantified; not detected were BDE 28, BDE 99, and BDE 100.  Median 

concentrations of BDEs in feces ranged from 18 ng/g lipid for BDE 209 to 0.055 ng/g lipid for BDE 196. 

Concentrations of tetra- to octaBDE in serum were significantly higher than in feces; the highest 

difference was for BDE 153.  BDE 209 was significantly more concentrated in feces than in serum.  

Significant correlations in concentrations were found for all BDEs detected, except BDE 197 and 

BDE 203. 

Congener patterns in humans may provide information on the nature or pathway of PBDE exposures 

(Hooper and McDonald 2000).  Low tetra:deca congener ratios are suggestive of direct, recent, or 

occupational exposures to the parent PBDE mixture.  Higher ratios may indicate an environmental 

pathway where exposures result from PBDEs that have leached from the parent mixtures and have been 

degraded in the environment, although they may also reflect metabolic debromination following exposure 

to parent PBDE mixtures. 

3.8.2 Biomarkers Used to Characterize Effects Caused by PBDEs 

Biomarkers of effects for PBDEs are likely to be common to the general class of halogenated aromatic 

hydrocarbons, rather than specific for PBDEs, because PBBs, PCBs, and other structurally similar 

chemicals cause generally similar effects. 

As discussed in Chapter 2, the thyroid, nervous system, and reproductive system are critical targets of 

exposure to lower-brominated PBDEs in animals, and evidence from human studies also suggests that 

these systems may be a target of human toxicity.  Critical effects used for derivation of the MRLs for 

lower-brominated PBDEs include: endocrine effects in rats (reduced serum T4) for the intermediate 

inhalation MRL (Great Lakes Chemical Corporation 2000); endocrine effects in F0 rat dams (reduced 

serum T4) and reproductive and neurobehavioral effects in F1 adult offspring (impaired spermatogenesis, 

ultrastructural changes in ovaries, increased resorptions in F1 females mated to unexposed males, and 

increased spontaneous motor activity) for the acute oral MRL (Kuriyama et al. 2005, 2007; Talsness et al. 
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2005); and reproductive effects in male rats (decreased serum testosterone) for the intermediate oral MRL 

(Zhang et al. 2013b). There are several potential biomarkers for these effects, such as alterations in serum 

thyroid or reproductive hormone levels or changes in neurobehavioral screens; however, none of these 

effects are specific to PBDE exposure. 

Similarly, the nervous system and pancreas are critical targets of exposure to decaBDE in animals.  There 

are two human studies suggesting delayed cognitive development in children exposed to decaBDE (Chao 

et al. 2011; Gascon et al. 2012) and limited evidence for an association between BDE 153 and diabetes 

(BDE 209 was not assessed) in humans (Airaksinen et al. 2011; Lee et al. 2011; Lim et al. 2008; Smarr et 

al. 2016).  Critical effects used for derivation of the MRLs for decaBDE include altered neurobehavior in 

juvenile mice following neonatal exposure for the acute oral MRL (Johansson et al. 2008; Viberg et al. 

2003b) and altered insulin homeostasis (elevated serum glucose levels) in rats for the intermediate oral 

MRL (Zhang et al. 2013a).  Again, there are potential biomarkers for these effects, such as alterations in 

serum glucose levels or changes in neurobehavioral screens; however, none of these effects are specific to 

decaBDE exposure. 

3.9  INTERACTIONS WITH OTHER CHEMICALS 

Only one study was located that provided information regarding interactions between PBDE and other 

chemicals in humans.  Fitzgerald et al. (2012) examined the association between exposure to PBDEs and 

neuropsychological function among 144 adult men and women residents of upper Hudson River 

communities and also studied the possible interactive effects of exposure to PCBs.  A series of 34 tests to 

assess cognitive and motor function, affective state, and olfactory function were conducted.  Serum 

samples were collected and analyzed for concentrations of nine of the most commonly detected PBDE 

congeners in human serum (ΣPBDE) and 30 PCB congeners that usually constitute 95% of the congeners 

found in human serum (ΣPCB).  After adjustment for relevant confounders, the results of multiple linear 

regression analyses showed no significant associations between ΣPBDE and scores on the 

neuropsychological tests.  However, in subjects with a ΣPCB concentration above the median of 467 ppb 

(on a lipid basis), an increase in ΣPBDE concentration from the 25th to the 75th percentile was 

significantly associated with decreases between 7 and 12% in scores of some tests of memory and 

learning. Tests also showed that the interaction was greater than additive.  No specific mechanism was 

proposed for the interaction between PBDEs and PCBs. 
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A few animal studies have examined the effects of the interaction of PBDEs and other chemicals on 

thyroid-related parameters.  For example, Hallgren and Darnerud (2002) reported that daily oral 

administration of 18 mg/kg/day BDE 47 and 4 mg/kg/day Aroclor 1254 to female rats for 14 days 

resulted in a significant decrease in plasma free T4 that suggested additive effects compared to 

administration of either compound alone.  The reduction in free T4 coincided with a decrease in ex vivo 

binding of 125I-T4 to the hormone transporter TTR and induction of the microsomal enzymes EROD and 

MROD, and led the investigators to suggest that the reduced free T4 could be explained by alterations in 

serum binding to TTR caused by metabolites of Aroclor 1254 or BDE 47. In the same study, co-

administration of BDE 47 and a technical mixture of chlorinated paraffins resulted in a reduction in 

plasma free T4 and induction of EROD that were greater than the effects of the single compounds, 

indicating synergistic effects.  Consistent with the findings of Hallgren and Darnerud (2002), Miller et al. 

(2012) reported that oral co-administration of equimolar doses of the commercial PBDE mixture DE-71 

and a mixture of various Aroclors to pregnant rats from GD 6 until PND 21 significantly reduced 

circulating levels of total T4 in male and female offspring from PND 7 to 21 in a manner that indicated 

additive effects.  The reduction in total T4 was dose-dependent over a wide range of doses, 3– 

40 µmol/kg/day.  The mixture of Aroclors resembled the PCB congener pattern found in contaminated 

fish consumed by residents near the Fox River in Wisconsin. 

Wang et al. (2011a) found little evidence of interactions between perfluorooctane sulfonate (PFOS) and 

BDE 47 on postnatal levels of total T3 and T4 in serum from rats (dams and their offspring) administered 

the chemicals in the diet on GD 1 through PND 14. The investigators also examined the transcriptional 

and translational expression of several thyroid hormone-mediated genes in neonates’ brains and found 

that PFOS and BDE 47 had interactive effects on only levels of brain-derived neurotrophic factor 

(BDNF); the chemicals showed a synergistic effect on PND 1 in the cortex and an antagonistic effect on 

PND 14 in the hippocampus.  A possible mechanism for the interaction was not discussed.  He et al. 

(2011) also found lack of interactive effects between BDE 47 and 2,2’,4,4’-tetrachlorobiphenyl 

(PCB 153) on serum T4 levels in rats.  In this study, 10-day-old pups received a dose of up to 10 mg/kg 

BDE 47 and/or 5 mg/kg PCB 153.  At 2 months of age, there was no evidence of any interaction between 

the chemicals on serum levels of T4.  However, performance on a Morris water maze was significantly 

impaired in the group dosed with 5 mg/kg BDE 47 and PCB 153 and in the group dosed with 10 mg/kg 

BDE 47 and PCB 153 relative to the groups dosed with either chemical alone.  The effect of the combined 

action of BDE 47 and PCB 153 on performance on a Morris maze had been reported also in an earlier 

study (He et al. 2009). 
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Two studies by Eriksson and coworkers (Eriksson et al. 2006; Fischer et al. 2008), examined the 

interactive effects of BDE 99 and 2,2’,5,5’-tetrachlorobiphenyl (PCB 52) or BDE 99 and methyl mercury 

on neurodevelopmental parameters in mice. In the first study, combined administration of equimolar 

amounts of BDE 99 and PCB 52 (1.4 µmol/kg each; 0.8 mg/kg BDE 99, 0.4 mg/kg PCB 52) to 10-day

old male mice resulted in reductions in spontaneous activity and habituation capability at 4 and 6 months 

of age that were significantly more pronounced than those obtained with a single much higher dose 

(14 µmol/kg) of PCB 52.  This led the investigators to suggest that the interaction was greater than 

additive and that different mechanisms may be involved and/or different regions of the brain are 

differently affected.  Using the same protocol, Fischer et al. (2008) reported that coexposure to BDE 99 

and methyl mercury exacerbated neurobehavioral defects manifested as alterations in spontaneous 

behavior, lack of habituation, and impaired learning/memory in male mice tested during the first 6 months 

of life.  BDE 99 and methyl mercury also interacted to promote a significant reduction in the density of 

cholinergic nicotinic receptors in the hippocampus, suggesting that the neurobehavioral alterations may 

involve the cholinergic system.  The interactive properties of BDE 99 and methyl mercury were also 

assessed in a study in rats (Zhao et al. 2014).  Combined administration of these chemicals to pregnant 

rats during gestation and up to PND 21 resulted in enhanced methylmercury-induced neurotoxicity in the 

pups compared to treatment with methylmercury alone.  Specifically, tests showed delayed appearance of 

negative geotaxis reflexes, impaired motor coordination, and induction of oxidative stress in the 

cerebellum from pups.  While retention of mercury was not affected by co-exposure to BDE 99, 

combined exposure to methylmercury and BDE 99 seemed to increase the concentrations of BDE 99 in 

selected brain regions from pups.  The investigators concluded that combined exposure to methylmercury 

and BDE 99 produced oxidative stress due to inhibition of antioxidant enzymes and production of free 

radicals. In a study of the mechanism(s) of neurotoxicity of BDE 47, He et al. (2009) reported that the 

combined administration of BDE 47 and PCB 153 to 10-day-old rats induced ultrastructural alterations in 

neurons in the hippocampal CA1 region, assessed at the age of 2 months, in a manner that suggested a 

synergistic mode of action.  These alterations were associated with changes in expression of mRNA and 

proteins involved in three apoptosis pathways.  For the most part, the changes in expression levels of the 

various factors due to the combined action of BDE 47 and PCB 153 were consistent with an additive 

interaction between the two chemicals. 

A study in rats reported that gestational and lactational exposure to 5.7 or 11.4 mg/kg/day of the 

commercial PBDE mixture DE-71 did not alter cochlear function in adult offspring and neither did 

exposure to 3 mg/kg/day of an environmental PCB mixture (equimolar to 5.7 mg/kg/day of the PBDE 

mixture) (Poon et al. 2011).  Exposure to 6 mg/kg/day of the PCB mixture did impair cochlear function.  
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However, exposure of the rats to the combined two low doses of the chemicals, neither of which alone 

affected cochlear function, resulted in a deficit in cochlear function in the offspring similar to that in the 

high-dose PCB group, suggesting an additive effect of the mixture on the outcome measured.  The 

mechanism of the interaction was not elucidated, but it did not appear to be directly related to reductions 

in serum T4. The PCB mixture used in this study was the Fox River mixture (see above Miller et al. 

2012). 

It should be noted that the alterations in health outcomes in humans or animals summarized in 

Section 3.2, Discussion of Health Effects by Route of Exposure, that were caused by exposure to 

commercial or environmental PBDE mixtures, are in fact the result of interactions between the individual 

components of the particular PBDE mixture. 

3.10  POPULATIONS THAT ARE UNUSUALLY SUSCEPTIBLE 

A susceptible population will exhibit a different or enhanced response to PBDEs than will most persons 

exposed to the same level of PBDEs in the environment.  Reasons may include genetic makeup, age, 

health and nutritional status, and exposure to other toxic substances (e.g., cigarette smoke).  These 

parameters result in reduced detoxification or excretion of PBDEs, or compromised function of organs 

affected by PBDEs.  Populations who are at greater risk due to their unusually high exposure to PBDEs 

are discussed in Section 6.7, Populations with Potentially High Exposures. 

Information was located on a small part of the U.S. population that might be unusually susceptible to 

PBDEs.  As indicated in Section 3.4.4.2, the detection of PBDEs in human breast milk samples suggests 

that breast milk represents an elimination route of absorbed PBDEs in women.  Both lower and higher

brominated congeners have been detected in breast milk (Antignac et al. 2008, 2009; Malarvannan et al. 

2013; Park et al. 2011; Schecter et al. 2010).  Therefore, women with high body burdens of PBDEs who 

breastfeed may be placing their infants at a higher risk of potential health effects, although it is unclear 

the degree to which PBDEs are cleared from the body during breast feeding (Hooper et al. 2007; 

Jakobsson et al. 2012; LaKind et al. 2009; Thomsen et al. 2010).  In general, however, any risks from 

exposures in mother’s milk are outweighed by the benefits of breastfeeding. 

Pregnant women and developing infants and fetuses should be viewed as possibly sensitive populations 

for exposure to lower-brominated PBDEs, as they are for other thyroid hormone disrupting chemicals 

(Glinoer 1990; McDonald 2002; Morreale de Escobar et al. 2000).  The condition of pregnancy normally 
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puts a significant strain on the maternal thyroid system, which can be exacerbated by iodine deficiency; 

according to data from 1988 to 1994, iodine deficiency is prevalent in approximately 12% of the general 

population and 15% of women of child-bearing age in the United States (Hollowell et al. 1998).  Thyroid 

hormones are essential for normal development of the nervous system, lung, skeletal muscle, and possibly 

other organ systems, and the fetus is dependent on maternal thyroid hormones at least until the fetal 

thyroid begins to produce T4 and T3, which occurs in humans at approximately 16–20 weeks of gestation 

(Zoeller and Crofton 2000).  As discussed in Section 3.2.2.2 (Endocrine Effects subsection), human 

studies have found inconsistent associations between PBDE levels in maternal/infant serum, cord blood, 

or breast milk and thyroid hormone levels in pregnant women and infants.  However, decreased maternal, 

fetal, and neonatal serum T4 levels have been consistently reported in animals exposed to lower

brominated PBDEs (but not decaBDE). Therefore, it is unclear whether or not exposure to lower 

brominate PBDEs will cause thyroid hormone disruption in humans, and mechanistic differences may 

account for the observed interspecies differences (as discussed in Section 3.5.3, Animal-to-Human 

Extrapolations). 

Developing fetuses, infants, and children should also be regarded as a possibly sensitive population with 

regards to neurodevelopmental effects.  As discussed in Section 3.7 (Children’s Susceptibility), numerous 

studies have reported results suggestive of an effect of PBDE on neurodevelopment in children.  PBDE 

levels in cord blood, maternal or infant serum, and/or breast milk have been correlated with cognitive 

deficits (including impaired verbal memory and comprehension), adaptive behavior deficits, increased 

impulsivity and impaired attention, poor social competence, and impaired fine motor coordination in 

infants and children.  Additionally, pre- and peri-natal studies in animals consistently report 

neurodevelopmental effects following exposure to lower-brominated PBDEs and decaBDE (at higher 

doses). The susceptibility of the developing nervous system may be due to neuroendocrine effects, as 

discussed in Section 3.6 (Toxicities Mediated Through The Neuroendocrine Axis).  For example, 

neuronal migration and differentiation of fetal hNPCs were significantly impaired following in vitro 

exposure to tetraBDE (Schreiber et al. 2010), and decaBDE was shown to be a thyroid hormone receptor 

antagonist that significantly inhibited T4-induced dendritic arborization in cultured rat cerebellar Purkinje 

cells (Ibhazehiebo et al. 2011). 

People with exposure to anti-thyroid drugs (e.g., lithium), thyroid disease, or otherwise compromised 

thyroid function might have a more pronounced response to PBDEs because of their underlying 

limitations in thyroid hormone production.  Similarly, people with compromised function of other organs, 
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such as those with liver or kidney diseases (e.g., liver cirrhosis or hepatitis), could be considered more 

susceptible to health effects of PBDEs. 

3.11  METHODS FOR REDUCING TOXIC EFFECTS 

This section will describe clinical practice and research concerning methods for reducing toxic effects of 

exposure to PBDEs.  However, because some of the treatments discussed may be experimental and 

unproven, this section should not be used as a guide for treatment of exposures to PBDEs.  When specific 

exposures have occurred, poison control centers and medical toxicologists should be consulted for 

medical advice.  No texts were located that provide specific information about treatment following 

exposures to PBDEs; however, recommendations based on experiences with PCBs are relevant.  The 

following texts provide specific information about treatment following exposures to PCBs: 

Caravati EM, Mcguigan MA, Whyte IM, et al. 2004. Polyhalogenated biphenyls.  In: Dart RC, ed.  
Medical toxicology. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins, 1342-1343. 

Leikin JB, Pauloucek FP.  2008. Polychlorinated biphenyls.  In:  Leikin JB, Pauloucek FP, eds.  
Poisoning and toxicology handbook. 4th ed.  Boca Raton, FL:  CRC Press, Taylor & Francis Group, 840. 

The treatment methods discussed below are general methods that would apply to any persistent, lipophilic 

chemical, and have not been tested for efficacy, indicating that they might not be effective in reducing the 

toxic effects of PBDEs. There is no indication of hazards associated with the treatments.  The methods 

are particularly appropriate for trying under conditions of acute exposure, but PBDEs are not acutely toxic 

chemicals.  Scenarios where life-threatening acute exposure would occur are unlikely, although accidental 

or intentional ingestion of the commercial products is a conceivable concern. The relevance of the 

methods to common background environmental exposures to these chemicals is unclear, and it is 

questionable whether current exposure and tissue levels in the general population are a health concern. 

3.11.1 Reducing Peak Absorption Following Exposure 

Ingested PBDEs are absorbed by the gastrointestinal tract of humans and animals (see Section 3.4).  

Although there are no specific recommendations for clinical treatment of acute intoxication from ingested 

PBDEs, recommendations based on experiences with PCBs are relevant. Treatments for acute poisonings 

from PCBs and related substances include the induction of emesis or gastric lavage and stomach pumping 

to decrease gastrointestinal absorption of the chemicals (Lemesh 1992). These procedures would not be 

beneficial if performed too long after exposure occurred.  Administration of activated charcoal as a slurry, 
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either aqueous or mixed with a saline cathartic or sorbitol, is frequently recommended to decrease the 

gastrointestinal absorption of PCBs, but the value of this treatment for reducing absorption of PCBs, 

PBBs, and PBDEs is unknown (HSDB 2012).  Repetitive administration of activated charcoal might be 

useful in preventing reabsorption of metabolites.  Rice bran fiber decreased absorption of PCBs in the 

gastrointestinal tract and had a stimulatory effect on fecal excretion of PCBs in rats (Takenaka and 

Takahashi 1991), but it is unclear if rice bran would be of benefit in poisoned humans. 

The detection of PBDEs in the serum and fat of people who were occupationally exposed to these 

chemicals indicates that PBDEs can be absorbed by the lungs, skin, and/or orally by hand-to-mouth 

contact.  Although no specific methods to reduce absorption of dermally applied or inhaled PBDEs were 

located, multiple washings of contaminated skin with soap and water immediately following exposure 

have been suggested to reduce the dermal absorption of PCBs (HSDB 2012).  Studies with monkeys 

showed that soap and water was as effective as or better than such solvents as ethanol, mineral oil, or 

trichlorobenzene in removing PCBs from skin (Wester et al. 1990).  Personal protective equipment 

(e.g., long sleeves, gloves, safety glasses, respiratory protection) and industrial hygiene programs 

generally help to limit occupational exposures. 

3.11.2 Reducing Body Burden 

As discussed in Section 3.4, while decaBDE is absorbed to a lesser degree than lower-brominated 

PBDEs, all PBDE congeners can accumulate in lipid-rich tissues. However, lower-brominated PBDEs 

are more likely to accumulate as they are more slowly metabolized and eliminated from the body. No 

studies evaluating methods to reduce body burden of PBDEs were located. 

Several methods to enhance the elimination of PBBs from the body have been examined in animals and 

may be applicable to PBDEs.  Methods for increasing the elimination of these chemicals include the 

restriction of caloric intake (to reduce total body fat), and the administration of various agents that interact 

with bile acids including activated charcoal, mineral oil, and bile-binding resins such as cholestyramine 

(Kimbrough et al. 1980; McConnell et al. 1980; Polin and Leavitt 1984; Polin et al. 1985, 1991; Rozman 

et al. 1982).  It should be mentioned, however, that based on the pharmacokinetic considerations 

discussed in Section 3.8.1, a rapid breakdown of fat, as might occur in dieting, might lead to a transient 

increase in PBDE levels in serum and other body tissues, possibly posing a significant re-exposure 

problem.  Although some of the studies observed no enhanced elimination (Kimbrough et al. 1980; 

McConnell et al. 1980), others identified treatments that were effective in enhancing the biliary and 



   
 

    
 
 

 
 
 
 
 

  

      

    

   

  

  

  

      

    

 

  

      

   

 

   

    

  

   

   

    

    

   

  

  

   

    

 

 

       
 

   

 

PBDEs 318 

3. HEALTH EFFECTS 

intestinal elimination of PBB residues (Polin et al. 1991; Rozman et al. 1982).  Polin et al. (1991) found 

that dietary intervention to reduce PBBs was dose dependent; treatment with 10% mineral oil and a 45% 

reduction in food intake resulted in a 69 and 23% reduction in body burden in rats fed PBBs at dietary 

concentrations of 0.1 and 100 ppm, respectively (Polin et al. 1991).  A combination of mineral oil, 

colestipol, and dietary restriction was successful in reducing the PBB body burdens in chickens (Polin 

and Leavitt 1984; Polin et al. 1985), while each treatment alone had no effect in reducing PBB body 

burden.  A 3-week treatment regimen that included dietary supplements of polyunsaturated oil, vitamins, 

and minerals, and heat stress has been applied in a pilot study to seven human subjects that were known to 

have been exposed to PBBs; following treatment, statistically significant reductions were measured in 

PBB concentrations in fat (Schnare et al. 1984).  Although the lack of a separate control group 

complicates interpretation of the results of this study (each subject served as his/her own control), this 

treatment was developed for the purpose of reducing body burdens of fat-soluble psychoactive drugs 

(Schnare et al. 1984). 

Additionally, a few human studies that have evaluated methods to reduce body burden of PCBs, another 

class of lipophilic compounds, may be applicable to PBDEs.  A liquid diet was used for 16 individuals 

who developed symptoms following exposure to PCBs and polychlorinated dibenzofurans (Imamura and 

Tung 1984).  Symptoms were reduced several months after the fasting period. This study is limited in 

that a control group was not used, and body burdens were not measured.  Based on information for PCBs, 

mobilization of PBDEs from adipose tissue is not recommended in individuals with hepatic or renal 

disease (Lemesh 1992). More recently, 14 individuals administered 15 g/day of dietary olestra (a non

absorbable lipid in potato crisps) for 1 year showed a steady decline in serum lipid concentrations of 

PCBs (Jandacek et al. 2014).  At the end of 1 year, PCB concentrations were significantly decreased by 

~8% compared with pre-trial values.  However, PCB concentrations were not significantly decreased 

compared with 14 concurrent controls administered 15 g/day of dietary olive oil (which showed a 

nonsignificant ~4% decrease in PCB concentration compared with pre-trial values). Further studies need 

to be conducted with larger study groups to determine the efficacy of olestra for reducing body burden of 

PCBs and/or other lipophilic compounds. 

3.11.3 Interfering with the Mechanism of Action for Toxic Effects 

There are no known methods for interfering with the mechanism of action of PBDEs.  Although the 

mechanism of action of PBDEs is not completely understood, PBDEs share some toxicological properties 

with other structurally similar polyhalogenated aromatic compounds, particularly PBBs, PCBs, CDDs, 
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and CDFs (ATSDR 1994, 1998, 2000).  Experimental evidence indicates that some PBB congeners exert 

toxic actions by a process involving several steps (Safe 1984).  This process begins with the binding of 

particular congeners to the AhR and leads to enhancement of the CYP1A1 gene expression (see 

Section 3.5).  The toxicity of specific congeners is related to their ability to assume a coplanar 

configuration for binding to AhR (Hardy 2002a).  It may be inferred that interfering with the initial step, 

binding to the receptor, or with any of the subsequent steps, would possibly prevent the expression of the 

toxic effects.  Several compounds have been identified that partially antagonize one or more AhR

mediated responses (Bannister et al. 1989); their use, however, has been limited to experimental studies in 

animals. These compounds were successful antagonists when given before or at the same time as the 

potent AhR activator TCDD (Bannister et al. 1989).  In contrast to PBBs, PCBs, and related compounds, 

AhR binding affinity of PBDE congeners is not correlated with planarity (Chen et al. 2001).  This may be 

due, in part, to increased distance between the phenyl rings relative to PBBs and PCBs.  It has also been 

speculated that the large size of the bromine atoms of PBDEs relative to chlorine atoms of PCBs may 

distort the AhR binding site so that coplanar configuration is not required (Chen et al. 2001).  Because 

AhR binding by PBDEs apparently differs in some respects from AhR binding by PBBs and other related 

compounds, AhR antagonists identified via experiments with PBBs, TCDD, and related compounds 

might not effectively antagonize AhR binding and effects of PBDEs. 

PBDEs may also cause toxicity by other mechanisms of action.  PBDE-induced decreases in thyroid T4 

hormone, which can affect neurobehavioral development, are likely to involve multiple mechanisms (see 

Section 3.5.3).  These include induction of hepatic microsomal enzymes, particularly UDPGT, which can 

increase the rate of T4 conjugation and excretion, and metabolic formation of hydroxy-metabolites of 

PBDEs.  PBDEs and their hydroxy metabolites can bind with high affinity to thyroid transport proteins 

because they are structurally similar to T4 hormone (i.e., are also hydroxy-halogenated diphenyl ethers) 

(see Section 3.5.2).  Effects of PBDEs on thyroid status via induction of hepatic enzymes, however, are 

unlikely to occur in humans, and the impact of hydroxy-metabolites on serum T4 needs further 

clarification.  Effects of PBDEs on the function and development of the nervous system could also 

involve disruption of calcium homeostatic mechanisms and intracellular signalling events (Chen et al. 

2010; Dingemans et al. 2008, 2010a, 2010b; Fan et al. 2010; Kodavanti 2003; Kodavanti and Derr-Yellin 

2001, 2002; Smolnikar et al. 2001; Wiegand et al. 2001), altered cholinergic or dopaminergic functions 

(Ankarberg et al. 2001; Bradner et al. 2013; Dreiem et al. 2010; Fischer et al. 2008; Mariussen and 

Fonnum 2002, 2003; Mariussen et al. 2003; Slotkin et al. 2013; Viberg and Eriksson 2011; Viberg et al. 

2002, 2003a, 2004b, 2005), and/or free radical-induced neuronal death (Chen et al. 2010; He et al. 2008b; 
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Huang et al. 2010; Reistad et al. 2002).  Clinical interventions designed to interfere with the 

aforementioned mechanisms have yet to be developed. 

3.12  ADEQUACY OF THE DATABASE 

Section 104(I)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the 

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether 

adequate information on the health effects of PBDEs is available.  Where adequate information is not 

available, ATSDR, in conjunction with the National Toxicology Program (NTP), is required to assure the 

initiation of a program of research designed to determine the health effects (and techniques for developing 

methods to determine such health effects) of PBDEs. 

The following categories of possible data needs have been identified by a joint team of scientists from 

ATSDR, NTP, and EPA.  They are defined as substance-specific informational needs that if met would 

reduce the uncertainties of human health assessment.  This definition should not be interpreted to mean 

that all data needs discussed in this section must be filled.  In the future, the identified data needs will be 

evaluated and prioritized, and a substance-specific research agenda will be proposed. 

3.12.1 Existing Information on Health Effects of PBDEs 

The existing data on health effects of inhalation, oral, and dermal exposure of humans and animals to 

PBDEs are summarized in Figure 3-8.  The purpose of this figure is to illustrate the existing information 

concerning the health effects of PBDEs.  Each dot in the figure indicates that one or more studies provide 

information associated with that particular effect. The dot does not necessarily imply anything about the 

quality of the study or studies, nor should missing information in this figure be interpreted as a “data 

need”.  A data need, as defined in ATSDR’s Decision Guide for Identifying Substance-Specific Data 

Needs Related to Toxicological Profiles (ATSDR 1989), is substance-specific information necessary to 

conduct comprehensive public health assessments.  Generally, ATSDR defines a data gap more broadly 

as any substance-specific information missing from the scientific literature. 

Studies on the systemic and carcinogenic effects of PBDEs in humans are based primarily on tissue 

PBDE levels without knowledge of route of exposure; in most cases exposure was attributed to the oral 

route (Figure 3-8).  Information on health effects of PBDEs in animals is available for all effect 

categories, but is mainly limited to oral exposure studies in animals. 
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Figure 3-8.  Existing Information on Health Effects of Polybrominated Diphenyl
 
Ethers (PBDEs)
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3.12.2 Identification of Data Needs 

Acute-Duration Exposure. Acute-duration studies of lower-brominated PBDEs have documented 

effects mainly on the developing nervous system, the developing reproductive system, the thyroid, and 

the liver of orally exposed rats and mice (Bruchajzer 2011; Bruchajzer et al. 2010, 2011; Darnerud and 

Sinjari 1996; Dingemans et al. 2007; Dufault et al. 2005; Eriksson et al. 2001, 2002b, 2006; Fischer et al. 

2008; Fowles et al. 1994; Gee and Moser 2008; Hallgren and Darnerud 2002; Hallgren et al. 2001, 2015; 

He et al. 2009, 2011; Hoppe and Carey 2007; Kuriyama et al. 2005, 2007; Richardson et al. 2008; Sand et 

al. 2004; Stoker et al. 2004; Talsness et al. 2005, 2008; Viberg et al. 2002, 2003a, 2004a, 2004b, 2005, 

2006; Zhou et al. 2001, 2002).  The most sensitive effects were observed in F0 and F1 rats exposed to 

≥0.06 mg/kg of pentaBDE on GD 6, including decreased maternal serum T4 in dams, decreased number of 

spermatids and sperm and daily sperm production in F1 males, decreased relative epididymis weight in 

F1 males, altered neurobehavior in F1 males, ultrastructural changes in ovaries of F1 females, and 

increased resorptions in F1 females mated to unexposed males (Kuriyama et al. 2005, 2007; Talsness et 

al. 2005).  Collectively, these end points were selected as a basis for an acute MRL for lower-brominated 

PBDEs.  While hepatic effects were consistently observed, they occurred at much higher doses 

(≥8 mg/kg/day). Two studies in mice indicate that immunosuppression is a potentially critical health end 

point for acute exposure to lower-brominated PBDEs; additional studies may provide more support for 

this end point (Darnerud and Thuvander 1998; Fowles et al. 1994; see discussions of data needs for 

Immunotoxicity).  

Several acute-duration studies of decaBDE have also documented effects on the developing nervous 

system in rats (Chen et al. 2014; Viberg et al. 2007) and mice (Buratovic et al. 2014; Johansson et al. 

2008; Rice et al. 2007, 2009; Viberg et al. 2003b).  The most sensitive neurobehavioral effects, decreased 

open field activity and impaired habituation, were observed in 2–6-month-old male mice that were 

exposed once to decaBDE at doses ≥2.22 mg/kg on PND 3 (Buratovic et al. 2014; Johansson et al. 2008; 

Viberg et al. 2003b). This effect was not observed at 1.34 mg/kg (Buratovic et al. 2014; Johansson et al. 

2008).  These neurobehavioral end points were selected as the basis for an acute MRL for decaBDE. The 

remaining acute database for decaBDE provides only limited data regarding hepatic, endocrine, body 

weight, and developmental effects in rats and mice (Bruchajzer et al. 2010; Carlson 1980b; Chi et al. 

2011; IRDC 1974; NTP 1986; Sakamoto et al. 2013; Zhou et al. 2001).  Additional studies, specifically 

neurodevelopmental studies in species other than mice and immunotoxicity screens, would help to clearly 
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establish the most sensitive target and species for acute exposure, as well as which animal toxicity data 

are the most relevant to humans and useful for assessing acute health risks of decaBDE. 

The inhalation database for acute-duration exposure to lower-brominated PBDEs is essentially limited to 

a single 14-day unpublished industry-sponsored studies of octaBDE in rats (Great Lakes Chemical 

Corporation 1978).  A liver effect level was identified in this study, but MRL estimation is precluded by 

small animal groups and incomplete assessment of other toxicological end points, particularly a lack of 

information on thyroid hormone levels.  Additional dose-response studies may provide an adequate basis 

for derivation of an acute inhalation MRL for lower-brominated PBDEs.  Acute-duration inhalation 

exposure toxicity studies of decaBDE were not located. 

Intermediate-Duration Exposure. Available intermediate-duration oral studies in animals indicate 

that the male reproductive system, the developing nervous system, the thyroid, and the liver are the main 

systemic targets of repeated exposures to lower-brominated PBDEs. The most sensitive end points were 

reproductive effects in male rats exposed to tetraBDE for 8 weeks, which identified a minimal LOAEL of 

0.001 mg/kg/day for a 34% decrease in serum testosterone levels (Zhang et al. 2013b). Histological 

changes in the testes were also observed at ≥0.03 mg/kg/day in the study by Zhang et al. (2013b) and a 

similar study in rats by Huang et al. (2015).  The minimal LOAEL for decreased serum testosterone was 

selected as the basis for an intermediate-duration MRL for lower-brominated PBDEs.  A study in mice 

supports that the male reproductive system is a target for tetraBDE toxicity, reporting histological 

changes in the testes at tetraBDE doses ≥0.045 mg/kg/day for 30 days (Wang et al. 2013).  As observed 

with acute exposure, altered neurobehavior was consistently observed in animals exposed to lower

brominated PBDEs for intermediate durations during development, with effects occurring at or above the 

doses of observed male reproductive effects (≥2 and ≥0.03 mg/kg/day in rats and mice, respectively) 

(Blanco et al. 2013; Bowers et al. 2015; Branchi et al. 2005; Cheng et al. 2009; Koenig et al. 2012; Ta et 

al. 2011; Woods et al. 2012).  Liver effects, including increased liver weight, hypertrophy, and 

histopathological changes, were observed following exposure to lower-brominated PBDEs at doses as 

low as 0.45 mg/kg/day (Becker et al. 2012; Bondy et al. 2011, 2013; Bruchajzer 2011; Bruchajzer et al. 

2012; Dunnick et al. 2012; IRDC 1976, 1977; Maranghi et al. 2013; Oberg et al. 2010; WIL Research 

Laboratories 1984; Zhang et al. 2014, 2015a, 2015b). 

The thyroid is also a critical target in both adult and developing animals, with consistent observations of 

reduced serum T4 levels at doses as low as 2.85 mg/kg/day and enlargement and histological alterations to 

the thyroid at doses as low as 0.45 mg/kg/day (Bansal et al. 2014; Becker et al. 2012; Bondy et al. 2011, 
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2013; Bowers et al. 2015; Driscoll et al. 2009; Dunnick et al. 2012; Ellis-Hutchings et al. 2006; Ernest et 

al. 2012; Hoppe and Carey 2007; IRDC 1977; Kodavanti et al. 2010; Maranghi et al. 2013; Miller et al. 

2012; Poon et al. 2011; Skarman et al. 2005; Stoker et al. 2004, 2005; Szabo et al. 2009; Wang et al. 

2011a; WIL Research Laboratories 1984; Zhou et al. 2002).  Essentially all of the available data on 

thyroid effects of lower-brominated PBDEs have been obtained from oral studies in rats.  It is speculated 

that the extent that PBDEs affect circulating levels of thyroid T4 or T3 might vary with species, and rats 

are often regarded as more sensitive than humans.  Studies designed to elucidate the mechanism(s) of 

action for thyroid and other effects of lower-brominated PBDEs would help to better understand how the 

animal toxicity data can best be used to identify target end points and assess health risks in humans. 

Available intermediate-duration oral studies provide limited evidence for effects in the pancreas, nervous 

system, liver, immune system, reproductive system, and several organ systems in developing animals 

following repeated exposures to decaBDE.  The most sensitive end points were pancreatic effects from a 

study in male rats exposed to decaBDE for 8 weeks, which identified a minimal LOAEL of 

0.05 mg/kg/day based on a 12% increase in serum glucose levels (Zhang et al. 2013a). The increase in 

serum glucose is considered to be part of a spectrum of effects indicative of altered insulin homeostasis 

and toxicity to the pancreas, including decreased serum insulin and morphological changes in pancreatic 

islet cells, following decaBDE exposure to doses ≥1 mg/kg/day (Zhang et al. 2013a).  This minimal 

LOAEL for elevated serum glucose levels was used as a basis for the intermediate-duration oral MRL for 

decaBDE.  Other effects observed following intermediate-duration exposure to decaBDE were observed 

at higher doses.  In animals exposed during development, adverse effects included histopathological 

changes in the liver, kidney, and testes of rats exposed to ≥2 mg/kg/day (Fujimoto et al. 2011; Tseng et al. 

2008, 2013); altered hippocampal electrophysiology in rats exposed to 20.1 mg/kg/day (Xing et al. 2009); 

and impaired immunity in mice exposed to 2,900 mg/kg/day (Watanabe et al. 2010b).  In adult animals, 

observed effects following intermediate-duration decaBDE exposure included decreased anxiety in mice 

at doses 20 mg/kg/day (Heredia et al. 2012); histopathological changes in the ovaries, liver, spleen, and 

thymus and altered immune end points (T-cell distribution, lymphocyte proliferation, serum 

immunoglobulins) in rats exposed to 300 mg/kg/day (Liu et al. 2012); altered CD4 T-cell function in mice 

exposed to 800 mg/kg/day (Feng et al. 2016b); reduced serum testosterone, reduced sperm count and 

viability, and degenerative changes in the seminiferous tubules in mice exposed to 950 mg/kg/day (Sarkar 

et al. 2015); and histopathological changes in the liver in mice exposed to 9,400 mg/kg/day (Lee et al. 

2010; Liu et al. 2012; Sakamoto et al. 2013).  Since the majority of the observed effects lack supporting 

evidence from other studies, and many were single-dose studies, additional intermediate-duration studies 

evaluating these end points following decaBDE exposure at multiple doses would help to better 



   
 

    
 
 

 
 
 
 
 

   

      

    

 

    

  

 

  

 

 

      

        

    

  

      

  

   

   

  

    

  

   

 

       

    

  

   

     

   

   

      

    

     

     

PBDEs 325 

3. HEALTH EFFECTS 

understand how the animal toxicity data can best be used to identify target end points and assess health 

risks in humans. Of particular interest would be additional studies evaluating altered insulin homeostasis, 

the critical effect that serves as the basis for the current intermediate-duration oral MRL for decaBDE. 

The inhalation database for intermediate-duration exposure to PBDEs consists of one well-conducted 

13-week unpublished industry study of octaBDE in rats (Great Lakes Chemical Corporation 2000).  

Hepatic, nasal, lung, thyroid, and ovarian effects were observed, and a NOAEL for changes in thyroid 

hormone levels was used as the basis for estimation of an intermediate-duration inhalation MRL. 

Intermediate-duration inhalation exposure toxicity studies of decaBDE were not located.  

Chronic-Duration Exposure and Cancer. One chronic study of high purity decaBDE has been 

conducted.  In this study, a commercial decaBDE product (94–97% pure) was fed to rats and mice for 

103 weeks (NTP 1986).  Comprehensive gross and histological examinations were performed on all 

animals, but no hematology, clinical chemistry, or urine indices, or thyroid hormone levels, were 

evaluated. The lowest tested dose in the study, 1,120 mg/kg/day in male rats, was a LOAEL for a liver 

lesion (neoplastic nodules) that is precancerous and associated with thrombosis in the same tissue, 

precluding estimation of an MRL.  Additional chronic dose-response information would provide 

information on the NOAEL/LOAEL threshold and an appropriate basis for derivation of a chronic MRL 

for decaBDE.  Neoplastic effects in this study included increased incidences of neoplastic nodules in the 

liver in the male and female rats and hepatocellular adenoma or carcinoma (combined) in the male mice. 

Slightly elevated incidences of thyroid gland follicular cell tumors were additionally observed in exposed 

male mice, although the increases were equivocal. 

In the only other chronic oral study available, rats were fed a 77.4% pure commercial decaBDE mixture 

(containing 21.8% nonaBDE and 0.8% octaBDE) for approximately 2 years (Kociba et al. 1975; Norris et 

al. 1975a).  Evaluations that included clinical signs, body weight, food consumption, hematology, clinical 

chemistry, urine indices, and comprehensive histological examinations showed no exposure-related 

effects.  The highest tested dose (1 mg/kg/day) was a NOAEL, but this effect level is not an appropriate 

basis for MRL estimation due to insufficient sensitivity of the study.  In particular, a chronic oral MRL 

based on this study would be higher than the intermediate MRL.  No exposure-related neoplastic changes 

were found, but the power of this study to detect carcinogenic effects is limited by the low dose levels. 

Considering the limitations of the available data, well-designed chronic toxicity studies of lower

brominated PBDEs may provide adequate bases for MRL derivation and cancer assessment for lower

brominated PBDEs.  Evaluations that include the thyroid and neurobehavioral end points would be 
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particularly informative because acute and intermediate-duration oral studies indicate that the thyroid and 

developing central nervous system are particularly sensitive targets for lower-brominated PBDEs. 

Genotoxicity. Limited information was located regarding the genotoxicity of PBDEs in humans.  A 

study of Chinese workers exposed to PBDEs suggested an association between levels of total PBDEs in 

blood and frequency of micronuclei in peripheral lymphocytes, but no causality was demonstrated (Yuan 

et al. 2008).  Moreover, other pollutants could have played a role.  A study of the general population from 

Korea did not find an association between serum levels of 2,2’,4,4’-tetraBDE and 2,2’,4,4’,5-pentaBDE 

and chromosome telomere length in peripheral lymphocytes (Shin et al. 2010).  Cytogenetic examination 

of additional populations previously or currently exposed to PBDEs would provide valuable information.  

A study in mice reported that maternal exposure to decaBDE during gestation resulted in sperm DNA 

damage in male offspring examined at 71 days of age (Tseng et al. 2013).  Additional studies trying to 

replicate these results would be helpful.  Testing the offspring for fertility would also be informative. 

DecaBDE and 2,2’,4,4’,5-pentaBDE have been tested in prokaryotic organisms and both yielded negative 

results in gene mutation tests (Evandri et al. 2003; NTP 1986).  Relatively few PBDE congeners have 

been examined for genetic effects in mammalian cells.  DNA damage and increased recombination 

activity have been reported (He et al. 2008a, 2008b; Helladay et al. 1999; Ji et al. 2011; Pellacani et al. 

2012).  Further studies with the PBDE congeners that are most frequently found in the environment and 

in human blood and tissues would be valuable.  Studies designed to explore possible mechanisms of 

genotoxicity of PBDEs and also of metabolites would also be valuable. 

Reproductive Toxicity. Reports of five one-generation studies in rats and mice were located.  No 

exposure-related changes were observed in reproductive end points (number of pregnancies, gestation 

length, number, size, or sex ratio of litters) at pentaBDE doses up to 25 mg/kg/day or tetraBDE doses up 

to 1 mg/kg/day (Bondy et al. 2011, 2013; Koenig et al. 2012; Poon et al. 2011; Ta et al. 2011; Woods et 

al. 2012).  No fertility impairments were observed in F1 males or females that were exposed once to 

pentaBDE on GD 6 at doses up to 0.3 mg/kg/day, when mated to unexposed animals (Kuriyama et al. 

2005; Talsness et al. 2005, 2008).  However, in a one-generation study in mink, females exposed to 

pentaBDE at doses ≥0.25 mg/kg/day from pre-mating day 28 through PNW 6 did not whelp (Bull et al. 

2007; Zhang et al. 2009).  It is not clear in the study reported by Bull et al. (2007) whether mink exposed 

to 0.25 mg/kg/day never became pregnant or had complete litter loss.  However, Zhang et al. (2009) 

reported that female mink exposed to 0.31 mg/kg/day had no exposure-related changes in mating success; 

rather, sows showed complete litter loss with 70% showing clear postimplantation loss.  Despite a lack of 

effects from most one-generation studies, reduced serum testosterone and testicular damage (increased 
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multinucleated giant cells, germ cell loss, and apoptotic cells) was reported in adult male rats and mice 

exposed to tetraBDE doses as low as 0.001 and 0.045 mg/kg/day, respectively (Huang et al. 2015; Wang 

et al. 2013; Zhang et al. 2013b).  Reduced serum testosterone in rats exposed to ≥0.001 mg/kg/day for 

8 weeks was selected as the critical effect for the intermediate-duration MRL for lower-brominated 

PBDEs; therefore, additional studies with other congeners evaluating testicular damage may better 

characterize the reproductive toxic potential of PBDEs and assure the adequacy of the intermediate oral 

MRL.  Also, studies in other species (e.g., rabbits) may be warranted to investigate species-specific 

reproductive effects and two-generation studies designed to assess effects on fertility in both sexes would 

better characterize the potential for reproductive toxicity as a result of exposure to lower-brominated 

PBDEs. 

For decaBDE, information on the reproductive toxicity is limited to a single one-generation oral study in 

rats that found no exposure-related functional effects following exposure to an impure decaBDE mixture 

containing lower-brominated PBDEs (77% decaBDE, 22% nonaBDE, 0.8% octaBDE) at dietary doses up 

to 100 mg/kg/day for 60 days prior to mating through PND 21 (Dow Chemical Co. 1975; Norris et al. 

1975a). Studies that evaluated reproductive organ histology following exposure to decaBDE generally 

did not report detectable effects.  As suggested for lower-brominated PBDEs, studies in other species may 

be warranted to investigate species-specific reproductive effects and two-generation studies designed to 

assess effects on fertility in both sexes would better characterize the potential for reproductive toxicity as 

a result of exposure to decaBDE. 

Developmental Toxicity. Numerous oral developmental toxicity studies have shown no evidence of 

teratogenicity in rats or rabbits exposed to lower-brominated PBDEs or decaBDE, although fetotoxic 

effects, including skeletal ossification variations at maternally toxic doses, have occurred with exposures 

to lower-brominated mixtures (Argus Research Laboratories 1985a, 1985b; Biesemeier et al. 2011; 

Blanco et al. 2012; Breslin et al. 1989; Chi et al. 2011; Dow Chemical Co. 1975, 1985; Ellis-Hutchings et 

al. 2009; Hardy et al. 2002; Life Science Research Israel Ltd. 1987; Norris et al. 1975a; WIL Research 

Laboratories 1986). The available evidence adequately shows that teratogenicity and fetal toxicity is not 

a critical effect of concern for either lower-brominated PBDEs or decaBDE.  However, there is evidence 

that the developing nervous and endocrine systems, and potentially the developing reproductive and 

immune systems are sensitive targets of particular PBDE congeners.  Numerous studies show that 

developmental exposure can lead to neurological changes at later life stages, as rats and mice exposed 

pre- or peri-natally to lower-brominated PBDEs or decaBDE show neurobehavioral alterations following 

exposure to lower-brominated PBDEs and decaBDE at doses ≥0.06 and ≥2.22 mg/kg/day, respectively, as 
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well as several other neurological effects at higher doses, including delayed ontogeny of reflexes, 

ultrastructural changes, altered nicotinic receptor density, altered electrophysiology, and altered gene and 

protein expression levels (Biesemeier et al. 2011; Blanco et al. 2013; Branchi et al. 2001, 2002, 2005; 

Cheng et al. 2009; Eriksson et al. 2001, 2002b, 2006; Fischer et al. 2008; Fujimoto et al. 2011; Gee and 

Moser 2008; He et al. 2009, 2011; Johansson et al. 2008; Koenig et al. 2012; Kuriyama et al. 2004, 2005; 

Rice et al. 2007; Sand et al. 2004; Ta et al. 2011; Viberg et al. 2002, 2003a, 2003b, 2004a, 2004b, 2005, 

2006, 2007; Woods et al. 2012; Xing et al. 2009).  Developing animals exposed to lower-brominated 

PBDEs, but not decaBDE, also consistently showed decreased serum T4 levels, although these effects 

may be transient (Blanco et al. 2013; Bondy et al. 2011, 2013; Ellis-Hutchings et al. 2006; Kodavanti et 

al. 2010; Kuriyama et al. 2007; Miller et al. 2012; Poon et al. 2011; Shah et al. 2011; Skarman et al. 2005; 

Szabo et al. 2009; Wang et al. 2011a; Zhang et al. 2009; Zhou et al. 2002). There is limited evidence that 

developmental exposure to lower-brominated PBDEs may effect reproductive system development 

(Kuriyama et al. 2005; Talsness et al. 2005, 2008) and that both lower-brominated PBDEs and decaBDE 

may effect immune system development (Bondy et al. 2013; Watanabe et al. 2008, 2010b).  Additional 

studies evaluating reproductive and immune system development following exposure to PBDEs would 

better characterize the developmental toxic potential of PBDEs on these systems. 

Immunotoxicity. Information regarding the immunosuppressive potential of PBDEs is limited. 

Immune function assays in adult animals are limited to lower-brominated PBDEs. Acute-duration oral 

studies in animals exposed to pentaBDE reported that plaque-forming splenic cell antibody response to 

injected sheep red blood cells was significantly reduced in mice exposed to 72 mg/kg/day pentaBDE for 

14 days (Fowles et al. 1994) and in vitro production of IgG immunoglobulin from pokeweed mitogen

stimulated splenocytes was reduced in mice, but not in rats, exposed to 36 mg/kg/day pentaBDE for 

14 days (Darnerud and Thuvander 1998).  The only intermediate-duration immune function assay 

reported no exposure-related immune effects in the KLH antibody production assay or the PHA skin 

challenge in mink exposed to pentaBDE at doses up to 0.78 mg/kg/day for 9 weeks (Martin et al. 2007).  

The majority of studies report no histological changes in immune tissues with acute- or intermediate-

duration exposure to PBDEs.  However, as discussed in the Developmental section above, exposure to 

lower-brominated PBDEs or decaBDE during development may lead to impaired immune function 

(Bondy et al. 2013; Watanabe et al. 2008, 2010b). Additional oral studies using a battery of 

immunological tests and a lower range of doses for several congeners, including decaBDE, would serve 

to better characterize the immunotoxic potential of PBDEs. 
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Neurotoxicity. While a large body of evidence indicates that the developing nervous system is a target 

for PBDE toxicity, a limited amount of information is available on neurological effects of PBDEs in adult 

animals.  In a comprehensive neurotoxicity screen, no adverse effects were observed in rats exposed once 

to pentaBDE at doses up to 1.2 mg/kg/day (Belles et al. 2010).  In a neurobehavioral study, no exposure-

related changes were observed in open-field behavior, anxiety-like behavior, or learning and memory in 

male rats exposed to low doses of pentaBDE at doses up to 0.015 mg/kg/day for 90 days (Daubie et al. 

2011).  In a higher dose study, impaired attention and inhibitory control were observed in male mice 

exposed to pentaBDE at 26.2 mg/kg/day for 125 days; no exposure-related changes were observed at 

17.5 mg/kg/day (Driscoll et al. 2009).  Impaired learning and memory were observed in male rats exposed 

to tetraBDE at doses ≥0.1 for 30 days (Yan et al. 2012).  

For decaBDE, no studies evaluating neurological end points in adult rats or mice following acute 

exposure were identified. Decreased anxiety behavior was observed in male mice exposed to decaBDE 

for 15 days; however, no exposure-related changes were observed in a functional observation battery or 

learning and memory (Heredia et al. 2012).  In another study, no changes were observed in open-field 

behavior of male rats exposed to decaBDE at doses up to 50 mg/kg/day 90 days (Wang et al. 2011b).  No 

overt signs of neurotoxicity were observed in rats and mice exposed to decaBDE in estimated dietary 

doses as high as 16,000–19,000 mg/kg/day for 14 days, 8,000–9,000 mg/kg/day for 13 weeks, or 2,550– 

7,780 mg/kg/day for 103 weeks (NTP 1986).  Although the high doses and extended exposure durations 

provided opportunities for the induction and/or development of clinical signs, the study is limited by lack 

of testing for subtle behavioral changes and neurodevelopmental effects.  Additional comprehensive 

neurotoxicity batteries in adult animals exposed orally to repeat doses of PBDEs would better characterize 

the potential for PBDEs to cause neurotoxic effects in adults. 

Epidemiological and Human Dosimetry Studies. There are numerous epidemiological studies 

evaluating potential associations between tissue PBDE concentrations and adverse health effects; 

however, none of the studies provided quantitative exposure information.  Therefore, the available 

epidemiological studies are not useful for quantitative risk assessment.  Available studies indicate that 

PBDE exposure may lead to neurodevelopmental effects (Adgent et al. 2014; Chao et al. 2011; Chen et al. 

2014; Chevrier et al. 2016; Cowell et al. 2015; Ding et al. 2015; Eskenazi et al. 2013; Gascon et al. 2012; 

Herbstman et al. 2010; Hoffman et al. 2012; Roze et al. 2009; Sagiv et al. 2015; Shy et al. 2011; Vuong et 

al. 2016a).  Evidence for associations between PBDE exposure and other effects in humans are 

inconsistent between studies, including observations of altered thyroid hormone levels (Abdelouahab et 

al. 2011, 2013; Bloom et al. 2008, 2014; Chevrier et al. 2010; Dallaire et al. 2009; Eggesbo et al. 2011; 
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Eguchi et al. 2015; Hagmar et al. 2001; Herbstman et al. 2008; Huang et al. 2014; Julander et al. 2005; 

Kicinski et al. 2012; Kim et al. 2011a, 2011d, 2012a, 2012b, 2013a; Leijs et al. 2012; Lignell et al. 2016; 

Makey et al. 2016; Mazdai et al. 2003; Shy et al. 2012; Stapleton et al. 2011; Turyk et al. 2008; Yuan et 

al. 2008; Wan et al. 2010; Wang et al. 2010; Xu et al. 2014a, 2014b, 2015a), male reproductive effects 

(Abdelouahab et al. 2011; Akutsu et al. 2008; Hagmar et al. 2001; Johnson et al. 2013; Meeker et al. 

2009; Mumford et al. 2015; Turyk et al. 2008), female reproductive effects (Buck Louis et al. 2013; Chao 

et al. 2007, 2010; Chen et al.2011; Harley et al. 2010; Johnson et al. 2012; Karmaus et al. 2011; Wainman 

et al. 2016), non-neurological developmental effects (Agay-Shay et al. 2015; Carmichael et al. 2010; 

Chao et al. 2007; Chen et al. 2015; Erkin-Cakmak et al. 2015; Foster et al. 2011; Harley et al. 2011; Kim 

et al. 2011d, 2012a, 2012b, 2015; Koskenniemi et al. 2015; Leijs et al. 2008; Lopez-Espinosa et al. 2015; 

Ma et al. 2012a; Main et al. 2007; Mazdai et al. 2003; Meijer et al. 2012; Miranda et al. 2015; Müller et 

al. 2016; Ochiai et al. 2014; Peltier et al. 2015; Ren et al. 2011; Robledo et al. 2015a; Serme-Gbedo et al. 

2016; Tan et al. 2009; Vuong et al. 2016b; Warembourg et al. 2016; Windham et al. 2015a; Wu et al. 

2010; Xu et al. 2015b), and risk for diabetes (Airaksinen et al. 2011; Lee et al. 2011; Lim et al. 2008; 

Smarr et al. 2016; Turyk et al. 2015).  In other epidemiological studies, serum PBDE levels were not 

significantly associated with carotid atherosclerosis, risk of stroke, bone mineral density, immune 

function, non-Hodgkin’s lymphoma (Fernlof et al. 1997; Hardell et al. 1998; Kumar et al. 2014a, 2014b; 

Lee et al. 2012; Lind et al. 2012; Lindstrom et al. 1998;Weiss et al. 2006), breast cancer (Holmes et al. 

2014; Hurley et al. 2011), thyroid cancer (Aschebrook-Kilfoy et al. 2015), prostate cancer (Pi et al. 2016), 

reproductive effects in men (Toft et al. 2014), Polycystic Ovary Syndrome (Vagi et al. 2014), or uterine 

fibroids (Trabert et al. 2015).  

Epidemiological studies with quantitative estimates of exposure would be useful for quantitative risk 

assessment.  Considering the possibility that PBDEs can be transferred to the fetus across the placenta and 

that greater amounts might be transferred to nursing infants via breast milk, as well as evidence that 

perinatal exposure to PCBs and other similar chemicals may induce subtle neurological damage and 

immunological and thyroid effects in children, transgenerational studies would be particularly 

informative. Additional studies evaluating the potential link between pre- and peri-natal PBDE exposure 

and childhood behavior disorders, such as Autism Spectrum Disorder (ASD) and ADHD, have been 

specifically requested by the scientific community based upon potential links between these disorders and 

endocrine disruption (de Cock et al. 2012; Messer 2010).  However, limitations that are likely to constrain 

epidemiological investigations, such as unmeasured PBDE exposure concentrations and lack of controls 

for confounding co-exposures, may be difficult to address. Studies that assess PBDE concentrations in 

serum or breast milk along with concentrations of other persistent organic pollutants (POPs), such as 
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PCBs, PCDDs, and /or PCDFs, would be useful to evaluate responses that may be co-dependent on other 

persistent lipophilic agents. 

Biomarkers of Exposure and Effect. 

Exposure.  PBDEs accumulate in adipose tissue, serum, and breast milk of the general population due to 

their lipophilic characteristics.  Concentrations of PBDEs in breast milk are useful, non-invasive markers 

of maternal body burdens and of in utero and lactational exposures, but body burden assessments are 

limited by a lack of time-trend data for PBDEs in the milk of U.S. populations (Hooper and McDonald 

2000). Breast milk monitoring programs would provide time-trend data that would verify whether 

regulatory action to limit the use of PBDEs is reversing the previous trend of an exponential increase in 

PBDE concentrations in breast milk (Norén and Meironyté 1998, 2000).  Studies on the predictive value 

of concentrations of PBDEs in serum and adipose tissue could provide useful information for detection 

and monitoring of exposure.  It should be noted, however, that solubilities in adipose and breast milk are 

likely to vary with the congener. For example, decaBDE is much less soluble in adipose than pentaBDE. 

These differences must be considered when designing studies evaluating PBDE exposure.  Recent studies 

have indicated that PBDE concentrations in hair may also be useful to estimate exposure levels (Aleksa et 

al. 2012a, 2012b; Malarvannan et al. 2013), although Zheng et al. (2011) reported that PBDE 

concentrations in hair were not correlated with PBDE concentrations in indoor dust from urban, e-waste, 

and rural areas in South China.  Additional studies would be useful to validate this approach. 

A potential biomarker of exposure to PBDEs relates to their effect on the thyroid gland.  Thyroid changes 

in rats and mice include reduced serum T4 levels, with no changes in serum TSH (Darnerud and Sinjari 

1996; Fowles et al. 1994; Hallgren and Darnerud 1998; WIL Research Laboratories 1984; Zhou et al. 

2001, 2002).  However, using thyroid changes as a biomarker may not be reliable, as thyroid changes are 

not specific to exposure to PBDEs and the effects associated with the thyroid in non-clinical studies are 

likely specific to the rodent and may or may not be directly relevant to the human.  Additional studies 

could characterize thyroid effects of PBDEs in humans and develop specific correlations between levels 

and duration of exposure and alterations in serum levels of T4. 

Effect. Biomarkers that could be used to characterize health effects caused specifically by exposure to 

PBDEs have not been identified.  Additional information on the mechanisms of toxicity may suggest a 

useful biomarker of effect; however, at this time, there is little to suggest that such biomarkers exist. 
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Absorption, Distribution, Metabolism, and Excretion. No information was located regarding 

the toxicokinetics of PBDEs in humans following controlled oral exposure, although information of 

toxicokinetics has been gathered based on levels of PBDEs and metabolites in tissues of environmentally 

exposed individuals and numerous animal studies and in vitro studies.  

Absorption studies in animals indicate that decaBDE is absorbed to a lesser degree than lower-brominated 

PBDEs.  The most recent and best available estimates of oral absorption efficiencies indicate a range of 

70–85% for the tetraBDE (BDE 47), pentaDE (BDE 99, BDE 100), and hexaBDE (BDE 153, BDE 154), 

and 10–26% for decaBDE (BDE 209) (Chen et al. 2006; Hakk et al. 2002a, 2002b, 2009; Klasson Wehler 

et al. 2001; Morck and Klasson Wehler 2001; Morck et al. 2003; Örn and Klasson-Wehler 1998; Riu et 

al. 2008; Sandholm et al. 2003; Sanders et al. 2006a, 2006b; Staskal et al. 2005).  Quantitative absorption 

studies in humans could corroborate the conclusions on oral uptake in animals that are based on 

elimination and excretion data. 

Distribution studies in animals indicate that lower-brominated BDE congeners, following absorption and 

an initial wide distribution, are preferentially accumulated in adipose tissues (Chen et al. 2006; El Dareer 

et al. 1987; Hakk et al. 2002a, 2009; Morck and Klasson-Wehler 2001; Morck et al. 2003; Norris et al. 

1975a; NTP 1986; Örn and Klasson-Wehler 1998; Riu et al. 2008; Sanders et al. 2006a, 2006b; Staskal et 

al. 2005, 2006a).  In comparison, decaBDE is more readily distributed to highly perfused tissues and less 

readily distributed to adipose tissues.  Evidence for the transfer of PBDEs from pregnant mothers to the 

developing fetus and for the transfer of PBDEs from maternal blood to breast milk and then to nursing 

infants comes from a number of studies of PBDE concentrations in maternal and cord serum samples and 

breast milk samples from groups of non-occupationally exposed women.  In general, the tetra- and penta

brominated PBDEs have been the predominant congeners detected in maternal and cord serum samples 

and breast milk samples, but some recent studies assaying for a wider range of PBDE congeners have 

found evidence for distribution of hepta-, octa-, or decaBDEs into cord serum and breast milk (Antignac 

et al. 2009, 2008; Chen et al. 2013; Daniels et al. 2010; Hites 2004; Kawashiro et al. 2008; Li et al. 

2013a; Malarvannan et al. 2013; Mazdai et al. 2003; Meijer et al. 2008; Park et al. 2011; Qiu et al. 2009; 

Schecter et al. 2010, 2006; Vizcaino et al. 2011; Wan et al. 2010).  Maternal transfer of both lower

brominated PBDEs and decaBDE has also been shown in animal studies (Cai et al. 2011; Zhang et al. 

2011).  The available studies appear adequate to characterize distribution of PBDEs. 

Current evidence indicates that CYP2B6-mediated metabolism of BDE 47 and BDE 99 produces multiple 

hydroxylated metabolites via hydroxylation and ether bond cleavage, based on in vitro studies with 
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human liver microsomes or hepatocytes and human recombinant CYPs (Erratico et al. 2012, 2013; Feo et 

al. 2013). The major metabolites of BDE 47 and BDE 99 formed by human liver microsomes were not 

the same as those identified using rat liver microsomes (Erratico et al. 2013, 2012, 2011).  Different 

classes of CYP enzymes appear to be involved in in vitro rat liver metabolism of BDE 47 and BDE 99: 

CYP1A1, CYP2A2, and CYP3A1 for BDE 47 and CYP1A1, CYP2A2, CYP2B1, and CYP3A1 for BDE 

99 (Erratico et al. 2011).  Production of hydroxylated metabolites of BDE 153 (Lupton et al. 2009) and 

BDE 209 (Stapleton et al. 2009) has not been demonstrated with human liver microsomes or hepatocytes. 

It is uncertain if these latter findings are reflective of a limited in vivo capacity of humans to metabolize 

these BDE congeners or because the proper in vitro conditions for metabolizing these congeners were not 

provided.  Currently, studies of metabolism of BDE 47 and BDE 99 using in vitro human and rat systems 

have found evidence of metabolic oxidative debromination only with BDE 47 in human liver 

microsomes.  In contrast, a number of in vivo studies have found evidence for oxidative debromination by 

analysis of feces collected from rats exposed to BDE 47 (Marsh et al. 2006), BDE 99 (Hakk et al. 2002a), 

BDE 100 (Hakk et al. 2006), BDE 154 (Hakk et al. 2009), and BDE 209 (Morck et al. 2003; Sandholm et 

al. 2003). Additional metabolism studies would help to characterize the enzymes involved as well as the 

transformation of some congeners to biologically active hydroxylated BDEs.  There are still data gaps in 

the toxicokinetics of decaBDE, including an incomplete understanding of the debromination of decaBDE 

to lower-brominated BDEs. 

The detection of PBDEs in human breast milk samples suggest that breast milk represents an elimination 

route of absorbed PBDEs in women (see Jakobsson et al. 2012 and Frederiksen et al. 2009 for reviews of 

PBDE levels in breast milk); however, studies do not provide a clear account of the degree to which 

PBDEs are cleared from the body during breastfeeding (Hooper et al. 2007; Jakobsson et al. 2012; 

LaKind et al. 2009; Thomsen et al. 2010).  Rat studies indicate that ingested PBDEs are principally 

excreted in the feces with <2% of administered radioactivity excreted in the urine within 3 days of dose 

administration (Chen et al. 2006; Hakk et al. 2002a, 2006; Morck et al. 2003; Norris et al. 1973, 1975b; 

Orn and Klasson-Wehler 1998; Sanders et al. 2006a; Riu et al. 2008). However, a different elimination 

pattern has been observed in mice, especially with BDE 47. In mice given single oral doses of 
14C-labeled PBDE congeners, fecal and urinary elimination were principal routes of elimination for 

BDE 47 (Orn and Klasson-Wehler 1998; Sanders et al. 2006a), whereas fecal elimination appeared to be 

more important than urinary elimination with BDE 99 (Chen et al. 2006) and BDE 153 (Sanders et al. 

2006b).  Complementary studies with female C57BL/6J given single intravenous 1-mg/kg doses of 
14C-labeled BDE 47, BDE 99, BDE 100, or BDE 153 also indicate that the importance of urinary 

excretion in mice is congener specific (Staskal et al. 2006b).  Quantitative studies in humans could 
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determine which excretion route is more relevant for humans (feces or urine) for different congeners 

based on elimination and excretion data.  Additionally, further studies regarding the degree of elimination 

in breast milk during breast feeding could better characterize exposure risks for breastfeeding infants. 

Comparative Toxicokinetics. Insufficient data are available to determine whether there are 

qualitative differences in the toxicokinetic disposition of PBDEs between humans and animals and among 

animal species.  However, elimination studies in rats and mice (discussed above) highlight that 

toxicokinetics may differ between species.  Differences are likely to be dependent on the specific 

congener or mixture studied, and pharmacokinetic modeling studies could help to determine the validity 

of extrapolating data.  Most of the available toxicokinetic studies of PBDEs have been performed in rats, 

and studies in other species could help to ascertain the most relevant animal model. 

Methods for Reducing Toxic Effects. The mechanism by which PBDEs enter the blood stream is 

not known, there are no established methods for reducing body burden of PBDEs, and the mechanisms of 

toxic action of PBDEs are incompletely understood.  A more complete characterization of the cytosolic 

AhR protein and understanding of physiological effects of receptor blockage would be useful for the 

possible identification of blockers of AhR-mediated toxic effects.  Further studies aimed at elucidating the 

nonreceptor-mediated mechanism of action of some PBDEs would also be valuable. 

Children’s Susceptibility. Data needs relating to both prenatal and childhood exposures, and 

developmental effects expressed either prenatally or during childhood, are discussed in detail in the 

Developmental Toxicity subsection above. 

Body burden data, as well as intake modeling, suggest that infants and toddlers have higher exposures to 

PBDEs as compared to older children or adults (EPA 2010; Lorber 2008; Trudel et al. 2011; Wong et al. 

2013).  Several epidemiological studies have reported results suggestive of an effect of PBDE on 

neurodevelopment in children (Adgent et al. 2014; Chao et al. 2011; Chen et al. 2014; Chevrier et al. 

2016; Cowell et al. 2015; Ding et al. 2015; Eskenazi et al. 2013; Gascon et al. 2012; Herbstman et al. 

2010; Hoffman et al. 2012; Roze et al. 2009; Sagiv et al. 2015; Shy et al. 2011; Vuong et al. 2016a), and 

these findings are supported by developmental studies in animals (Biesemeier et al. 2011; Blanco et al. 

2013; Branchi et al. 2001, 2002, 2005; Cheng et al. 2009; Eriksson et al. 2001, 2002, 2006; Fischer et al. 

2008; Fujimoto et al. 2011; Gee and Moser 2008; He et al. 2009, 2011; Johansson et al. 2008; Koenig et 

al. 2012; Kuriyama et al. 2004, 2005; Rice et al. 2007; Sand et al. 2004; Ta et al. 2011; Viberg et al. 2002, 

2003a, 2003b, 2004a, 2004b, 2005, 2006, 2007; Woods et al. 2012; Xing et al. 2009).  Epidemiological 
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studies in infants are inconclusive regarding thyroid effects and exposure to PBDEs (Abdelouahab et al. 

2013; Herbstman et al. 2010; Kim et al. 2011a, 2012a; Lin et al. 2011; Mazdai et al. 2003; Shy et al. 

2012); however, numerous animal studies indicated that developmental exposure to lower-brominated 

PBDEs result in thyroid hormone alterations (Blanco et al. 2013; Bondy et al. 2011, 2013; Ellis-

Hutchings et al. 2006; Kodavanti et al. 2010; Kuriyama et al. 2007; Miller et al. 2012; Poon et al. 2011; 

Shah et al. 2011; Skarman et al. 2005; Szabo et al. 2009; Wang et al. 2011a; Zhang et al. 2009; Zhou et al. 

2002).  Additional studies would better characterize the potential susceptibility of children to the effects 

of PBDEs on the thyroid and neurodevelopment, particularly considering the possibility that these effects 

are related to the dependence of central nervous system development on thyroid hormones. 

Data from two human epidemiological studies suggest that PBDE exposure may alter reproductive system 

development in boys (Main et al. 2007; Meijer et al. 2012).  In contrast, other studies found no 

associations between serum or adipose tissue PBDE concentrations and reproductive development 

(Carmichael et al. 2010; Koskenniemi et al. 2015; Leijs et al. 2008).  These findings, along with limited 

evidence of reproductive effects in animals exposed to lower-brominated PBDEs during development 

(Kuriyama et al. 2005; Talsness et al. 2005, 2008), indicate that additional studies of reproductive 

development in young animals would help to more fully assess children’s susceptibility to PBDEs. 

No information is available regarding the immunosuppressive potential of PBDEs in children, but serum 

levels of BDE 28 and 209 were found associated with an increased risk of asthma in a study of 3–6-year

old Chinese children (Meng et al. 2016). Limited evidence in young animals exposed to PBDEs (Bondy 

et al. 2013; Watanabe et al. 2008, 2010b) indicates that additional studies of immune competence in 

developing animals would also help to more fully assess children’s susceptibility to PBDEs. 

A recent small study of Swedish toddlers (n=22) found good correlations between concentrations of some 

PBDEs in serum and in feces, suggesting that fecal analysis, a noninvasive test, might be a good 

alternative for biomonitoring PBDEs in toddlers (Sahlström et al. 2015).  Larger studies would be 

valuable to improve the predictive power of the statistical analyses performed in this study.  In addition, it 

would be helpful to determine whether the method is applicable to infants and children of different ages. 

Child health data needs relating to exposure are discussed in Section 6.8.1, Identification of Data Needs: 

Exposures of Children. 
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3.12.3 Ongoing Studies 

Fifty-six ongoing research efforts have been identified that may provide data related to the toxic actions 

of PBDEs in humans (RePORTER 2014, 2016). These projects are summarized in Table 3-7. 

Animal Studies. Dr. Charles Herbert of the Southern Research Institute is conducting chronic studies of 

the commercial pentaBDE mixture DE-71 in rats and mice under contract with NTP and Dr. Lu Taylor of 

the Battelle Memorial Institute is conducting a perinatal study BDE 47 in CB6F1-Tg(HRAS2) transgenic 

mice under contract with NTP. 

Several animal studies are investigating neurobehavioral changes in animals exposed to PBDEs. Four 

ongoing studies are investigating behavioral and biochemical end points relevant to ADHD (Drs. Susan 

Schantz and Paula Eubig, University of Illinois Urbana-Champaign; Dr. Richard Seegal, Wadsworth 

Center). To assess the role of the immune system and its interaction with environmental contaminants in 

autism and other neurodevelopmental disorders, Dr. Isaac Pessah of the University of California at Davis 

is investigating the effects of perinatal PBDE exposure on brain development, complex social behaviors, 

and immune system function in mouse strains with low (C57BL/6J) or high (SJL mice) susceptibility to 

autoimmunity.  Using an established mouse model, Dr. Margarita Behrens, from the Salk Institute for 

Biological Sciences, will examine the effects of exposure to PBDE on autism spectrum disorder. Dr. 

Helen Sable of the University of Memphis is examining if developmental PBDE exposure in rats alter 

dopamine receptor expression and enhance behavioral sensitization following psychostimulant exposure 

(as seen with PCBs). 

Dr. Deena Small of the University of New England is examining bone growth and remodeling in mice 

exposed to pentaBDE from PND 1 to 60.  In addition, Dr. Small will use cell culture-based assays that 

measure gene expression, enzyme activity and calcium deposition in cultured bone cell lines exposed to 

the pentaBDEs. 

Toxicokinetic Studies. Dr. Tracey Woodruff of the University of California, San Francisco is measuring 

concentrations of PBDEs and OH-PBDEs in human maternal and fetal biological specimens from women 

undergoing voluntary, second trimester pregnancy terminations and generating original human data on 

whether fetal exposures to PBDEs alter gene expression of cytochrome P450 (CYP) enzymes in the 

second-trimester human fetal liver and placenta.  Dr. James Olson of SUNY Buffalo is conducting a 

qualitative and quantitative characterization of the human CYP-specific in vitro metabolism of 
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Table 3-7.  Ongoing Research for PBDEs in Humans 

Investigator Affiliation Research description 	 Sponsor 
Baccarelli, A Harvard School of Public Prenatal exposure to PBDEs and visual skills, NIEHS 

Health attention, and fine motor skills in children 
Barr, DB Emory University Prenatal exposure to PBDEs and birth NIHES 

outcomes 
Blumberg, B University of California- Endocrine disrupter modulation of the steroid NIEHS 

Irvine and xenobiotic receptor, SXR, in development 
and lymphomagenesis 

Caudle, WM Emory University Vesicular monoamine transporter 2 as a NIEHS 
mediator of PBDE neurotoxicity 

Chen, A University of Cincinnati Longitudinal study of exposure to PBDEs and NIEHS 
child neurobehavior 

Chen, S Beckman Research Determine role and mechanism of PBDEs on NIEHS 
Institute/City of Hope development of breast cancer during the 

menopausal transition 
Costa, LG University of Washington Low-level exposure to PBDEs: Testing the NIEHS 

hermetic and epigenetic hypotheses 
Croen, LA Kaiser Foundation Research Prenatal and neonatal biologic markers for NIEHS 

Institute autism 
Darrow, L Emory University 	 PBDE body burdens, house dust NIEHS 

concentrations, and associations with thyroid 
hormone 

Di Giulio, R Duke University Thyroid metabolism disruption key in toxicant- NIEHS 
induced development 

Eskenazi, B University of California Pesticides and PBDEs on neurobehavior NIEHS 
Berkeley 

Eskenazi, B University of California PBDEs, DDT, and neurodevelopment in NIEHS 
Berkeley school-aged Mexican-American children 

Eskenazi, B University of California DDT and PBDE exposure, puberty onset, and NIEHS 
Berkeley neurodevelopment in Mexican-American girls 

Eubig, P University of Illinois Urbana- Effects of PCBs and PBDEs on three distinct NIEHS 
Champaign components of response inhibition 

Ferguson, PL University of South Carolina Mechanisms of xenoestrogen stress: a NIEHS 
at Columbia proteomic and functional genomic approach 

Fitzgerald, EF State University of New York Persistent organic pollutants and cognitive NIEHS 
at Albany decline in the elderly 

Getahun, D Kaiser Foundation Research Flame retardant and adverse perinatal NIEHS 
Institute outcome 

Giese, RW Northeastern University Discovery of xenobiotics associated with NIEHS 
preterm birth 

Hauser, RB Harvard School of Public Maternal and paternal flame retardant NIEHS 
Health exposure, impact on fertility and pregnancy 

Herbert, C Southern Research Institute Studies to evaluate the toxicologic and NIEHS 
carcinogenic potential 

Herbstman, JB Columbia University Pre- and postnatal PBDE exposure, thyroid NIEHS 
hormones, and neurodevelopment 
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Table 3-7.  Ongoing Research for PBDEs in Humans 

Investigator Affiliation Research description	 Sponsor 
Epidemiology and the environment in autism NIEHS 

The CHARGE study: Childhood Autism Risk 
from Genetics and Environment 

NIEHS 

Autism risk, prenatal environmental 
exposures, and pathophysiologic markers 

NIEHS 

Epigenetic effects of DDT/E and PBDEs on 
puberty 

NIEHS 

Environmental determinants of autoimmunity 
among African Americans in coastal South 

NIEHS 

Carolina 
Developmental exposure to PBDEs and long- NIEHS 
lasting modifications of drug metabolism in 
children 
Epigenetic interaction of MECP2 and organic NIEHS 
pollutants in neurodevelopment 
Methylomic and genomic impacts of organic NIEHS 
pollutants in Dup15q syndrome 
Mechanisms of inflammation in gestational NIEHS 
membranes 
Longitudinal investigation of fertility and the NICHD 
environment 

Protecting the health of future generations: NIEHS 
assessing and preventing exposures 
Effects of endocrine disrupting chemicals and NIEHS 
chronic psychosocial stress on fetal growth 
Bioactivation of PBDEs by human cytochrome NIEHS 
P-450 
Calcium signaling defects in autism NIEHS 

Neurodevelopmental toxicology of autism NIEHS 

Environment chemicals and gynecologic NICHD 
health 
Exposure Assessment for childhood leukemia NIEHS 

Polybrominated diphenyl ether effects on NIEHS 
human neuronal development 
Assessment of psychostimulant addiction risk NIEHS 
following developmental PCB exposure 
Mechanisms of xenoestrogen stress: a NIEHS 
proteomic and functional genomic approach 

Hertz-Picciotto, 
I 
Hertz-Picciotto, 
I 
Hertz-Picciotto, 
I 
Holland, NT 

Kamen, DL 

Klaassen, CD 

Lasalle, JM 

Lasalle, JM 

Loch-Caruso, 
RK 
Louis, G 

Miller, PK 

Morello-
Frosch, RA 
Olson, JR 

Pessah, IN 

Pessah, IN 

Peterson, M 

University of California at 
Davis 
University of California at 
Davis 
University of California at 
Davis 
University of California 
Berkeley 
Medical University of South 
Carolina 

University of Washington 

University of California at 
Davis 
University of California at 
Davis 
University of Michigan 

Eunice Kennedy Shriver 
National Institute of Child 
Health & Human 
Development 
Alaska Community Action 
on Toxics (ACAT) 
University of California, San 
Francisco 
State University of New York 
at Buffalo 
University of California at 
Davis 
University of California at 
Davis 
University of Utah 

Rappaport, SM	 University of California 
Berkeley 

Robinson, JF	 University of California, San 
Francisco 

Sable, HJ	 University of Memphis 

Sabo-Attwood, University of South Carolina 
TL at Columbia 
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Table 3-7.  Ongoing Research for PBDEs in Humans 

Investigator Affiliation Research description Sponsor 
Schantz, SL 

Schantz, SL 

Seegal, RF 

Small, DJ 

Stapleton, HM 

Stapleton, HM 

Taylor, LU 

Turyk, ME 

Van de Water, 
JA 
Wapner, R 

Webster, TF 

Woodruff, TJ 

Woodruff, TJ 

Zhang, Y 

Zota, AR 

University of Illinois Urbana-
Champaign 

University of Illinois Urbana-
Champaign 
Wadsworth Center 

University of New England 

Duke University 

Duke University 

Battelle Memorial Institute 

University of Illinois at 
Chicago 
University of California at 
Davis 
Columbia University Health 
Sciences 
Boston University Medical 
Campus 
University of California, San 
Francisco 
University of California, San 
Francisco 

Yale University 

George Washington 
University 

PCBs, PBDEs, hearing loss, and 
attention/impulsivity: mechanistic studies in 
animals 
Health effects of PCB exposure from 
contaminated fish 
Developmental neuroendocrine effects of 
PCBs and PBDEs 
Effect of polybrominated diphenyl ether flame 
retardant exposure on osteogenesis 
Children’s exposure to flame retardants: 
effects on thyroid hormone regulation 
Deiodinase activity as a biomarker of 
response to brominated flame retardants 
Studies to evaluate the toxicological potential 
of test articles 
Diabetes and persistent organic pollutants 

Immune environment interaction and 
neurodevelopment 
Endocrine disruption in pregnant women: 
thyroid disruption and infant development 
Measuring human exposure to PBDEs 

Human maternal/fetal exposures to PBDEs 
and their metabolites during development 
Mid-gestational exposure to endocrine 
disrupting chemicals and effects on placental 
development 
Polyhalogenated aromatic hydrocarbons and 
thyroid cancer risk in the Department of 
Defense Serum Repository (DoDSR) cohort 
Role of endocrine-disrupting chemicals and 
social stress on perinatal outcomes 

NIEHS
 

ATSDR
 

NIEHS
 

NIEHS
 

NIEHS
 

NIEHS
 

NIEHS
 

NIEHS
 

NIEHS
 

NIEHS
 

NIEHS
 

NIEHS
 

NIEHS
 

NIEHS
 

NIEHS
 

Source: RePORTER 2014, 2016 

NIEHS = National Institute of Environmental Health Sciences; PBDE = polybrominated diphenyl ether; 
PCB = polychlorinated biphenyl 
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2,2',4,4'-tetraBDE (BDE 47), 2,2',4,5'-tetraBDE (BDE 49), 2,2',4,4',5-pentaBDE (BDE 99), and 

2,2',4,4',6- pentaBDE (BDE 100) as well as quantify OH-PBDEs in human milk and serum and assess the 

potential impact of CYP2B6 genotype on the body burden of PBDEs.  Dr. Heather Stapleton of Duke 

University is identifying the products of hepatic metabolism of PBDEs (no further details available). 

Mechanistic Studies. Several studies are investigating mechanisms of neurotoxicity.  At the University 

of California at Davis, Dr. Janine Lasalle is investigating epigenetic changes in the genome of Mecp2 

mutant mouse models of Rett syndrome and autism following in vivo exposure to BDE 47, Drs. Janine 

Lasalle and Isaac Pessah are investigating potential mechanisms of PBDE toxicity in susceptible neuronal 

cell models (chromosome 15q11-13 duplication syndrome [Dup15q] or fragile X syndrome [FMRI]), and 

Dr. Judy Van de Water is investigating mechanisms of PBDE toxicity in peripheral blood mononuclear 

cells from children with autism.  Dr. Joshua Robinson of the University of California San Francisco is 

investigating the effects in vitro exposure to BDE 47 and BDE 99 on neuronal differentiation and gene 

expression in human embryonic stem cells.  Dr. Lucio Costa of University of Washington is investigating 

genetic and epigenetic changes in cultured mouse neurons exposed to low, environmentally-relevant 

concentrations of BDE 47. Dr. William Caudle of Emory University is investigating the potential 

mechanisms by which the commercial pentaBDE mixture DE-71 disrupts VMAT2, which is a key 

mediator of cytosolic dopamine. 

Additional studies are investigating mechanisms of thyroid hormone disruption.  Dr. Heather Stapleton of 

Duke University is investigating the effects of PBDEs and their metabolites on intra- and extra-cellular 

thyroid hormone regulation in vitro to elucidate the mechanisms of action for thyroid toxicity.  Dr. Deena 

Small of the University of New England is measuring thyroid hormone receptor- mediated transcription 

and thyroid hormone receptor binding of pentaBDEs in vitro. Dr. Richard Di Guilio of Duke University 

is investigating the potential role of inhibition of diodinases by PBDEs in altered thyroid hormone 

homeostasis, using zebrafish as a model. 

Other mechanistic studies are investigating mechanisms of xenoestrogen stress (Drs. P. Lee Ferguson and 

Tara Sabo-Attwood of the University of South Carolina at Columbia), potential mechanisms behind the 

etiology of inflammation of extra-placental gestational membranes and associated release of cytokines 

and prostaglandins (which are associated with preterm birth) (Dr. Rita Loch-Caruso of the University of 

Michigan), the potential role of the steroid and xenobiotic receptor SXR in the development of lymphoma 

and leukemia in individuals exposed to PBDEs (Dr. Bruce Blumberg of the University of California-

Irvine), and development of biomarkers of mitochondrial function in primary mouse hepatocytes exposed 
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to BDE 47 using metabolomic analysis (Dr. Hockenberry from the Fred Hutchison Cancer Research 

Center. 
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4. CHEMICAL AND PHYSICAL INFORMATION 

4.1  CHEMICAL IDENTITY 

PBDEs are a class of structurally similar brominated hydrocarbons, in which 2–10 bromine atoms are 

attached to the diphenyl ether molecule.  Monobrominated structures (i.e., one bromine atom attached to 

the molecule) are often included when describing PBDEs. The general chemical structure of PBDEs is 

shown below: 

O 

BrnBrm 

1' 
2' 

3' 

4' 
5' 

6' 

1 
2 

3 

4 
5 

6 

where m + n = 1 to 10 

It can be seen from the structure that a large number of brominated compounds are possible.  The 

209 possible compounds for PBDEs are called “congeners”.  However, the number of PBDE congeners 

that actually exist in commercial PBDE mixtures are much less compared to PCBs.  Typically, only a 

subset of the 209 possible congeners is observed for PBDEs.  PBDEs can also be categorized by degree of 

bromination.  The term “homolog” is used to refer to all PBDEs with the same number of bromines (e.g., 

tribromodiphenyl ether or triBDE refers to PBDEs containing only three bromine atoms).  Based on the 

number of bromine substituents, there are 10 homologous groups of PBDEs (monobrominated through 

decabrominated).  Each homologous group contains one or more congeners. The mono-, di-, tri-, tetra-, 

penta-, hexa-, hepta-, octa-, nona-, and decabromo-congeners can exist in 3, 12, 24, 42, 46, 42, 24, 12, 3, 

and 1 forms, respectively. Homologs with different substitution patterns are referred to as isomers.  For 

example, the group of dibromodiphenyl ether or diBDE homologs contains 12 isomers.  The numbering 

system for PBDEs is also shown above. The structures of representative PBDE molecules appear similar 

when drawn in one dimension.  However, there are important three-dimensional differences in their 

structures due to the ether linkage and location/number of halogen atoms.  The ortho positions of the 

aromatic rings must be nonhalogen-substituted for a diphenyl ether molecule to assume a planar or near 

planar configuration.  Halogen substitution of the diphenyl ether molecule in the ortho position (2,2’,6,6’) 

will force the aromatic rings orthogonal to one another (e.g., the phenyl rings will be positioned in space 

with a dihedral angle >0°).  This is particularly evident for decabromodiphenyl ether, which is predicted 

to have a dihedral angle of ~90° and a high barrier to rotation around the ether linkage preventing this 
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molecule from assuming a planar configuration.  The benzene rings of non-ortho substituted PBDEs may 

assume a small dihedral angle (in which the dihedral angle is small, but >0°) or “near” planar 

configuration.  These molecules are referred to as planar or coplanar congeners (Hardy 2002a).  

Like PCBs, the 209 congeners for PBDEs are arranged in ascending numerical order using a numbering 

system developed by Ballschmiter and Zell (1980) that follow the IUPAC rules of substituent 

characterization in biphenyls. The resulting numbers assigned by Ballschmiter and Zell (which are also 

referred to as congener, IUPAC, or BZ numbers) are widely used for identifying individual congeners of 

PBDEs.  For example, the PBDE congener, 2,2',4,4'-tetraBDE may be referred to as BDE 47 in this 

document. The identities of several PBDE congeners are shown in Table 4-1 (WHO 1994a, 1994b). 

In the United States, Albemarle Corporation and Great Lakes Chemical Corporation previously marketed 

mixtures of PBDEs under trade names (e.g., DE-60F, DE-61, DE-62, DE-71, for pentaBDE mixtures; 

DE-79 for octaBDE mixtures; and DE 83R, Saytex 102E for decaBDE mixtures).  The Great Lakes 

Corporation merged with Crompton Chemical Corporation and was renamed Chemtura, which produced 

decaBDE under the brand names AZUB DB-40, AZUB DB-65, AZUB 2DA-65, and AZUB 3DA-65 

(EPA 2010).  There were also several trade names used by producers from Europe and Japan for the BDE 

mixtures. The chemical identities of commercial mixtures of penta-, octa-, and decaBDEs are listed in 

Table 4-2 (WHO 1994a). La Guardia et al. (2006) published detailed congener composition profiles of 

penta-, octa-, and decaBDE flame retardant mixtures; 39 discrete PBDEs were found in the six 

commercial products evaluated by GC/MS electron ionization (EI) and electron-capture negative 

ionization (ECNI). 

Various synonyms and abbreviations for PBDEs exist in the literature and are shown below: 

polybrominated biphenyl ethers = polybromobiphenyl ethers = PBBE 

polybrominated biphenyl oxides = polybromobiphenyl oxides = PBBEs 

polybrominated diphenyl ethers = polybromodiphenyl ethers = PBDEs or PBDPEs 

polybrominated diphenyl oxides = polybromodiphenyl oxides = PBDOs or PBDPOs 
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Table 4-1.  Chemical Identity of Polybrominated Diphenyl Ether (PBDE)
 
Congenersa
 

IUPAC Numberb Compound/substituents CAS numberc 

Biphenyl 92-52-4 
MonoBDE 101-55-3 

1 2 
2 3 
3 4 

4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

DiBDE 2050-47-7 
2,2’ 
2,3 
2,3’ 
2,4 
2,4’ 
2,5 
2,6 
3,3’ 
3,4 
3,4’ 
3,5 
4,4’ 
TriBDE 49690-94-0 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

2,2’,3 
2,2’,4 
2,2’,5 
2,2’,6 
2,3,3’ 
2,3,4 
2,3,4’ 
2,3,5 
2,3,6 
2,3’,4 
2,3’,5 
2,3’,6 
2,4,4’ 
2,4,5 
2,4,6 
2,4’,5 
2,4’,6 
2’,3,4 
2’,3,5 
3,3’,4 
3,3’,5 
3,4,4’ 
3,4,5 
3,4’,5 
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Table 4-1.  Chemical Identity of Polybrominated Diphenyl Ether (PBDE)
 
Congenersa
 

IUPAC Numberb Compound/substituents CAS numberc 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 

TetraBDE 40088-47-9 
2,2’,3,3’ 
2,2’,3,4 
2,2’,3,4’ 
2,2’,3,5 
2,2’,4,5’ 
2,2’,3,6 
2,2’,3,6’ 
2,2’,4,4' 
2,2’,4,5 
2,2’,4,5' 
2,2’,4,6 
2,2’,4,6' 
2,2’,5,5' 
2,2’,5,6' 
2,2’,6,6' 
2,3,3’,4 
2,3,3’,4’ 
2,3,3’,5 
2,3,3’,5’ 
2,3,3’,6 
2,3,4,4’ 
2,3,4,5 
2,3,4,6 
2,3,4’,5 
2,3,4’,6 
2,3,5,6 
2,3’,4,4’ 
2,3’,4,5 
2,3’,4,5’ 
2,3’,4,6 
2,3’,4’,5 
2,3’,4’,6 
2,3’,5,5’ 
2,3’,5’,6 
2,4,4’,5 
2,4,4’,6 
2’,3,4,5 
3,3’,4,4’ 
3,3’,4,5 
3,3’,4,5’ 
3,3’,5,5’ 
3,4,4’,5 
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Table 4-1.  Chemical Identity of Polybrominated Diphenyl Ether (PBDE)
 
Congenersa
 

IUPAC Numberb Compound/substituents CAS numberc 

82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 

PentaBDE 32534-81-9 
2,2’,3,3’,4 
2,2’,3,3’,5 
2,2’,3,3’,6 
2,2’,3,4,4’ 
2,2’,3,4,5 
2,2’,3,4,5’ 
2,2’,3,4,6 
2,2’,3,4,6’ 
2,2’,3,4’,5 
2,2’,3,4’,6 
2,2’,3,5,5’ 
2,2’,3,5,6 
2,2’,3,5,6’ 
2,2’,3,5’,6 
2,2’,3,6,6’ 
2,2’,3’,4,5 
2,2’,3’,4,6 
2,2’,4,4’,5 
2,2’,4,4’,6 
2,2’,4,5,5’ 
2,2’,4,5,6’ 
2,2’,4,5’,6 
2,2’,4,6,6’ 
2,3,3’,4,4’ 
2,3,3’,4,5 
2,3,3’,4’,5 
2,3,3’,4,5’ 
2,3,3’,4,6 
2,3,3’,4’,6 
2,3,3’,5,5’ 
2,3,3’,5,6 
2,3,3’,5’,6 
2,3,4,4’,5 
2,3,4,4’,6 
2,3,4,5,6 
2,3,4’,5,6 
2,3’,4,4’,5 
2,3’,4,4’,6 
2,3’,4,5,5’ 
2,3’,4,5’,6 
2’,3,3’,4,5 
2’,3,4,4’,5 
2’,3,4,5,5’ 
2’,3,4,5,6’ 
3,3’,4,4’,5 
3,3’,4,5,5’ 
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Table 4-1.  Chemical Identity of Polybrominated Diphenyl Ether (PBDE)
 
Congenersa
 

IUPAC Numberb Compound/substituents CAS numberc 

128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 

HexaBDE 36483-60-0 
2,2’,3,3’,4,4’ 
2,2’3,3’,4,5 
2,2’,3,3’,4,5’ 
2,2’,3,3’,4,6 
2,2’,3,3’,4,6’ 
2,2’,3,3’,5,5’ 
2,2’,3,3’,5,6 
2,2’,3,3’,5,6’ 
2,2’,3,3’,6,6’ 
2,2’,3,4,4’,5 
2,2’,3,4,4’,5’ 
2,2’,3,4,4’,6 
2,2’,3,4,4’,6’ 
2,2’,3,4,5,5’ 
2,2’,3,4,5,6 
2,2’,3,4,5,6’ 
2,2’,3,4,5’,6 
2,2’,3,4,6,6’ 
2,2’,3,4’,5,5’ 
2,2’,3,4’,5,6 
2,2’,3,4’,5,6’ 
2,2’,3,4’,5’,6 
2,2’,3,4’,5,6’ 
2,2’,3,5,5’,6 
2,2’,3,5,6,6’ 
2,2’,4,4’,5,5’ 
2,2’,4,4’,5,6’ 
2,2’,4,4’,6,6’ 
2,3,3’,4,4’,5 
2,3,3’,4,4’,5’ 
2,3,3’,4,4’,6 
2,3,3’,4,5,5’ 
2,3,3’,4,5,6 
2,3,3’,4,5’,6 
2,3,3’,4’,5,5’ 
2,3,3’,4’,5,6 
2,3,3’,4’,5’,6 
2,3,3’,5,5’,6 
2,3,4,4’,5,6 
2,3’,4,4’,5,5’ 
2,3’,4,4’,5’,6 
3,3’,4,4’,5,5’ 
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4.  CHEMICAL AND PHYSICAL INFORMATION 

Table 4-1.  Chemical Identity of Polybrominated Diphenyl Ether (PBDE)
 
Congenersa
 

IUPAC Numberb Compound/substituents CAS numberc 

170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 

HeptaBDE 68928-80-3 
2,2’,3,3’,4,4’,5 
2,2’,3,3’,4,4’,6 
2,2’,3,3’,4,5,5’ 
2,2’,3,3’,4,5,6 
2,2’,3,3’,4,5,6’ 
2,2’,3,3’,4,5’,6 
2,2’,3,3’,4,6,6’ 
2,2’,3,3’,4’,5,6 
2,2’,3,3’,5,5’,6 
2,2’,3,3’,5,6,6’ 
2,2’,3,4,4’,5,5’ 
2,2’,3,4,4’,5,6 
2,2’,3,4,4’,5,6’ 
2,2’,3,4,4’,5’,6 
2,2’,3,4,4’,6,6’ 
2,2’,3,4,5,5’,6 
2,2’,3,4,5,6,6’ 
2,2’,3,4’,5,5’,6 
2,2’,3,4’,5,6,6’ 
2,3,3’,4,4’,5,5’ 
2,3,3’,4,4’,5,6 
2,3,3’,4,4’,5’,6 
2,3,3’,4,5,5’,6 
2,3,3’,4’,5,5’,6 

194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 

OctaBDE 
2,2’,3,3’,4,4’,5,5’ 
2,2’,3,3’,4,4’,5,6 
2,2’,3,3’,4,4’,5’,6 
2,2’,3,3’,4,4’,6,6’ 
2,2’,3,3’,4,5,5’,6 
2,2’,3,3’,4,5,6,6’ 
2,2’,3,3’,4,5,6,6’ 
2,2’,3,3’,4,5’,6,6’ 
2,2’,3,3’,5,5’,6,6’ 
2,2’,3,4,4’,5,5’,6 
2,2’,3,4,4’,5,6,6’ 
2,3,3’,4,4’,5,5’,6 

32536-52-0 

NonaBDE 63936-56-1 
206 
207 
208 

2,2’,3,3’,4,4’,5,5’,6 
2,2’,3,3’,4,4’,5,6,6’ 
2,2’,3,3’,4,5,5’,6,6’ 
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4.  CHEMICAL AND PHYSICAL INFORMATION 

Table 4-1.  Chemical Identity of Polybrominated Diphenyl Ether (PBDE)
 
Congenersa
 

IUPAC Numberb Compound/substituents CAS numberc 

DecaBDE 1163-19-5 
209 2,2’,3,3’,4,4’,5,5’,6,6’ 

aWHO 1994a 
bBallschmiter and Zell 1980 
cNo CAS numbers were identified for the individual PBDE congeners. 

BDE = brominated diphenyl ether; CAS = Chemical Abstracts Service; IUPAC = International Union of Pure and 
Applied Chemistry 
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4.  CHEMICAL AND PHYSICAL INFORMATION 

Table 4-2.  Chemical Identity of Technical Polybrominated Diphenyl Ethers 
(PBDEs) 

Characteristic Pentabromodiphenyl ether Octabromodiphenyl ether Decabromodiphenyl ether 
Synonym(s) Pentabromodiphenyl ether; 

pentabromodiphenyl oxide; 
pentabromobiphenyl oxide; 
benzene, 1,1-oxybis, 
pentabromo derivative 

Octabromodiphenyl ether; 
Octabromodiphenyl oxide; 
octabromobiphenyl oxide; 
benzene, octabromo 
derivative; phenyl ether, 
octabromo derivative 

Decabromodiphenyl ether; 
decabromodiphenyl oxide; 
decabromobiphenyl oxide; 
benzene, 1,1’-oxybis
(2,3,5,6,-penta-bromo-) 
ether, bis
(pentabromophenyl); 

Registered trade 
name 

DE 71; Bromkal 70-5 DE; 
FR 1205/1215; Bromkal 70; 
Bromkal G1; 
Pentabromprop; Tardex 50; 
Tardex 50 L; Saytex 115 

Bromkal 79-8DE; DE 79; 
FR 143; Tardex 80; 
FR 1208; Adine 404; 
Saytex 111 

FR-300 BA; DE-83-RTM; 
Saytex 102; Saytex 102E; 
FR-1210; Adine 505; 
AFR 1021; Berkflam B10E; 
BR55N; Bromkal 81; 
Bromkal 82-0DE; 
Bromkal 83-10 DE; Caliban 
F/R-P 39P; Caliban F/R-P 
44; Chemflam 011; DE 83; 
DP 10F; EB 10FP; 
EBR 700; Flame Cut 
BR 100; FR P-39; BR 100; 
FR 330BA; FR P-39; 
FRP 53; FR-PE; FR-PE(H); 
Planelon DB 100; 
Tardex 100; NC-1085; 
HFO-102; Hexcel PF1; 
Phoscon Br-250 

Chemical formula C12H10-yBryO 
where y=4–6 

C12H10-yBryO 
where y=6–9 

C12Br10O 

Chemical structure 
Identification numbers: 
CAS registry 32534-81-9 32536-52-0 1163-19-5 
NIOSH RTECS No data No data No data 
EPA hazardous No data No data No data 
waste 
OHM/TADS No data No data No data 
DOT/UN/IMCO 
shipping 

No data No data No data 

HSDB 7109 7110 2911 
NCI No data No data No data 

Source: WHO 1994a 

CAS = Chemical Abstracts Services; DOT/UN/NA/IMCO = Department of Transportation/United Nations/North 
America/International Maritime Dangerous Goods Code; EPA = Environmental Protection Agency; 
HSDB = Hazardous Substances Data Bank; NCI = National Cancer Institute; NIOSH = National Institute for 
Occupational Safety and Health; OHM/TADS = Oil and Hazardous Materials/Technical Assistance Data System; 
RTECS = Registry of Toxic Effects of Chemical Substances 
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4.  CHEMICAL AND PHYSICAL INFORMATION 

For consistency in this document, polybrominated diphenyl ethers or PBDEs will be used to identify this 

class of chemicals. The PBDE homologs are abbreviated as follows in this document: 

dibromodiphenyl ether = DiBDE = diBDE
 

tribromodiphenyl ether = TrBDE = triBDE
 

tetrabromodiphenyl ether = TeBDE = tetraBDE
 

pentabromodiphenyl ether = PeBDE = pentaBDE
 

hexabromodiphenyl ether = HxBDE = hexaBDE
 

heptabromodiphenyl ether = HpBDE = heptaBDE
 

octabromodiphenyl ether = OcBDE = octaBDE
 

nonabromodiphenyl ether = NoBDE = nonaBDE
 

decabromodiphenyl ether = DeBDE = decaBDE
 

4.2  PHYSICAL AND CHEMICAL PROPERTIES 

Information found in the literature regarding the physical and chemical properties of selected technical 

PBDE mixtures is presented in Table 4-3.  Recent information regarding the vapor pressure, water 

solubility, Henry’s Law constant, and log Kow of some PBDE congeners is presented in Table 4-4.  

Commercially available product mixtures of PBDEs (see Table 4-2) are not pure substances, but instead 

are mixtures of congeners. For example, the commercial mixture pentaBDE denotes the main component 

of the mixture contains the pentaBDE homolog.  However, the commercial pentaBDE mixture actually 

contains tetraBDE (24–38%) and pentaBDE (50–62%) homologs with small amounts of hexaBDE (4– 

8%) and trace amounts of triBDE (0–1%) homologs.  In this document, the commercial mixture of 

pentabromodiphenyl ether may be called “the commercial pentaBDE mixture,” “technical pentaBDE,” or 

“technical PeBDE” to distinguish this mixture of homologs from the pentaBDE homolog, which refers to 

PBDEs with only five bromine atoms (see Section 4.1).  Commercial octaBDE is a mixture of hexa-, 

hepta-, octa-, and nonaBDE homologs with trace amounts of decaBDE (i.e., BDE 209).  In this document, 

the commercial mixture of octabromodiphenyl ether may be called “the commercial octaBDE mixture,” 

“technical octaBDE,” or “technical OBDE” to distinguish this mixture of different homologs from the 

octaBDE homolog, which refers to PBDEs with only eight bromine atoms (see Section 4.1).  The 

composition of commercial decabromodiphenyl ether is 97% of the decaBDE (i.e., BDE 209); the 

remainder is nonaBDE homologs and trace amounts of octaBDE homologs (WHO 1994a).  In this 

document, commercial decabromodiphenyl ether may be called “the commercial decaBDE mixture,” 
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4.  CHEMICAL AND PHYSICAL INFORMATION 

Table 4-3.  Physical and Chemical Properties of Technical Polybrominated
 
Diphenyl Ether (PBDE) Mixtures
 

Property Pentabromodiphenyl ether Octabromodiphenyl ether Decabromodiphenyl ether 
Molecular weight
 
Color
 

Physical state
 

Melting point
 

Boiling point
 

Density (g/mL)
 
Odor
 
Odor threshold:
 
Water 
Air 

Solubility: 
Water 

Organic solvent(s) 

Partition coefficients: 
Log Kow 

Log Koc 

Vapor pressure 

Henry’s Law constant 
(atm-m3/mole) 
Autoignition 
temperature 
Flashpoint 
Flammability limits 

Mixture 
Clear, amber to pale 
yellowa 

Highly viscous liquid 
-7 to -3°C (commercial)b 

>300°C (decomposition 
starts above 200°C)a,b 

2.28 at 25°Ca; 2.25–2.28b 

No data 

No data 
No data 

13.3 µg/L (commercial)b,d; 
2.4 µg/L (pentabromodi
phenyl ether component)b; 
10.9 µg/L (tetrabromodi
phenyl ether component)b 

10 g/kg methanol; miscible 
in toluened 

6.64–6.97d; 6.57 
(commercial)b 

4.89–5.10e 

2.2x10-7–5.5x10-7 mm Hg 
at 25°Cd; 3.5x10-7 mm Hg 
(commercial)b 

1.2x10-5g; 1.2x10-6e; 
3.5x10-6f 

Decomposes above 
200°Cb,d 

No data 
Not applicable (flame 
retardant)b,d 

Mixture 
Off-whitea 

Powder 
85–89°C (commercial)c; 
200°C (range, 167–257)a; 
79–87°Ca; 170–220°Ca 

Decomposes at >330°C 
(commercial)c 

2.76a; 2.8 (commercial)c 

Fainta 

No data 
No data 

<1 ppb at 25°C (com
mercial)c; 1.98 μg/L 
(heptabromodiphenyl 
ether component)c 

Acetone (20 g/L); 
benzene (200 g/L); 
methanol (2 g/L) all at 
25°Ca 

6.29 (commercial)c 

5.92–6.22e 

9.0x10-10–1.7x10-9 mm 
Hg at 25°Cd; 4.9x10-8 mm 
Hg at 21°C (commercial)c 

7.5x10-8e; 2.6x10-7e 

Decomposes above 
330°C (commercial)c 

No data 
Not applicable (flame 
retardant)c 

959.22a 

Off-whitea 

Powdera 

290–306°Ca 

Decomposes at >320, 
>400, and 425°Ca 

3.0a; 3.25a 

Odorlessa 

Not applicable 
Not applicable 

<0.1 μg/Lg 

No data 

6.265e 

6.80e 

3.2x10-8 mm Hgf 

1.62x10-6g; 1.93x10-8d; 
1.2x10-8e; 4.4x10-8e 

Not applicablea 

None 
Non-flammablea 
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4.  CHEMICAL AND PHYSICAL INFORMATION 

Table 4-3.  Physical and Chemical Properties of Technical Polybrominated
 
Diphenyl Ether (PBDE) Mixtures
 

Property Pentabromodiphenyl ether Octabromodiphenyl ether Decabromodiphenyl ether 
Conversion factors	 1 ppm=23.48 mg/m3 at No data No data 

20°Cd 

Explosive limits	 Noneb,f Nonec No data 

a WHO 1994a 
bENVIRON 2003a 
cENVIRON 2003b 
dEU 2001 
eEstimated values were calculated using EPIWIN v4.10 (EPA 2014e). 
fHardy 2002a 
gEstimated value was calculated using vapor pressure and water solubility values in table. 

http:ppm=23.48
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4.  CHEMICAL AND PHYSICAL INFORMATION 

Table 4-4.  Physical and Chemical Properties of Some Polybrominated Diphenyl
 
Ether (PBDE) Congeners
 

Congener 
Vapor pressure 
(mm Hg)a,b 

Water solubility 
(μg/L)a 

Henry’s Law constant 
(atm m3/mol)a Log Kow c Log KOAd 

BDE 3 1.94x10-3 – – – – 
BDE 15 1.30x10-4 130 2.07254x10-4 – – 
BDE 17 – – – 5.74 9.30 
BDE 28 1.64x10-5 70 5.03331x10-5 5.94 9.50 
BDE 47 1.40x10-6 15 1.48038x10-5 6.81 10.53 
BDE 66 9.15x10-7 18 4.93461x10-6 – 10.82 
BDE 77 5.09x10-7 6 1.18431x10-5 – 10.87 
BDE 85 7.40x10-8 6 1.08562x10-6 – 11.66 
BDE 99 1.32x10-7 9 2.26992x10-6 7.32 11.31 
BDE 100 2.15x10-7 40 6.80977x10-7 7.24 11.13 
BDE 138 1.19x10-8 – – – – 
BDE 153 1.57x10-8 1 6.61238x10-7 7.90 11.82 
BDE 154 2.85x10-8 1 2.36862x10-6 7.82 11.92 
BDE 183 3.51x10-9 2 7.30323x10-8 8.27 11.96 
BDE 190 2.12x10-9 – – – – 

aTittlemier et al. 2002. 
bLiquid sub-cooled vapor pressures. 
cBraekevelt et al. 2003. 
dHarner 2001. 

– = no data reported; BDE = brominated diphenyl ether 
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4.  CHEMICAL AND PHYSICAL INFORMATION 

“technical decaBDE,” or “technical DeBDE” which represents 97% BDE 209 congener with 3% nona

and octaBDE homolog impurities.  The compositions of commercial product mixtures of PBDEs 

(e.g., technical penta-, octa-, and decaBDE) are given in Table 4-5.  

Trace analysis of these commercial mixtures for 15 different 2,3,7,8-substituted brominate dibenzo

p-dioxins and dibenzofurans revealed no detectable amounts of these substances (Hardy 2002a).  The 

commercial decaBDE product has been analyzed for trace quantities of 15 2,3,7,8-substituted PBDDs and 

PBDFs.  None of the analytes were present at or above the quantization limits established under an EPA 

test rule (BFRIP 2002).  While in today’s commercial PBDE samples, there are no measurable quantities 

of PBDDs/PBDFs, there are some materials that have reported quantifiable concentrations of these 

contaminants.  For example, hexabromodibenzofurans have been detected in commercial decaBDE 

mixtures at concentrations as high as 200 μg/kg.  In other PBDE mixtures (e.g., tetra- to hexaBDEs), the 

sum of tetra-, penta-, and hexabromodibenzofurans were reported at a concentrations of 8,000 μg/kg. In 

addition, tetra- and pentabromo-p-dibenzodioxins have been measured in commercial decaBDE at 

concentrations of 0.05 and 0.35 μg/kg, respectively (WHO 1998). 

When pyrolyzed up to 900°C, PBDEs may produce PBDFs and PBDDs (Buser 1986; EU 2001).  The 

amount of PBDFs and PBDDs formed depends upon the conditions of pyrolysis.  For example, 

2,3,7,8-tetrabromodibenzofuran in ppm concentrations can be generated during pyrolysis of decaBDE in 

the temperature range of 400–700°C (Bieniek et al. 1989).  PBDFs may also be produced during the 

pyrolysis of polymers containing PBDEs as flame retardants (Brenner and Knies 1993; Dumler et al. 

1989, 1990; Lenoir et al. 1994).  However, studies performed in the late 1980s may have suffered from 

analytical methods that could not differentiate between PBDDs/PBDFs formed (e.g., 2,3,7,8-substituted 

congeners) and decaBDE, which might have artificially elevated the concentrations of PBDEs detected 

(Hamm et al. 2001).  
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4.  CHEMICAL AND PHYSICAL INFORMATION 

Table 4-5.  Typical Congener Composition of Penta-, Octa-, and Deca-

Brominated Diphenyl Ether (BDE)
 

Congener (weight percentage) PentaBDE OctaBDE DecaBDE 
BDE 47 25–37% 
BDE 99 35–50% 
BDE 100 6–10% 
BDE 153 3–5% 5–10% 
BDE 154 2–4% 1–5% 
BDE 183 40% 
BDE 196 8% 
BDE 197 21% 
BDE 203 5–35% 
BDE 206 2.2% 
BDE 207 7% 0.24% 
BDE 208 10% 0.06% 
BDE 209 97% 

Source:  EPA 2010 
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4.  CHEMICAL AND PHYSICAL INFORMATION 
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5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

5.1  PRODUCTION 

The commercial production of PBDEs generally involves bromination of diphenyl oxide to varying 

degrees. The degree of bromination is controlled either through stoichiometry or through control of 

reaction kinetics (Pettigrew 1993).  

The commercial production of PBDEs began in late 1970s (WHO 1994a).  There are no current 

manufacturers of technical PBDEs in the United States. About 98% of the global demand for the 

technical pentaBDE mixture resided in North America (Hale et al. 2003).  PentaBDE and octaBDE 

mixtures were voluntarily withdrawn from the U.S. marketplace by their manufacturers at the end of 

2004, leaving only decaBDE being marketed for use in commercial products in the United States (EPA 

2010).  In December of 2009, the two remaining U.S. producers of decaBDE, Albemarle Corporation and 

Chemtura Corporation (formerly known as the Great Lakes Chemical Corporation), and the largest U.S. 

importer, ICL Industrial Products, Inc., announced commitments to phase out manufacture and 

importation of decaBDE for most uses in the United States by December 31, 2012, and to end 

manufacture and import for all uses by the end of 2013 (EPA 2013j).  In 2003, the EU passed a Directive 

to ban the marketing and use of penta- and octaBDE that took effect in 2004.  In 2008, the use of 

decaBDE was restricted by an EU Directive on the Restriction of the use of certain Hazardous Substances 

(RoHS) (EC 2014; EPA 2010). 

Table 5-1 lists the facilities in each state that manufactured or processed technical decaBDE in 2014, the 

intended use, and the range of maximum amounts of technical decaBDE that are stored on-site (TRI14 

2016).  The data from the Toxics Release Inventory (TRI) listed in Table 5-1 should be used with caution, 

however, since only certain types of facilities were required to report. The TRI is not an exhaustive list. 

Facilities are only required to report to the TRI if they manufacture or process more than 25,000 pounds 

of a TRI listed chemical during the year, or otherwise use more than 10,000 pounds, and have the 

equivalent of more than 10 full-time employees.  According to the EPA, TRI data have certain 

limitations. TRI data reflect releases and other waste management of chemicals, and not exposures of the 

public to those chemicals.  TRI data alone are not sufficient to determine exposure or calculate potential 

adverse effects on human health and the environment. 
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5.  PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

Table 5-1. Facilities that Produce, Process, or Use Decabromodiphenyl Ether 

Minimum Maximum 
Number of amount on site amount on site 

Statea facilities in poundsb in poundsb Activities and usesc 

AR 2 1,000 99,999 7
 

CA 1 10,000 99,999 2, 3, 7, 8, 10
 

CT 1 10,000 99,999 8
 

GA 3 1,000 99,999 7, 8
 

IL 3 10,000 99,999 7
 

IN 1 50,000,000 99,999,999 2, 3, 4, 8
 

KS 1 1,000 9,999 8
 

MA 2 10,000 999,999 7
 

MS 1 10,000 99,999 7, 8
 

NH 1 Not reported Not reported Not reported
 

NJ 1 10,000 99,999 7
 

NV 1 10,000 99,999 7
 

NY 1 1,000 9,999 7
 

OH 4 1,000 99,999 2, 3, 7, 8
 

PA 3 100,000 999,999 1, 3, 7, 8
 

SC 5 10,000 99,999 7, 8
 

TX 2 1,000 9,999 7
 

VA 3 0 99,999 7
 

aPost office state abbreviations used.
 
bAmounts on site reported by facilities in each state.
 
cActivities/Uses:
 
1.  Produce 6.  Impurity 11.  Chemical Processing Aid 
2.  Import 7.  Reactant 12.  Manufacturing Aid 
3.  Onsite use/processing 8.  Formulation Component 13.  Ancillary/Other Uses 
4.  Sale/Distribution 9.  Article Component 14.  Process Impurity 
5.  Byproduct 10.  Repackaging 

Source:  TRI14 2016 (Data are from 2014) 



   
 

   
 
 

 
 
 
 
 

   
 

 

 

  
 

  

 

    

   

  

 

   

 

 

  

   

    

  

   

 

   

   

 

    

   

 

   

   

   

 

  

 

PBDEs 361 

5.  PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

5.2  IMPORT/EXPORT 

Production and importation of the final commercial PBDE, decaBDE, ended on December 31, 2013. 

5.3  USE 

PBDEs were used as additive flame retardants in thermoplastics.  Additive flame retardants are physically 

combined with the polymer material being treated rather than chemically combined (as in reactive flame 

retardants).  This means that there is a possibility that the flame retardant may diffuse out of the treated 

material to some extent.  PBDEs were used in different resins, polymers, and substrates at levels ranging 

from 5 to 30% by weight (EU 2001).  

The commercial pentaBDE product was used predominantly (95–98%) for flame retardant purposes as an 

additive in consumer products manufactured by the furniture industry (ENVIRON 2003a).  It was used 

almost exclusively to flame retard flexible polyurethane foam (FPUF), which is used in bed mattresses 

and cushioning in upholstered products.  The commercial pentaBDE was typically used in FPUF as an 

additive mixture with aromatic phosphate esters (e.g., mixture of 75% pentaBDE and 25% aromatic 

phosphate esters). Mattress FPUF contains approximately 2–3% flame retardant mixture and cushion 

FPUF contains 3–5% flame retardant mixture (ENVIRON 2003a).  Scrap materials from both industries 

have been used as padding beneath carpets, and as a result, carpet padding likely contained 3–5% flame 

retardant mixture.  However, not all of the FPUF found in cushion, mattress, and carpet padding products 

were treated with commercial pentaBDE.  Approximately 7.5% of the more than 2.1 billion pounds of 

FPUF produced annually in the United States used the commercial pentaBDE product as a flame retardant 

additive (ENVIRON 2003a).  The majority of FPUF products treated with the commercial pentaBDE 

product were sold in California, the only state requiring by law that upholstered products achieve a 

prescribed level of ignition resistance (ENVIRON 2003a).  A small percentage of pentaBDE was used in 

commercial adhesive products.  Other former uses of commercial pentaBDE included coatings for 

specialty textiles, printed circuit board components, hydraulic and oilfield completion fluids, and rubber 

products.  In the past, automotive and airplane seating cushions contained FPUF with commercial 

pentaBDE.  However, this use was discontinued in the early 1990s.  Prior to approximately 1990, the 

commercial pentaBDE product may have been used in small quantities as a flame retardant in specialty 

fire-resistant clothing using polyurethane treatment and in polyurethane coatings in carpets (ENVIRON 

2003a).  Commercial pentaBDE product was used in rigid polyurethane elastomers for instrument 

casings, and applied in printed circuit boards and microprocessor packaging previously (Betts 2006; 
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Hazrati and Harrad 2007).  Electronic equipment containing pentaBDE produced in other countries 

(principally Asian) could also find its way into the United States (EU 2001).  

The commercial octaBDE was used by the plastics industry as an additive flame retardant for 

manufactured products.  It was used almost exclusively to flame retard ABS terpolymers used in 

computer casings and monitors (ENVIRON 2003b).  In the EU, approximately 95% of the total 

commercial octaBDE product sold to the electronics and plastics industries was used in ABS before it was 

banned (EU 2003a).  Although data are not available in the United States, similar volumes were likely 

(ENVIRON 2003b).  The commercial octaBDE product formerly used in ABS products was 12–18% 

weight loadings of flame retardant.  OctaBDE was always used as a flame retardant in conjunction with 

antimony trioxide.  Other minor uses for octaBDE, were high impact polystyrene (HIPS), polybutylene 

terephthalate (PBT), and polyamide polymers (EU 2003a).  Other former applications of octaBDE 

included use as additive flame retardant in polycarbonate, phenol-formaldehyde resins, and unsaturated 

polyesters (EU 2003a). 

The commercial decaBDE product was an additive flame retardant used in a variety of polymer 

applications.  Industry information indicates that decaBDE was used at loadings of 10–15% weight in 

polymers and always in conjunction with antimony trioxide (EU 2002).  The major application for 

decaBDE was in HIPS, which is used in the television industry for cabinet backs.  It was also used for a 

large number of other polymers with end-uses in electrical and electronic equipment (e.g., computers, 

connectors, electrical boxes, wire, cable, etc.).  Examples include polypropylene (for electronics), acetate 

copolymers (ethylene-vinyl acetate [EVA] and other copolymers for wire and cable), ethylene-propylene

diene terpolymer (EPDM) and thermoplastic elastomers (for wire and cable), and polyester resins (for 

electronics).  Other minor uses included styrenic rubbers, polycarbonates, polyamides, and terephthalates, 

and small amounts are reported to be used in hot-melt adhesives (EU 2002).  

5.4  DISPOSAL 

PBDEs were used as flame retardants in a wide range of consumer products (see Section 5.3).  In the 

United States, waste disposal of PBDE-containing consumer products is described as transfers to disposal 

(landfill), recycling, energy recovery (incineration), or publicly owned treatment works (POTWs) 

(Darnerud et al. 2001).  No other information was located on the past or present volumes of PBDE-

containing consumer products disposed of by each method of waste transfer. 
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Landfill disposal of plastic consumables containing pentaBDE (e.g., polyurethane foams), octaBDE (e.g., 

computer monitors), and decaBDE (e.g., televisions) to landfills is likely to increase in the United States 

due to their limited useful lifespan.  Given that all PBDEs have low water solubility (see Table 4-4), the 

potential for leaching of PBDE from landfills appears to be small (EU 2002).  Well-designed landfills will 

include measures to minimize leaching and those measures would also be effective in minimizing the 

leaching of any PBDE particulates present (EU 2002). PBDEs have been detected in landfill leachate and 

landfill related aqueous samples worldwide (Daso et al. 2013; Kwan et al. 2013; Odusanya et al. 2009; 

Oliaei et al. 2010; Stubbings and Harrad 2014).  The presence of hydrophobic compounds like PBDEs in 

leachate is expected to be a result of enhanced leachability due to the presence of other constituents 

present in the leachate (Stubbings and Harrad 2014).  Mass transfer evaluation of PBDEs from e-waste 

solids found that lower pH conditions resulted in higher transfer of PBDEs to the aqueous phase, with the 

highest concentration of PBDEs detected at pH 5 and 25°C (Danon-Schaffer et al. 2013). The levels of 

PBDEs in the aqueous phase did show a trend with temperature at the temperature range evaluated, 10– 

25°C. 

Incineration of waste materials containing PBDEs is thought to be a potential source of PBDFs and/or 

PBDDs.  The formation of PBDFs/PBDDs as a result of uncontrolled landfill fires is also a possibility, 

although no data are available on the scale of this source.  The results of pyrolysis experiments showed 

that PBDEs can form PBDFs and PBDDs (in much smaller quantities) under a wide range of heating 

conditions.  If chlorine is present, mixed halogenated furans/dioxins can be formed (Oberg et al. 1987; 

Zier et al. 1991).  Unless sufficiently high temperatures and long residence times are maintained, 

PBDFs/PBDDs can be generated during the incineration of products containing PBDEs.  When heavy 

metals are present, the concentration of PBDDs and PBDFs are higher than when no metals are present. 

Sakai et al. (2001) measured residues of PBDFs/PBDDs in effluents from a municipal incineration plant 

burning domestic waste materials.  Flue gases, fly ash, and bottom ash reportedly contained 

PBDFs/PBDDs at concentration ranges of 0.28–3.3 ng/N m3, 0.082–13 ng/g, and 0.0058–27 ng/g, 

respectively.  However, modern, properly operated municipal waste incineration should not emit 

significant quantities of PBDFs/PBDDs, regardless of the composition of municipal waste (WHO 1994a). 

In the United States, waste disposal of industrial by-products containing PBDEs may also be described as 

transfers to disposal (landfill), recycling, energy recovery (incineration), industrial treatment works, or 

POTWs. The types of waste transfer may be different for manufacturing versus processing sectors, and 

also from within different types of processing.  Waste disposal from manufacturing processes is 

predominantly to secure chemical landfills (e.g., those built with liners and leachate collection).  Plastic 
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processors typically transfer most waste to disposal (landfill), recycling, energy recovery (incineration), 

and industrial treatment works, while minimal releases are to POTWs.  In contrast, textile processors 

typically transfer most waste to POTWs. This difference in waste transfers between the plastic and textile 

sectors is because textile processors use water in their processing operation and other processors (e.g., 

processors of plastic) do not. 

Recycling of plastic materials containing PBDEs is a common practice in industry.  It has been 

demonstrated that decaBDE-containing resins can be successively recycled without generation of 

PBDDs/PBDFs (Brenner and Knies 1990; Donnelly et al. 1987; McAllister et al. 1990).  For example, 

virgin HIPS resins (containing antimony trioxide [Sb2O3] and decaBDE) and repeatedly ground and 

injected molded (e.g., “recycled”) HIPS/decaBDE/Sb2O3 resins both met the requirements of the German 

Chemicals Banning Ordinance with respect to 2,3,7,8-substituted PBDD/PCDF congeners. These resins 

were at least 1 order of magnitude below the regulated limit values for PBDDs/PCDFs (1 ppb for the sum 

of four congeners, 5 ppb for the sum of all eight regulated congeners). 
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6.1  OVERVIEW 

PBDEs have not been identified in any of the 1,832 hazardous waste sites that have been proposed for 

inclusion on the EPA National Priorities List (NPL) (ATSDR 2015).  However, the number of sites 

evaluated for PBDEs is not known.  

The widespread use of PBDEs since the late 1970s has resulted in their presence in the environment.  

PBDEs were released into the environment from their manufacture and use as additive flame retardants in 

thermoplastics in a wide range of products (WHO 1994a).  Waste containing PBDEs may be incinerated 

as municipal waste, deposited in landfills, discharged to municipal sewage-treatment plants, or emitted 

directly to the atmosphere as particulates (Darnerud et al. 2001).  

Adsorption of PBDEs generally increases as bromination of PBDEs and organic carbon content of soil 

and sediment increase.  As a result, most PBDEs have little or no mobility in soil and are not expected to 

leach (e.g., into groundwater).  PBDEs, particularly lower BDE homologs (e.g., tri- and tetraBDE), have 

the potential for long-range transport in the atmosphere (Dodder et al. 2000).  The detection of PBDEs in 

remote regions of the world suggests that long-range transport of these congeners is occurring (Dickhut et 

al. 2012; Hung et al. 2010).  Biodegradation is a slow environmental fate process for PBDEs, but under 

certain conditions, some PBDEs compounds (e.g., decaBDE) may degrade by direct photolysis to form 

lower-brominated congeners.  However, determining the rate and extent of degradation processes (e.g., 

biodegradation and photolysis) for PBDEs, such as decaBDE and pentaBDE commercial mixtures, is still 

an active area of research. 

Studies of the biota indicate that lower-brominated congeners (e.g., BDE 47) are being preferentially 

bioconcentrated.  Lower-brominated diphenyl ether (e.g., tetra- and pentaBDE) concentrations increase 

with respect to trophic level; thus, organisms that reside higher on food chains tend to have higher 

concentrations of these brominated diphenyl ethers (Shaw et al. 2009).  Body-burden data indicate that 

the general population is exposed to PBDEs through a variety of pathways (CDC 2015; Lorber 2008; 

Trudel et al. 2011).  The primary exposure pathway to PBDEs for residents of North America is through 

indoor dust contact (ingestion and dermal exposure) (EPA 2010; Lorber 2008.  Dust contact is also the 

primary exposure pathway for BDE 209 in the United Kingdom.  For Europeans, food consumption 

appears to be the primary exposure pathway for most congeners (Abdallah and Harrad 2014; Law et al. 

2008; Trudel et al. 2011).  Body burden data, as well as intake modeling, suggest that infants and toddlers 



   
 

  
 
 

 
 
 
 
 

  

   

 

  

 

   
 

  

    

        

    

  

 

      

 

  

    

    

  

 

     

 

  

   

  

    

   

    

 

     
 

       

   

PBDEs 366 

6.  POTENTIAL FOR HUMAN EXPOSURE 

have higher exposures to PBDEs as compared to older children or adults.  PBDE levels increase from 

infant to toddler and then PBDE concentrations gradually decrease at older ages. Most studies indicate 

that concentrations of PBDEs in body fluids and tissues are a factor of 10–100-fold higher for individuals 

living in the United States compared to individuals living in other regions of the world (e.g., Europe).  

6.2  RELEASES TO THE ENVIRONMENT 

The Toxics Release Inventory (TRI) data should be used with caution because only certain types of 

facilities are required to report (EPA 2005).  This is not an exhaustive list.  Manufacturing and processing 

facilities are required to report information to the TRI only if they employ 10 or more full-time 

employees; if their facility is included in Standard Industrial Classification (SIC) Codes 10 (except 1011, 

1081, and 1094), 12 (except 1241), 20–39, 4911 (limited to facilities that combust coal and/or oil for the 

purpose of generating electricity for distribution in commerce), 4931 (limited to facilities that combust 

coal and/or oil for the purpose of generating electricity for distribution in commerce), 4939 (limited to 

facilities that combust coal and/or oil for the purpose of generating electricity for distribution in 

commerce), 4953 (limited to facilities regulated under RCRA Subtitle C, 42 U.S.C. section 6921 et seq.), 

5169, 5171, and 7389 (limited S.C. section 6921 et seq.), 5169, 5171, and 7389 (limited to facilities 

primarily engaged in solvents recovery services on a contract or fee basis); and if their facility produces, 

imports, or processes ≥25,000 pounds of any TRI chemical or otherwise uses >10,000 pounds of a TRI 

chemical in a calendar year (EPA 2005). 

The widespread use of PBDEs from the 1970s until 2013 resulted in their presence in the environment.  

PBDEs were released into the environment from their manufacture and use in a wide range of consumer 

products (WHO 1994a).  PBDEs were used as additive flame retardants in thermoplastics.  Additive 

flame retardants are physically, rather than chemically, combined with polymers.  Thus, there is a 

possibility that some PBDEs congeners may diffuse out of the treated materials to some extent (EU 

2001).  Although these substances are no longer manufactured in the United States and Europe, the 

disposal of consumer products that contain penta-, octa-, and decaBDE will result in their continued 

release to the environment.  Waste from products containing PBDEs may be incinerated as municipal 

waste, deposited in landfills, or discharged to municipal sewage-treatment plants (Darnerud et al. 2001). 

6.2.1 Air 

Estimated releases of 2,180 pounds (~0.9 metric tons) of decaBDE to the atmosphere from 34 domestic 

manufacturing and processing facilities in 2014, accounted for about 1.5% of the estimated total 
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environmental releases from facilities required to report to the TRI (TRI14 2016).  These releases are 

summarized in Table 6-1. There are no TRI data for penta- or octaBDE. 

The estimated release of decaBDE from the 2014 TRI continues to reflect a decreasing trend as 

production slowed and was eventually discontinued in 2013.  The total on-site and off-site releases of 

decaBDE since 1998 are illustrated in Figure 6-1 (TRI14 2016).  

No quantitative information was located on the releases of the pentaBDE technical mixtures to the 

atmosphere from its former production and use.  However, the release of pentaBDE technical mixtures to 

air had the potential to occur during the curing phase, since the polyurethane foam was at elevated 

temperatures (e.g., up to 160°C) for several hours during this phase.  Since pentaBDE technical mixtures 

were additive flame retardants, they are subject to volatilization or leaching from the polymer matrix 

during the lifetime of the use of the foam article.  Losses of foam particles containing the substance (e.g., 

due to abrasion) may also occur.  However, most congeners in pentaBDE technical mixtures have very 

low vapor pressures (see Table 4-3) and therefore, losses from polyurethane foam due to volatilization 

would be expected to be low.  Migration of pentaBDE technical mixtures from consumer products may be 

a significant diffuse source of lower-brominated congeners of pentaBDE technical mixtures to the 

atmosphere.  Although no studies were found that determined the migration rate of pentaBDE technical 

mixtures from polymers into the air, estimates have been made.  The estimated migration rate for 

pentaBDE technical mixtures is 0.39% per year (Danish EPA 1999). 

Similarly, no quantitative information is available on emissions of octaBDE technical mixtures to the 

atmosphere from production operations. The major sources of air emissions of octaBDE technical 

mixtures were thought to be a result of grinding and bagging operations.  

The EPA National Center for Environmental Assessment (NCEA), Office of Research and Development 

completed a comprehensive exposure assessment of PBDEs (EPA 2010).  A series of studies were 

summarized that estimated the release of PBDEs from various products under laboratory conditions.  Two 

computer workstations manufactured after 2000 consisting of a monitor, computer, keyboard, mouse, and 

printer were used for 93 and 150 days and PBDE concentrations were monitored during their operation.  

BDE 47, BDE 100, BDE 99, and BDE 85 concentrations in surrounding air were <0.3 ng/m3 for one of 

the workstations; however, concentrations of BDE 47, BDE 100, and BDE 99 were 150, 28, and 

61 ng/m3, respectively, in air monitored for the second workstation.  An emission test was summarized 

that used the back panel of a television set treated with octaBDE manufactured before 1979.  Maximum 
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Table 6-1.  Releases to the Environment from Facilities that Produce, Process, or
 
Use Decabromodiphenyl Ethera
 

Reported amounts released in pounds per yearb 

Total release 
Statec RFd Aire Waterf UIg Landh Otheri On-sitej Off-sitek On- and off-site 
AR 2 120 0 0 5,374 0 120 5,374 5,494 
CA 1 1 0 0 139 0 1 139 140 
CT 1 0 0 0 0 1,747 0 1,747 1,747 
GA 3 347 0 0 2,917 0 347 2,917 3,264 
IL 3 0 0 0 5 0 0 5 5 
IN 1 5 0 0 0 0 5 0 5 
KS 1 NR NR NR NR NR NR NR NR 
MA 2 18 5 0 84 1 23 85 108 
MS 1 28 0 0 0 0 28 0 28 
NH 1 NR NR NR NR NR NR NR NR 
NJ 1 0 0 0 0 150 0 150 150 
NV 1 NR NR NR NR NR NR NR NR 
NY 1 0 0 0 137 0 0 137 137 
OH 4 505 0 0 75 112,501 505 112,576 113,081 
PA 3 1,152 0 0 6,919 0 1,152 6,919 8,070 
SC 5 0 0 0 67 0 0 67 67 
TX 2 5 0 0 6,182 0 5 6,182 6,187 
VA 1 0 0 0 2,504 0 0 2,504 2,504 
Total 34 2,180 5 0 24,403 114,399 2,185 138,802 140,987 

aThe TRI data should be used with caution since only certain types of facilities are required to report.  This is not an 

exhaustive list.  Data are rounded to nearest whole number.
 
bData in TRI are maximum amounts released by each facility.
 
cPost office state abbreviations are used.
 
dNumber of reporting facilities.
 
eThe sum of fugitive and point source releases are included in releases to air by a given facility.
 
fSurface water discharges, waste water treatment-(metals only), and publicly owned treatment works (POTWs) (metal
 
and metal compounds).
 
gClass I wells, Class II-V wells, and underground injection.
 
hResource Conservation and Recovery Act (RCRA) subtitle C landfills; other onsite landfills, land treatment, surface 

impoundments, other land disposal, other landfills.
 
iStorage only, solidification/stabilization (metals only), other off-site management, transfers to waste broker for
 
disposal, unknown
 
jThe sum of all releases of the chemical to air, land, water, and underground injection wells.
 
kTotal amount of chemical transferred off-site, including to POTWs.
 

NR = not reported; RF = reporting facilities; UI = underground injection 

Source:  TRI14 2016 (Data are from 2014) 
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Figure 6-1.  Total On- and Off-Site Releases of Decabromodiphenyl Ether, 1998–
 
2014
 

Source: TRI14 (2016) 
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concentrations of BDE 28, BDE 47, BDE 66, BDE 100, and BDE 99 were reported as 0.5, 8, 0.24, 0.27, 

and 0.84 ng/m3, respectively (EPA 2010). These data suggest that older treated consumer products may 

continue to release PBDEs long after they were originally treated. 

More generalized approaches were summarized that could be used to estimate the possible total 

volatilization of PBDEs from treated plastic products (EPA 2010).  The EU utilized a regression derived 

equation to estimate the percentage loss of PBDE that volatilizes from plastic components treated with 

PBDEs: 

PercentVolatilized = 1.1×106 ×VP × SL 

where VP is the vapor pressure in units of mm Hg and SL is the 

service life of the product, assumed to be 10 years 

For instance, using a vapor pressure of 3.47x10-8 mm Hg for decaBDE, the volatilization loss after 

10 years would be approximately 0.38% (EPA 2010).  Since approximately 6,710 metric tons of 

decaBDE were used in plastics the EU before it was banned, the total loss to air over the assumed 10-year 

lifetime would be approximately 25.5 metric tons (EPA 2010).  

Breivik et al. (2002) developed a regression-derived equation using the octanol-air partition coefficient 

(KOA) to estimate emission factors of PCBs from commercial sealants, which was also applied to estimate 

the emission factors of PBDEs 

log EF = −0.839 × log KOA + 4.83 

The emission factor (EF) is the ratio of the mass of PBDE emitted divided by the mass PBDE used per 

year.  Both equations above were used to estimate total emissions of penta-, octa-, and decaBDE from 

products used in the United States (EPA 2010). 

6.2.2 Water 

Estimated releases of 5 pounds (~0.002 metric tons) of decaBDE to surface water from 34 domestic 

manufacturing and processing facilities in 2014, accounted for <1% of the estimated total environmental 

releases from facilities required to report to the TRI (TRI14 2016). These releases are summarized in 

Table 6-1. 
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Industrial and urban effluents are sources of PBDEs to surface waters and sediments.  Limited data on 

industrial and urban effluents were located for the United States.  Hale et al. (2002) measured the 

concentration of PBDEs in soil and stream sediments collected near a polyurethane manufacturing plant 

(near the Dan River, Virginia).  Summed concentrations of BDE 47, BDE 99, and BDE 100, the dominant 

congeners in these samples, ranged from <1 to 132 µg/kg (ng/g) dry weight.  In 1995, sediment samples 

were collected up- and downstream near an area where the Swedish plastics industry used brominated 

flame retardants (Sellström and Jansson 1995; Sellström et al. 1998a).  Samples were analyzed for 

tetraBDEs (50 ng/g dry weight) and pentaBDEs (sum of three congeners, 2,300 ng/g dry weight).  These 

PBDEs were found in higher concentrations downstream of the plant than upstream, which indicates that 

the plastics industry was the most likely source of these compounds.  Surficial sediment samples were 

collected at eight locations along River Viskan near several textile manufacturing facilities that used 

various brominated flame retardants in the production of textiles.  The concentrations of BDE 47, 

BDE 99, BDE 100, and BDE 209 in sediments increased as samples were collected further downstream 

where additional industries were located (Sellström et al. 1998a).  The lowest concentrations of PBDEs 

were found upstream of the textile industries.  The combined concentration of BDE 47, BDE 99, and 

BDE 100 ranged from not detected to 120 ng/g (µg/kg) dry weight; the concentration of BDE 209 ranged 

from not detected to 16,000 ng/g (µg/kg) dry weight.  Allchin et al. (1999) surveyed the concentrations of 

PBDEs in sediments from several rivers and estuaries in Great Britain.  Sediments were collected 

upstream and downstream of suspected sources of pentaBDE and octaBDE, including a manufacturer, 

several industries, landfills, and a reference site. The highest concentrations of BDE 47, BDE 99, 

pentaBDE (as BDE 71), and octaBDE (as BDE 79) were in sediments near or downstream from a 

manufacturing site at Newton Aycliffe in River Skerne.  The highest concentrations of decaBDE (as 

BDE 83) were found downstream of a sewage-treatment plant on River Calder.  High concentrations were 

also detected on River Skerne downstream of a manufacturing site.  BDE 99 concentrations were identical 

or slightly higher than BDE 47 in most sediments (Allchin et al. 1999).  The sum of five pentaBDE 

congeners (BDE 47, BDE 99, BDE 100, BDE 153, and BDE 209) ranged from 0.07 to 10.6 ng/g (μg/kg) 

dry weight in freshwater sediments from Denmark (Christensen and Platz 2001).  The highest 

concentrations were found in sediment close to populated areas. 

A study conducted by the U.S. Geological Survey (USGS) analyzed waste water treatment plant (WWTP) 

effluent from nine cities located in Oregon and Washington for anthropogenic compounds, including 

PBDEs (USGS 2012).  Detectable levels in the low ng/L range were observed at every WWTP, and the 

highest concentrations measured were for congeners BDE 47, BDE 99, and BDE 100.  The greatest 
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PBDE concentrations were observed in Richland and Portland, Oregon.  The Portland PBDE values 

showed varying concentrations as a function of the time of the day that samples were obtained. The 

lowest PBDE levels were observed in the morning hours and afternoon and then increased 2–4 times by 

evening hours.  Shreder and LaGuardia (2014) measured PBDEs in the effluent of laundry waste water 

from 20 residences located near the Columbia River in Washington state.  BDE 47 and BDE 209 were 

detected in the laundry waste water effluent of all 20 homes at median levels of 1,230 and 140 ng/L, 

respectively.  The median concentration of total PBDE (sum of BDE 28, 47, 66, 85, 99, 100, 153, 154, 

183, 206, and 209) in the laundry waste water was reported as 2,550 ng/L.  BDE 47, BDE 49, and 

BDE 209 were also detected in the influents of two WWTPs near the Columbia River, Washington that 

primarily serve residential households.  The sum total levels of BDE 47, BDE 49, and BDE 209 in the 

influents of the WWTPs ranged from 35 to 206 ng/L.  Effluent PBDE levels were below the detection 

limit at one WWTP and 28.2 ng/L at the other facility (Shreder and LaGuardia 2014).  

Although the available information indicates that leaching of PBDEs from landfills is minimal, movement 

of polymer particles containing pentaBDE, octaBDE, and decaBDE commercial mixtures within the 

landfill could lead to entry into leachate water of groundwater.  PBDEs have been detected in landfill 

leachate and landfill related aqueous samples (Daso et al. 2013; Kwan et al. 2013; Odusanya et al. 2009; 

Oliaei et al. 2010; Stubbings and Harrad 2014).  The presence of hydrophobic compounds like PBDEs in 

leachate is expected to be a result of enhanced leachability due to the presence of other constituents 

present in the leachate (Stubbings and Harrad 2014).  Mass transfer evaluation of PBDEs from e-waste 

found that lower pH conditions resulted in higher transfer of PBDEs to the aqueous phase, with the 

highest concentration of PBDEs detected at pH 5 (Danon-Schaffer et al. 2013).  It is not currently 

possible to assess the significance of this type of process.  Well-designed landfills already include 

measures to minimize leaching in general, and these measures would also be effective in minimizing 

leaching of any PBDEs present (EU 2002, 2003a). 

6.2.3 Soil 

Estimated releases of 24,403 pounds (~11.1 metric tons) of decaBDE to soils from 34 domestic 

manufacturing and processing facilities in 2014, accounted for about 17% of the estimated total 

environmental releases from facilities required to report to the TRI (TRI14 2016).  These releases are 

summarized in Table 6-1. 
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PBDEs are released to land (i.e., landfills) as waste from their manufacture (both raw material and 

polymer) and as municipal wastes with the disposal of consumer products.  The disposal of consumer 

products containing PBDEs is likely to increase worldwide due to rapid obsolescence of plastic products. 

PBDEs may be present in biosolids and may therefore be inadvertently released to soils from the use of 

biosolids as a nutrient amendment to agricultural soils.  Biosolids are sewage sludge that has been treated 

to meet regulatory requirements for land application and must adhere to concentration limits and loading 

rates for chemical pollutants, treatment and use requirements for controlling and reducing pathogens and 

the attraction of vectors, and management practices (NRC 2002).  PBDEs were detected in biosolids 

destined for land applications in four different regions of the United States (Hale et al. 2001c).  The total 

concentrations of pentaBDE in biosolids ranged from 1,100 to 2,290 μg/kg dry weight.  The concentration 

of decaBDE (BDE 209) varied widely among biosolids from different regions; the concentration of 

BDE 209 ranged from 84.8 to 4,890 μg/kg dry weight in the biosolid samples.  Kim et al. (2013b) 

analyzed 288 samples of sludge and biosolids from 15 WWTPs in Canada. Total PBDE levels were 230– 

82,000, 530–8,800, and 420–6,000 μg/kg, in primary sludge, waste biological sludge and treated biosolids 

respectively.  BDE 209, BDE 99, and BDE 47 were reported as the predominant congeners.  In the 

biosolids, these three congeners accounted for approximately 80% of the total.  The median percentages 

of BDE 209, BDE 99, and BDE 47 were 47, 16, and 16%, respectively, of the total amount of all PBDE 

congeners in the biosolids. 

6.3  ENVIRONMENTAL FATE 

6.3.1 Transport and Partitioning 

PBDEs exist in both the vapor phase and the particulate phase in the atmosphere. Particulate-phase 

PBDEs will be removed from the atmosphere by wet and dry deposition.  A vapor phase–particulate 

phase analysis of indoor air samples obtained from Birmingham, United Kingdom found that 66–86% of 

BDE 47, 54–65% of BDE 99, 63–74% of BDE 100, <20–48% of BDE 153, and 37–48% of BDE 154 

existed in the vapor phase (Harrad et al. 2004).  Strandberg et al. (2001) performed a vapor phase– 

particulate phase analysis of outdoor air samples obtained from the Great Lakes region and found that 

about 80% of BDE 47, 55–65% of BDE 100 and BDE 99, and 30% of BDE 154 and BDE 153 existed in 

the gas phase.  Several PBDE congeners have been detected in Arctic regions, suggesting that these 

substances undergo aerosol-mediated, long-range atmospheric transport.  BDE 47, BDE 99, BDE 100, 

and BDE 209 were measured in air, snow, and sea ice samples throughout western Antarctica between 

2001 and 2007 (Dickhut et al. 2012).  Fourteen PBDE congeners are monitored for, and have been 
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detected at, Alert and Nuuk monitoring stations as part of the Arctic Monitoring and Assessment 

Programme (Hung et al. 2010), indicating the importance of long-range transport as an environmental fate 

process for these substances. 

In water, PBDEs are expected to adsorb strongly to suspended solids and sediment, and bioconcentrate in 

aquatic organisms.  The volatilization of PBDEs from water to air is expected to be attenuated by 

adsorption in the water column.  In soil, PBDEs are adsorbed strongly and will be immobile.  They are 

not likely to leach into groundwater.  Volatilization of PBDEs from soil to air is limited by the low 

volatility of PBDEs and strong adsorption of PBDEs to soil.  There is potential for PBDEs to volatilize 

from soil to air, particularly if the organic carbon content of the soil is low, as demonstrated by PBDEs 

being monitored in air as described in Section 6.4.1. 

PBDEs adsorb strongly onto suspended solids and sediments in the water column.  Volatilization of 

PBDEs from water surfaces will be attenuated by adsorption, and is thus not an important fate process.  

Sediment-water partition coefficients (Kp) have been measured for several components of commercial 

pentaBDEs (Watanabe 1988).  Kp values for tetra-, penta-, and hexaBDEs are 28,300, 49,200, and 

62,700 L/kg, respectively, which suggest strong partitioning to sediment.  Log organic carbon-water 

partition coefficients (Koc) were estimated for PBDEs:  di- (4.11); tri- (4.35–4.41); tetra- (4.57–4.73); 

penta- (4.89–5.17); hexa- (5.11–5.69); octa- (5.92–6.22); and deca- (6.80) (Lyman et al. 1990). 

DecaBDE and octaBDE commercial products do not bioconcentrate in fish to the same extent as 

congeners from the penta mixture. Monitoring data show that higher-brominated congeners such as BDE 

209 are taken up in marine organisms.  The reported bioconcentration factors (BCFs) for commercial 

decaBDE mixtures are typically <50 (Hardy 2002b). A single study on a mixed range of PBDEs, 

between hexaBDE and decaBDE, indicated little bioconcentration in carp (e.g., Cyprinus carpio) with a 

BCF of <4 after 8 weeks of exposure (WHO 1994a). A bioconcentration study was carried out with 

rainbow trout under static conditions.  The concentration of 14C-decaBDE/L in water was 20 μg.  Fish 

were exposed to decaBDE for 0, 0.5, 1, 2, 4, 6, 12, 24, or 48 hours.  For each of the exposure periods, 

there was no measurable accumulation of decaBDE in flesh, skin, or viscera (WHO 1994a). The 

bioconcentration of BDE 209 was studied by exposing zebrafish embryos to BDE 209 at concentrations 

of 0, 0.08, 0.38, and 1.92 mg/L until 14 days post-fertilization (Chen et al. 2012).  BCFs of 29, 9, and 

20 were calculated for exposure of 0.08, 0.38, and 1.92 mg/L, respectively.  Several lower-brominated 

congeners were also detected in the larvae, with the main metabolite being nonaBDE.  These results are 

http:deca-(6.80
http:octa-(5.92�6.22
http:hexa-(5.11�5.69
http:penta-(4.89�5.17
http:tetra-(4.57�4.73
http:tri-(4.35�4.41
http:di-(4.11
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consistent with other finding that indicate that BDE 209 was bioavailable and taken up by zebrafish larvae 

from spiked sediments (Garcia-Reyero et al. 2014).  

An abundance of monitoring data illustrates the uptake of lower-brominated diphenyl ethers by aquatic 

organisms, which results in bioconcentration (see Section 6.4.4).  The commercial pentaBDE product 

undergoes bioconcentration with a BCF of approximately 14,000 (Hardy 2002b).  Congener components 

of pentaBDE commercial product bioconcentrate to different extents.  For example, approximately 50– 

70% of PBDEs detected in fish is a single isomer (BDE 47).  The next most prominent isomer is typically 

BDE 99 followed by BDE 100.  In a laboratory study of Baltic blue mussels (Mytilus edulis L), BCFs 

from water absorption were found to be 1,300,000 for BDE 47, 1,400,000 for BDE 99, and 1,300,000 for 

BDE 153 (Gustafsson et al. 1999).  At several sites along the coast and in the Schelde Estuary (the 

Netherlands), BCFs for blue mussels were determined (Booij et al. 2000).  The maximum BCFs were 

1x109 for BDE 99 and BDE 100, ≈2.5x107 for BDE 28, ≈2.5x108 for BDE 47 and ≈1.6x108 for BDE 153.  

Biomagnification of PBDE congeners BDE 47, BDE 99, BDE 100, BDE 153, BDE 154, and BDE 155 in 

the marine food chain was demonstrated by comparing concentrations in the blubber of harbor seals with 

their prey fish (Shaw et al. 2009).  Biomagnification factors (BMFs) from fish to seals were 21.4–109, 

17.9–213, 6.9–29.8, 148–700, 11.3–447, and 12.4–236 for BDE 47, BDE 99, BDE 100, BDE 153, BDE 

154, and BDE 155, respectively (Shaw et al. 2009).  BDE 209 was detected at measurable concentrations 

in fish and seal tissue, although it did not appear to biomagnify like the other congeners.  A laboratory 

study was conducted using juvenile carp fed BDE 209 amended food over a 60-day period (Stapleton et 

al. 2004).  BDE 209 was not highly accumulated in the carp; however, seven debrominated lower 

congeners not initially present (penta- to octaBDEs) were detected in whole fish samples and liver tissue, 

suggesting that while BDE 209 did not accumulate in the fish, it may be a source of lower-brominated 

metabolites in aquatic organisms. 

Other studies have demonstrated the biomagnification of lower-brominated PBDE congeners.  Haglund et 

al. (1997) examined the concentrations of tetra- to hexaBDEs in herring, salmon muscle, and gray and 

ringed seals collected along the Swedish coast of the Baltic Sea between 1981 and 1988.  The 

concentrations of tetraBDEs (e.g., BDE 47) were found to increase with trophic level.  Concentrations of 

PBDEs in herring and their predators, grey seal and guillemot, all collected at the same location of the 

Baltic Sea, have been compared to estimate potential biomagnification (de Wit 2002).  The herring were 

caught in the autumn of the same year as guillemot egg collection (1987).  BMFs for guillemot egg versus 

herring were 19, 17, and 7.1 for BDE 47, BDE 99, and BDE 100, respectively.  Burreau et al. (2000) 

analyzed small herring and salmon from the Atlantic Ocean (near Iceland) for several PBDEs. The 
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calculated biomagnification factors for Atlantic salmon versus small herring were 3.5, 3.8, and 6.0 for 

BDE 47, BDE 99, and BDE 100, respectively.  These authors concluded that biomagnification was 

occurring for the lower-brominated congeners. 

Biosolids from the Metropolitan Water Reclamation District of Greater Chicago, Stickney WWTP, 

collected between 2004 and 2007, were applied at two sites at a depth of 15−20 cm (Hale et al. 2012). 

Maximum total soil PBDE concentrations were 565 and 1,810 μg/kg for high clay soil and sandy soil, 

respectively.  Corn grown at the two sites after the third year of annual biosolid application was evaluated 

for PBDEs using GC/MS with ENCI.  PBDEs were not detected in the 46 grain, stover, or root samples 

examined, suggesting little uptake by corn from soils amended using biosolids.  However, earthworms 

exposed to PBDE containing biosolids were shown to accumulate these substances (Gaylor et al. 2013).  

Earthworms were exposed to a Class B anaerobically digested biosolid (ADB) containing 

5,560±440 μg/kg dry weight total penta congeners (BDE 47, 99, 100, 153, 154, and 183) and a composted 

biosolid (CB) containing 1,130±79 μg/kg dry weight total penta congeners over the course of a 28-day 

incubation period.  Total penta PBDE body burdens in worms exposed to ADB amended soils were about 

5 times greater than those in the substrate, and worms exposed to CB amended soils had body burdens 

about 4 times greater than in the substrate. 

6.3.2 Transformation and Degradation 

Photolysis appears to be the dominant transformation process for PBDEs.  However, the importance of 

photochemical transformation reactions in the environment cannot be determined due to lack of 

information.  Based on a very limited number of studies, biodegradation does not appear to be significant 

for PBDEs. 

6.3.2.1  Air 

In air, PBDEs may undergo indirect photolysis with hydroxyl radicals or direct photolysis with sunlight.  

Vapor-phase PBDEs may be degraded in the atmosphere by reaction with photochemically produced 

hydroxyl radicals.  The half-lives for this reaction in air are estimated to be 29, 140, and 476 days, 

respectively, for penta-, octa-, and decaBDE homologs, calculated using a structure estimation method 

(Meylan and Howard 1993).  This estimation is calculated using an atmospheric concentration of 

5x105 hydroxyl radicals per cm3 and is based on a 24-hour day of sunlight.  The half-lives of PBDEs that 

are expected to be present in the particulate phase in the air will be longer than the estimated half-lives 
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calculated for the gas-phase reaction.  Thus, for the higher-brominated PBDEs (e.g., octa- and 

decaBDEs), indirect photolysis with hydroxyl radicals will be less important.  

In water, some PBDEs have been reported to undergo direct photolysis (Hua et al. 2003).  Likewise, 

PBDEs present in the vapor phase (e.g., tetraBDE) or as particulates (e.g., decaBDE) may also undergo 

photolysis in the atmosphere.  However, the rate and extent of the photolysis of PBDEs in air cannot be 

evaluated due the lack of information. 

6.3.2.2  Water 

PBDEs absorb light in the environmental spectrum. Hua et al. (2003) found that decaBDE and the 

commercial octaBDE absorbed light up to 325 nm, which indicates that these compounds may be 

susceptible to photodegradation at environmental wavelengths (Hua et al. 2003).  Di- and tetraBDEs were 

reported to absorb minimal light at wavelengths >300 nm.  This trend suggests that the lower-brominated 

diphenyl ethers (e.g., pentaBDE commercial mixtures) will be less susceptible to photolysis compared to 

octaBDE and decaBDE commercial mixtures. 

PBDEs undergo debromination by direct photolysis in organic solvents and organic solvent:water 

mixtures.  Laboratory studies of the photolytic breakdown of decaBDE in toluene have shown that it is 

debrominated by ultraviolet (UV) light to hexaBDE and that photolysis occurs very rapidly (Sellström et 

al. 1998b).  The photolysis half-life in toluene was <15 minutes. However, the amounts of lower

brominated congeners appear to be small (EU 2002).  The photolysis of decaBDE (and tetra-, penta-, 

hexa-, hepta-, and octaBDEs) was reported in an 80:20 mixture of methanol:water at wavelengths 

>290 nm (EU 2002). The rate of photodegradation was found to increase with increasing degree of 

bromination.  DecaBDE was found to degrade with a half-life of around 30 minutes, while half-lives for 

tetra-, penta-, hexa-, hepta-, and octaBDEs were 12–16 days, 2.4 days, 1.2 days, 1.2 days, and 5 hours, 

respectively.  The decomposition products of decaBDE were identified to be PBDEs (with >6 bromine 

atoms per molecule) and polybrominated furans (with <6 bromine atoms per molecule).  Results of this 

study indicate that the photochemical stability of PBDEs increases with decreasing bromination (EU 

2002).  Rayne et al. (2003b) reported that BDE 15 photodegraded in organic (acetonitrile-methanol) and 

aqueous (H2O:acetonitrile; 1:1 v/v) solvent systems at a wavelength of 300 nm.  Reductive bromination 

was reported to be much slower in the aqueous system (e.g., 73% remained after 300 minutes) compared 

to the organic system (where 51 and 41% remained after 30 minutes).  However, these studies were 

conducted in the presence of organic solvents, which are not representative of conditions found in the 
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environment.  Organic solvents can act as hydrogen donors in photolysis reactions, which will potentially 

affect the distribution of products formed. 

The photolysis of PBDEs was examined under environmentally relevant conditions.  Hua et al. (2003) 

studied the degradation of decaBDE in several different experiments:  (1) on humic acid-coated silica 

particles; (2) on glass surfaces in contact with aqueous humic acid solutions; and (3) on glass surfaces in 

contact with water.  DecaBDE dissolved in toluene was deposited on the solid substrate under a stream of 

nitrogen (to evaporate the solvent) and then desiccated to remove any residual toluene.  The adsorbed 

decaBDE on the solid substrate was then inundated with the aqueous test solution, followed by irradiation 

for the duration of the test period.  In all experiments, natural sunlight (location, 40° 26’ N, 86° 55’ W) 

was used.  The extent of degradation was determined using HPLC with UV detection or by GC/MS.  In 

the first experiment, solar irradiation of decaBDE adsorbed onto humic acid-sand indicated that the 

photolysis of decaBDE was slow.  After 96 hours of exposure to sunlight, 88% of initial decaBDE 

remained on the coated sand.  There is some evidence that lower-brominated congeners (e.g., BDE 155) 

were formed in the experiment (EU 2002).  In the second experiment, decaBDE was adsorbed on glass 

tubes containing a humic acid.  In this study, the concentration of decaBDE decreased relatively quickly 

over the first 24 hours of exposure, after which, the concentration remained stable.  Bromide ion 

accumulated at an almost linear rate from start to end of the 72-hour exposure period.  Approximately 

70% of the initial decaBDE remained after the 72-hour exposure.  The difference in kinetics (for the 

disappearance of decaBDE vs. the appearance of bromide ion) suggests that after the initial degradation of 

decaBDE, bromide ion was generated by the degradation of lower-brominated diphenyl ether congener 

products (possibly octa- and nonaBDEs).  Bromide ion mass balance for the system indicated that 70% of 

the total bromine present was accounted for by decaBDE or bromide, with the remaining 30% present as 

unidentified compounds.  In the third experiment, Hua et al. (2003) investigated the photodegradation of 

decaBDE adsorbed on glass tubes, which were filled with aqueous solutions (without humic acid).  The 

result of this test showed a much more rapid loss of decaBDE than found in the analogous test using 

humic acid solutions.  Approximately 29% of the initial decaBDE present remained after 72 hours.  The 

rate of decaBDE loss and bromide ion accumulation was relatively constant over the entire 72-hour test 

period.  Mass balance indicated that approximately 50% of the total bromine was present as either 

decaBDE or bromide ion, while the remaining 50% was possibly unidentified nona- and octaBDE 

congeners.  The difference between the tests using glass tubes with and without humic acid solution is 

possibly due to the absorption of light by humic acids, which may attenuate the degradation process.  

These studies indicate that adsorbed decaBDE may undergo photolysis forming octa- and nonaBDEs 

under somewhat environmentally relevant conditions.  Lower-brominated diphenyl ether congeners are 
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also formed although only to a minor extent.  These tests do not provide evidence that lower-brominated 

diphenyl ethers (e.g., tetra- and pentaBDEs) are a major degradation product of decaBDE (EU 2002).  

There is also insufficient information from these studies to estimate the rate of photolysis or if 

intermediate degradation products build up after long-term exposures (EU 2002). 

Söderström et al. (2004) examined the time course of photolysis of decaBDE (BDE 209) in toluene, on 

silica gel, sand, sediment, and soil using artificial sunlight and on the natural matrices (e.g., sediment, 

soil, and sand) using natural sunlight.  On natural samples, BDE 209 was first dissolved in toluene and 

then deposited on the natural matrix. The toluene was allowed to evaporate, and then the sample was 

reconstituted with water to resemble natural conditions.  BDE 209 was photolytically labile and formed 

debromination products in all matrixes studied.  Nona- to tetraBDEs were formed as well as some 

PBDFs.  The half-lives in toluene and on silica gel were <15 minutes, and half-lives on other matrices 

ranged from 40 to 200 hours.  No differences were observed in the debromination patterns under different 

matrices or light conditions. These experiments show that photolytic debromination of BDE 209 is a 

possible pathway for the formation of more bioavailable, lower-brominated PBDEs.  However, the most 

commonly found BDEs in environmental samples (e.g., BDE 47, BDE 99, and BDE 100) were only 

formed to a minor degree (Söderström et al. 2004). 

Following the methodology described for decaBDE, photolysis experiments were conducted on BDE 47 

(EU 2002).  BDE 47 was adsorbed on glass tubes filled with an aqueous solution and exposed to natural 

sunlight.  After 72-hours of exposure, 30% of the initial BDE 47 remained.  The rate of disappearance of 

BDE 47 was comparable to that found for decaBDE under similar test conditions. Accumulation of 

bromide was initially slow with the rate increasing after 24 hours while the disappearance of BDE 47 was 

initial rapid over the first 24 hours.  Using GC/MS, the authors concluded that 2,4,4’-triBDE was being 

formed during this reaction and that removal of bromine atoms ortho to the ether functionality may be a 

significant reaction pathway for removal of bromine atoms under the conditions of this study.  This study 

suggests that adsorbed BDE congeners, like decaBDE, may undergo photolysis under somewhat 

environmentally relevant conditions (EU 2002). 

PBDEs are not expected to undergo abiotic hydrolysis under environmental conditions due to the lack of 

hydrolysable functional groups (Wolfe and Jeffers 2000). 

PBDEs are unlikely to biodegrade rapidly in the environment under aerobic conditions.  PentaBDE did 

not undergo biodegradation (determined by CO2 evolution) after 29 days in an Organisation for Economic 
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Co-operation and Development (OECD) 301B ready biodegradation test (EU 2001).  The substance tested 

was a composite sample from two producers with the following composition:  33.7% tetraBDE, 54.6% 

pentaBDE, and 11.7% hexaBDE.  The test was extended to 93 days to allow sufficient opportunity for 

adaptation to occur. At the end of 93 days, 2.4% of the theoretical amount of CO2 had been evolved.  

Thus, pentaBDE was determined to be not readily biodegradable.  No degradation (as oxygen uptake) was 

seen for octaBDE after 28 days in an OECD 301D ready biodegradation test (EU 2003a).  Thus, octaBDE 

was determined to be not readily biodegradable.  The biodegradability of decaBDE has been studied 

under aerobic conditions using an activated sludge inoculum (EU 2002).  DecaBDE at 100 mg/L was 

incubated with activated sludge (at 30 mg/L) over a 2-week period using a method similar to an OCED 

301C MITI test.  No degradation (as measured by biochemical oxygen demand) was observed.  Thus, 

decaBDE was determined to be not readily biodegradable. 

No data on biodegradation of pentaBDE and octaBDE commercial mixtures under anaerobic conditions 

are available.  An anaerobic degradation study was carried out with BDE 47 using a mixture of 
14C-labeled and unlabeled compound (EU 2003a).  The test was carried out using a sediment-water 

(Schuykill River, Pennsylvania) inoculum.  After 32 weeks, it appeared that no significant degradation of 

BDE 47 had occurred.  However, the analytical method (i.e., HPLC using radiometric detection) used in 

this test indicated that some unidentified products had been formed in samples taken after 32 weeks. 

From these results, it is clear that BDE 47 has the potential to degrade slowly under anaerobic conditions 

(EU 2003a).  Rayne et al. (2003b) reported that 4,4’-diBDE undergoes reductive debromination under 

anaerobic conditions.  Debromination proceeds with replacement of a bromine atom by a hydrogen atom.  

The authors suggest that anaerobic debromination may sequentially debrominate BDE 15 to the parent 

diphenyl ether. 

The anaerobic biodegradability of 14C-labeled decaBDE was studied over a period of 32 weeks (EU 

2002).  The test chambers consisted of 500 mL bottles containing 300 mL of sediment (Schuykill River, 

Pennsylvania) prepared under anaerobic conditions. The test chambers were incubated at 25°C and in the 

dark during the test.  After the 32-week period, <1% of the total radioactivity added was found as 14CO2 

and 14CH4 indicating that essentially no mineralization had occurred.  GC/MS results showed no evidence 

for the formation of lower-brominated congeners from decaBDE under the conditions of this test (EU 

2002). 
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6.3.2.3  Sediment and Soil 

Information on the transformation and degradation of PBDEs in soil is limited.  The extent to which 

PBDEs undergo direct photolysis in soils and sediment is unknown.  However, sunlight would only 

penetrate the uppermost few millimeters of soil and will not impact sediment.  Photolysis of PBDEs is 

possibly important for land-applied sewage sludge contaminated with PBDEs.  However, no information 

was available on this possibility.  Based on studies in water, most PBDEs biodegrade slowly in soils or 

sediment under aerobic or anaerobic conditions.  The anaerobic biodegradation of BDE 47, BDE 99, and 

BDE 209 was studied using microcosms prepared from loam sediment (pH 6.3, 16.4% organic carbon) 

obtained from a pond located in West Lafayette, Indiana (Tokarz et al. 2008).  After an 8-month 

incubation period, microcosms containing BDE 47 showed variable losses (up to 30% of the initially 

applied amount) of the parent congener without concurrent increases in expected debromination products, 

suggesting that other degradation mechanisms other than reductive debromination may have occurred.  

Only about 3% degradation of BDE 99 was observed after 8 months, with BDE 28 being the most 

important debromination product.  After 10 months, only slight decreases in the initial BDE 209 

concentration was observed in six microcosms, and the half-life of this congener was estimated to range 

from 6 to 50 years; however, some aged microcosms exhibited greater degradation after 3.5 years, 

yielding nine degradation products (Tokarz et al. 2008).  

6.3.2.4  Other Media 

The bacteria, Pseudomonas aeruginosa, that was isolated from an electronic waste dismantling area was 

capable of degrading BDE 209 under aerobic conditions, especially in the presence of co-metabolic 

substrates such as glucose (Shi et al. 2013).  Nonabromodiphenyl ethers (BDE 208, BDE 207), four 

octabromodiphenyl ethers (BDE 203, BDE 202, BDE 197, BDE 196), and one heptabromodiphenyl 

ethers (BDE 183) were noted as degradation products. 

6.4  LEVELS MONITORED OR ESTIMATED IN THE ENVIRONMENT 

Reliable evaluation of the potential for human exposure to PBDEs depends in part on the reliability of 

supporting analytical data from environmental samples and biological specimens.  Concentrations of 

PBDEs in unpolluted atmospheres and in pristine surface waters are often so low as to be near the limits 

of current analytical methods.  In reviewing data on PBDEs levels monitored or estimated in the 

environment, it should also be noted that the amount of chemical identified analytically is not necessarily 
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equivalent to the amount that is bioavailable. The analytical methods available for monitoring PBDEs in 

a variety of environmental media are detailed in Chapter 7. 

Monitoring studies indicate that PBDEs are transported globally.  Atmospheric, water, and biota 

concentrations of PBDEs tend to be dominated by lower-brominated congeners (e.g., BDE 47).  

Sediments tend to be dominated by higher-brominated congeners (e.g., BDE 209).  Biota monitoring 

studies indicate that PBDE concentrations have increased since the late 1970s, with lower-brominated 

congeners (e.g., BDE 47) being preferentially bioconcentrated.  Studies indicate that PBDE 

concentrations increase with respect to trophic level; organisms that reside higher on the food chain tend 

to have higher concentrations of PBDEs. 

6.4.1 Air 

PBDEs will exist in both the vapor and particulate phase in both indoor and outdoor air (Harrad et al. 

2004).  The higher-brominated congeners (hepta-deca) have lower vapor pressures and partition more to 

the particulate phase, while the lower-brominated substances have a greater tendency to partition to the 

vapor phase.  Concentrations of PBDEs in outdoor air in the United States are typically in the range of 

20–200 pg/m3, with BDE 47 and BDE 99 being the congeners most often detected (EPA 2010).  

Monitoring data from the 1990s showed infrequent detections of decaBDE; however, more recent 

monitoring data have shown an increase in the frequency of detection of this substance both in outdoor 

and indoor air samples (EPA 2010; Hoh and Hites 2005).  Monitoring data from Europe and Asia suggest 

lower concentrations of PBDE in air samples as compared to data obtained in the United States.  

Representative concentrations of PBDEs in outdoor air samples obtained at various locations are 

summarized in Table 6-2.  Air samples obtained from urban (Chicago, Illinois), rural (Sleeping Bear 

Dunes, Michigan and Sturgeon Point, New York), and remote (Eagle Harbor, Michigan) shorelines of the 

U.S. Great Lakes all contained quantifiable concentrations of BDE 47, BDE 99, BDE 100, BDE 153, and 

BDE 154 (Dodder et al. 2000; Strandberg et al. 2001).  The most significant congeners were BDE 47 and 

BDE 99.  Air measurements were averaged over a 3-year period between 1997 and 1999.  The 

concentration of total PBDEs ranged from 5.5 pg/m3 in rural environments to 52 pg/m3 in urban air from 

Chicago, Illinois.  The concentration of BDE 47 was 48 pg/m3 observed near Chicago, Illinois.  The 

average concentration of decaBDE at the remote and rural locations was <0.10 pg/m3 for each of the years 

investigated. The average concentration of decaBDE in the particulate phase at the urban location ranged 

from 0.20 to 0.35 pg/m3 (Strandberg et al. 2001). 
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Table 6-2.  Concentrations (pg/m3) of Several Polybrominated Diphenyl Ethers 
(PBDEs) in Air Samples 

Location BDE 47 BDE 99 BDE 100 BDE 209 ΣPBDEsa Reference 
Urban, United 
States 

48 25 3.0 No data 77* Dodder et al. 2000 

Rural, United 
States 

6.2–9.2 4.3–5.0 0.6–0.9 No data 2–4.8* Dodder et al. 2000 

Remote, United 
States 

3.7 2.6 0.33 No data 6.9* Dodder et al. 2000 

Alert, Northwest 
Territories Canada 

No data No data No data No data 1–28 Alaee et al. 1999 

Eagle Harbor, 
Wisconsin 

2.9 2.1 0.28 <0.10 5.5* Strandberg et al. 2001 

Chicago, Illinois 3.9–42 2.4–15 0.68–3.3 1.5–878 13–980 Hoh and Hites 2005 
Sleeping Bear 
Dunes, Michigan 

0.51–27 0.32–23 0.030–5.1 <0.29–21 1.4–61* Hoh and Hites 2005 

Bloomington, 
Indiana 

1.9–21 1.2–11 0.26–2.75 <0.29–21 6.4–44* Hoh and Hites 2005 

Rohwer, Arkansas 1.2–42 0.87–35 0.17–3.7 <0.10–135 2.7–165* Hoh and Hites 2005 
Cocodrie, 
Louisiana 

2.0–24 0.89–11 0.21–2.7 <0.10–14 5.1–42* Hoh and Hites 2005 

Sturgeon Point, 
New York 

3.8 2.8 0.39 <0.10 7.2* Strandberg et al. 2001 

Sleeping Bear 
Dunes, Michigan 

8.4 5.3 0.80 <0.10 15* Strandberg et al. 2001 

Chicago, Illinois 33 16 2.0 0.20–0.35 52* Strandberg et al. 2001 
Ammarnäs, 
Sweden 

6.3 1.6 0.4 No data 8.3 de Wit 2000, 2002 

Hoburgen, 
Sweden 

0.7 0.35 0.07 No data 1.1 de Wit 2000, 2002 

Stoke Ferry, 
United Kingdom 

4.7–50 5.5–13 1.1–3.9 No data 6.7–58 Peters et al. 1999 

Hazelrigg, United 
Kingdom 

3.2–61 3.1–22 0.62–5.4 No data 4.1–69 Peters et al. 1999 

Dunai Island, 
Russia 

No data No data No data No data 1–8* Alaee et al. 1999 

Arctic 2.2–2.8 2.0–2.3 0.40–0.47 1.0–1.8 6.7–8.6* Hung et al. 2010 

aΣPBDEs is the sum of BDE 47, BDE 99, and BDE 100, but if more congeners are included, this is marked with an 
asterisk (*).
 

BDE = brominated diphenyl ether
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PBDEs were monitored at five different locations (Chicago, Illinois; Sleeping Bear Dunes, Michigan; 

Bloomington, Indiana; Rohwer, Arkansas; and Cocodrie, Louisiana) across the United States from 2002 

to 2003 (Hoh and Hites 2005).  Total PBDE concentrations at the urban site (Chicago, Illinois) were 3– 

6 times greater than the other locations, with BDE 47, BDE 99, BDE 100, and BDE 209 being the most 

abundant congeners at all five locations.  DecaBDE concentrations as high as 960 and 410 pg/m3 were 

observed in Chicago on two dates in 2003. 

Throughout the year of 1997, air samples were taken from a rural site in southwestern England called 

Stokes Ferry and a semirural site in northwestern England called Hazelrigg and analyzed for PBDEs 

(Peters et al. 1999).  Tri- and heptaBDEs were detected; the combined concentrations of BDE 47, 

BDE 99, and BDE 100 ranged from 7 to 69 pg/m3 at Hazelrigg and from 6 to 58 pg/m3 at Stoke Ferry (de 

Wit 2002).  PBDEs have also been measured in air samples taken from remote stations in the Arctic (e.g., 

Alert, Northwest Territories, Canada; Dunai Island, eastern Siberia, Russia) between January 1994 and 

January 1995 (de Wit 2002).  The total concentration of several di- to hexaBDEs ranged from 1 to 

4 pg/m3 at Alert for the majority of the year; however, in July 1994, the concentration was 28 pg/m3.  At 

Dunai, the major congeners found were BDE 47 and BDE 99.  In Sweden during 1990–1991, air samples 

collected from Ammarnäs in the northern mountains and Hoburgen on the southern tip of Gotland in the 

Baltic Sea, had measurable amounts of BDE 47, BDE 99, and BDE 100 (de Wit 2002).  Total PBDE 

concentrations were approximately 1 and 8 pg/m3, respectively.  The concentration of BDE 47 was found 

to be highest in the gas phase, while BDE 99 and BDE 100 were highest in the particulate phase.  No 

decaBDE was found, although the limit of detection limit for decaBDE is much higher than for the lower

brominated diphenyl ethers. 

Indoor air concentrations of PBDEs vary depending upon potential sources such electronics or foams used 

in upholstery stuffing for furniture that were treated with PBDEs (EPA 2010; Harrad et al. 2006; Hazrati 

and Harrad 2006).  Harrad et al. (2004) found a significant positive correlation between PBDE 

concentrations in indoor air and both the number of electrical appliances and the number of chairs 

containing FPUF.  Concentrations of tetra- and pentabrominated congeners (BDE 47, BDE 99, and BDE 

100) in indoor air were always higher than those detected in outdoor air.  On average, indoor air 

concentrations were 150, 120, and 140 times higher than outdoor air for BDE 47, BDE 99 and BDE 100, 

respectively.  Indoor air concentrations of PBDEs also tended to be higher in workplace environments as 

compared to domestic residences; however, these concentrations could vary substantially from one room 

to another (Harrad et al. 2004).  Air samples collected from 31 homes, 33 offices, and 25 automobiles in 

the West Midlands, United Kingdom were analyzed for the presence of PBDEs (Harrad et al. 2006). 
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Total PBDE concentrations in samples obtained from homes ranged from 4 to 245 pg/m3 (24 pg/m3, 

median), while concentrations in offices and cars ranged from 10 to 1,416 (71 pg/m3, median) and from 

4 to 1,416 pg/m3 (41 pg/m3, median), respectively.  PBDE congeners 47 and 99 were reported as the 

major contributors to the overall total (Harrad et al. 2006). Although the previous study reported a 

statistically significant positive correlation between the PBDE concentrations and the number of electrical 

devices and FPUF-containing chairs (Harrad et al. 2004), no clear statistical evidence of such correlations 

were reported in these indoor air environments (Harrad et al. 2006; Hazrati and Harrad 2006).  PBDE 

concentrations in the air of one office did drop dramatically after an older computer was replaced by a 

relatively newer one and a statistically significant positive correlation was observed between automobile 

age and PBDE concentrations when two highly contaminated outliers were removed from the analysis.  

Further observations indicated a seasonal variation of the PBDE concentrations in indoor air, with higher 

concentrations being observed during the summer months (Hazrati and Harrad 2006).  BDE 47, BDE 99, 

BDE 100, BDE 183, and BDE 209 were detected in 63, 22, 29, 32, and 42% of air samples taken aboard 

aircraft during routine flights (Allen et al. 2013).  Concentrations ranged from below the detection limits 

to a maximum concentration of 2,100,000 pg/m3 for BDE 209. 

Concentrations of PBDEs were measured in floor dust, indoor air, ventilation filter dust and carpets in 

10 buildings located in Michigan (Batterman et al. 2010).  Median concentrations of total PBDEs were 

reported as 8,754 ng/g in settled dust, 1,250 pg/m3 vapor-phase air, and 155 pg/m3 particulate-phase air. 

The highest concentrations of PBDEs were generally noted in rooms that contained sources such as 

computer servers.  Monitoring data from one building that was built in 2006 indicated a very low 

concentration of PBDEs in settled dust at the time it was constructed (145 ng/g); however, these 

concentrations increased exponentially to >10,000 ng/g 5–8 months after the building was opened.  

Despite the voluntary phase-out of pentaBDE and octaBDE in 2004, high concentrations of congeners 

associated with these mixtures (BDE 47, BDE 99, BDE 100, BDE 153, and BDE 203) were detected in 

dust and air samples, suggesting that there are significant sources of these PBDEs in products that remain 

in the market and that were used in this building even after the phase out in 2004. 

6.4.2 Water 

Due to the hydrophobic nature of PBDEs, this class of compounds is expected to be present in water at 

very low concentrations or at concentrations below the limit of detection of acceptable analytical 

methods.  In 1999, the concentration of PBDEs in Lake Ontario surface waters ranged between 4 and 

13 pg/L with ~90% in the dissolved phase (Luckey et al. 2001).  BDE 47 and BDE 99 were the most 
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abundant congeners, together making up >70% of the total PBDEs.  Streets et al. (2006) reported 18 and 

3.1 pg/L average concentration of ƩPBDEs (BDE 47, BDE 66, BDE 100, BDE 99, BDE 85, BDE 154, 

and BDE 153 of pg/L) in Lake Michigan Water for the dissolved phase and particulate phase, 

respectively.  In Japan, PBDEs were not detected in 75–200 water samples (ENVIRON 2003a).  In nine 

English freshwater lakes grab samples were obtained from April 2008 to February 2012, average 

concentrations of the sum total of PBDEs, which included BDE 17, BDE 28, BDE 49, BDE 47, BDE 66, 

BDE 100, BDE 99, BDE 85, BDE 154, and BDE 153, ranged from 41.5 to 73.3 pg/L (Yang et al. 2014).  

The EPA utilized data from the San Francisco Monitoring Program for Trace Substances in surface water 

to estimate possible concentrations of PBDEs that might be found in drinking water.  Thirty-three water 

samples were obtained from the San Francisco Estuary, with total PBDEs concentrations ranging from 

3 to 513 pg/L, and a mean concentration of 146.2 pg/L (Oros et al. 2005).  It was reported that the most 

frequently detected congeners were BDE 47, BDE 99, and BDE 209. The source of these PBDEs was 

most likely effluent from municipal treatment plants.  Concentrations of PBDEs monitored in the 

Spokane River in the state of Washington exhibited seasonal variation (Furl and Meredith 2010).  

Dissolved PBDE concentrations collected in the fall of 2005 were approximately 6 times greater 

(926 pg/L) as compared to concentrations observed in the spring of 2006 (146 pg/L).  The variation in 

PBDE concentrations were likely a result of dilution of local sources in the spring from increased flow 

due to snowmelt in the upper watershed.  

6.4.3 Sediment and Soil 

Hale et al. (2002) reported the concentration of PBDEs in soil samples collected in the vicinity of a 

polyurethane foam-manufacturing facility.  Concentrations in these soils are likely to be higher than those 

to be expected in rural and potentially urban areas of the United States.  Total PBDE concentrations in 

these samples ranged from not detected to 76 μg/kg dry weight.  BDE 99 was the predominant congener 

in soil followed by BDE 47 and BDE 100.  Concentrations of total PBDEs in soil obtained from a large 

automotive shredding and metal recycling facility in Brisbane, Australia ranged from 29 to 726 ng/g dry 

weight as compared to background concentrations at an uncontaminated site (0.2–2 ng/g dry weight) 

(Hearn et al. 2013).  BDE 209 was the predominant congener in dust, soil, and air at the facility. 

In Eastern China, near dismantling areas for waste electrical and electronic equipment that are considered 

a potential exposure source of PBDEs, 45 farmland soil samples were collected from 12 locations (Dong 

et al. 2014).  The farmland soil PBDE concentrations ranged from 2.96 to 200 ng/g and air concentrations 
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ranged from 884 to 2,791 pg/m3.  The PBDE concentrations in high-mountain pasture soil, grass, and 

milk from grazing cows in the Italian Alps were analyzed (Parolini et al. 2012). Thirteen BDE congeners 

were investigated, including BDE 17, BDE 28, BDE 71, BDE 47, BDE 66, BDE 100, BDE 99, BDE 85, 

BDE 154, BDE 153, BDE 138, BDE 183, and BDE 190.  Average ƩPBDE concentrations in soil from 

0 to 7 cm soil depth were 0.43–1.55 ng/g dry weight, 1.7–8.2 ng/g dry weight in grass vegetation, and 

0.659–1.576 ng/g dry weight in milk.  The average total PBDE concentration in soil samples collected 

from the Ny-Alesund region of the Arctic was reported as 0.042 ng/g dry weight (Wang et al. 2015).  

BDE 99 was the predominant congener, with an average value of 0.0097 ng/g dry weight. 

The EPA used 33 surface soil measurements taken from 15 states in the United States to estimate 

ingestion rates and dermal exposure rates of PBDEs from soil.  The concentration of 30 total BDEs in the 

soils was reported to average 103 ng/g dry weight, with a geometric mean (GM) concentration of 5.3 ng/g 

(EPA 2010).  BDE 47 (1.9 ng/g), BDE 99 (3.6), BDE 100 (0.4), BDE 153 (5.7), BDE 154 (4.8), BDE 183 

(37.4), and BDE 209 (15.3) were included in this evaluation. 

Sediment concentrations of PBDEs tend to be dominated by higher-brominated congeners (e.g., 

BDE 209) (deWit 2002).  Temporal trends suggest that concentrations of PBDEs in sediments are 

increasing.  Burdens of PBDEs in sediment appear to be a function of distance from the source and their 

organic carbon content (Hale et al. 2003).  Representative concentrations of PBDEs in sediment samples 

are summarized in Table 6-3.  

A 20-year field study regarding the land application of Class B biosolids to a site located in Arizona was 

discussed by Quanrud et al. (2011).  Risk assessments were made based on the intake of compounds via 

inhalation, dermal sorption, or ingestion.  PBDE concentrations were detected, primarily in the surface 

30-cm depth sample, and surface accumulation of PBDEs occured due to their hydrophobic nature, which 

resulted in sorption to colloids.  The maximum amount of PBDE detected was 80 ng/g soil as congener 

BDE 209.  A risk evaluation of PBDEs based on Hazard Indices indicated that the health risk to humans 

of PBDEs was negligible when all three routes of exposure were considered.  

Li et al. (2006) collected 199 sediment samples from 16 locations of Lake Superior, Lake Michigan, Lake 

Huron, Lake Erie, and Lake Ontario and analyzed these samples for PBDE concentrations.  The 

concentrations of PBDEs in surface sediment ranged from 0.5 to 6.7 ng/g dry weight tri- to heptaBDE 

congeners and from <4 to >240 ng/g dry weight for BDE 209.  PBDEs were detected in 100% of 

sediment samples obtained from the San Francisco Bay with total PBDE concentrations ranging from 

http:0.43�1.55
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Table 6-3.  Concentrations (ng/g) of Several Polybrominated Diphenyl Ethers 
(PBDEs) in Sediment and Suspended Particulate Samples 

Sample type Location BDE 47 BDE 99 BDE 100 ΣPBDEs BDE 209 Reference 
Sediment Lake Superior No data No data No data No data 12 Zhu and Hites 

2005 
Sediment Lake Michigan No data No data No data 2.6a 320 Zhu and Hites 

2005 
Sediment Lake Michigan No data No data No data 1.67–3.97a 43.9–95.6 Song et al. 2005 
Sediment Lake Huron No data No data No data 1.02–1.87a 21.5–36.0 Song et al. 2005 
Sediment Lake Erie No data No data No data 1.1a 40 Zhu and Hites 

2005 
Sediment Lake Ontario No data No data No data 2.8a 14 Qui et al. 2007 
Sediment Hadley Lake, 

Indiana 
16±2 (dw) 37±8 

(dw) 
7.1±1.5 
(dw) 

584 (dw)b 480±170 
(dw) 

Dodder et al. 
2002 

Sediment Baltic Sea ND–3.4 ND–2.4 ND–1.3 ND–5.4 ND Nylund et al. 
1992 

Sediment Upstream 
plastics plant, 
Sweden 

3.7 8.8 1.6 14.1 No data Sellström and 
Jansson 1995 

Sediment Downstream 
plastics plant, 
Sweden 

780 1,200 270 2,250 No data Sellström and 
Jansson 1995 

Sediment River Viskan 
(Sweden), up
stream and 

<2–50 <1–53 <0.4–19 ND–120 ND–16,000 Sellström et al. 
1998a 

downstream 
textile industries 

Sediment 22 European 
river mouths 

<0.17–6.2 
(dw) 

<0.19– 
7.0 (dw) 

No data No data <0.51– 
1,800 

de Wit 2002 

Sediment Seven rivers, 
Great Britain 

<0.3–368 
(dw) 

<0.6– 
898 
(dw) 

No data No data <0.6–3,190 Allchin et al. 
1999 

Sediment Netherlands, 
several sites 

0.3–7.1 
(dw) 

<0.2–9 
(dw) 

No data No data <4–510 
(dw) 

de Boer et al. 
2000b 

Suspended 
particulates 

Netherlands, 
several sites 

<2–9 (dw) <0.1–23 
(dw) 

No data No data <9–4,600 
(dw) 

de Boer et al. 
2000b 

aTri- to hepta-PBDE congeners.

bIncludes sum of BDE 47, BDE 99, BDE 100, BDE 209, and other congeners (not specified).
 

BDE = brominated diphenyl ether; dw = dry weight; ND = not detected 
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2.1 to 8.0 ng/g dry weight and a median concentration of 4.3 ng/g dry weight (Klosterhaus et al. 2012).  

BDE 209 was the primary congener of each sample, accounting for approximately 38–68% of the total 

PBDE amount.  

In the United States, Dodder et al. (2002) analyzed four surficial sediments from Hadley Lake (Indiana).  

This lake is in the vicinity of a production point source.  DecaBDE (BDE 209) was the major congener 

detected at concentration ranging from 19 to 36 μg/kg (ng/g) dry weight.  Other congeners detected (in 

decreasing order: BDE 99, BDE 153, BDE 154, BDE 47, and BDE 100) were <5 μg/kg (ng/g) dry weight.  

PBDEs were above the detection limit (i.e., 0.5 μg/kg [ng/g] dry weight) in 22% of surficial sediment 

samples (from 133 sites) in freshwater tributaries of Virginia (Hale et al. 2001b).  BDE 47 was the 

predominant congener followed by BDE 99 and BDE 100.  The maximum concentration detected in 

sediment was 52.3 μg/kg (ng/g) dry weight.  Hale et al. (2002) reported that stream sediment adjacent to a 

former polyurethane foam production facility in North Carolina contained up to 132 μg/kg (ng/g) dry 

weight of pentaBDE.  Since the phase out of PBDE-containing flame retardants, levels of these 

substances have begun declining in sediment and other environmental media.  Sutton et al. (2015) 

reported that levels of BDE 47 have declined by over one-third in sediment samples obtained from the 

San Francisco Bay from 2000 to 2012; however, no decline of BDE 209 was evident, presumably since 

decaBDE was not phased out until 2013.  

In Japan, tetra-, penta-, hexa-, and decaBDEs have been detected in river sediments (Watanabe et al. 

1986, 1987, 1995). The combined concentrations of tetra- and pentaBDEs ranged from 21 to 59 ng/g 

(μg/kg) dry weight.  The concentration of decaBDE (BDE 209) ranged from <25 to 11,600 ng/g (μg/kg) 

dry weight (deWit 2002).  In 1999, sediment samples from several locations in the Netherlands contained 

BDE 47, BDE 99, and BDE 209 (de Boer et al. 2000b).  Concentrations ranged from 0.3 to 7.1 ng/g 

(μg/kg) dry weight for BDE 47, not detected to 5.5 ng/g (μg/kg) dry weight for BDE 99, and not detected 

to 510 ng/g (μg/kg) dry weight for BDE 209. The concentration of PBDEs in suspended particulate 

matter ranged from not detected to 9 ng/g (μg/kg) dry weight for BDE 47, not detected to 23 ng/g (μg/kg) 

dry weight for BDE 99, and not detected to 4,600 ng/g (μg/kg) dry weight for BDE 209 (de Boer et al. 

2000b). The concentration of several brominated flame retardants was measured in sediments collected 

from the mouths of major European rivers (de Wit 2002).  Elevated concentrations of BDE 47 and 

BDE 99 were found in Humber and Mersey rivers (Great Britain).  In two rivers of the Netherlands, the 

sum of BDE 47 and BDE 99 ranged from 1.61 to 13.1 ng/g (μg/kg) dry weight.  The highest hexaBDE 

concentrations (as BDE 153) were found in the river Seine (France), three rivers in the Netherlands, and 

the rivers Schelde (Belgium), Forth (Great Britain) and Ems (Germany); the concentration of 
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BDE 153 ranged from 0.013 to 0.056 ng/g (μg/kg) dry weight in these sediments.  The concentrations of 

decaBDE were highest in sediment from the Seine, ranging from 2.4 to 3.9 ng/g (μg/kg) dry weight.  The 

concentrations of decaBDE in River Mersey (Great Britain), Schelde, and River Liffey (Ireland) ranged 

from 34 to 1,800 ng/g (μg/kg) dry weight.  In the southern Baltic Sea (Bornholm Deep), the upper layer of 

sediment was analyzed for BDE 47, BDE 99, and BDE 100; the combined concentration of these three 

congeners was 0.52 ng/g (μg/kg) dry weight (Nylund et al. 1992). 

A well-studied sediment core collected from the southern part of the Baltic Sea proper was analyzed for 

PBDEs and a number of organochlorine contaminants (Nylund et al. 1992).  The retrospective temporal 

trend from 1939 to 1987 showed that the PBDE concentrations (i.e., sum of BDE 47, BDE 99, and 

BDE 100) have increased with a sharp increase after 1980.  The PBDE concentration in the sample from 

1989 was 2.9 ng/g (Nylund et al. 1992).  Measurable amounts of BDE 28, BDE 47, BDE 66, BDE 99, and 

BDE 100 were found in sediment cores from a freshwater lake in Germany, the Wadden Sea (the 

Netherlands), and Drammenfjord (Oslo Fjord, Norway) (Zegers et al. 2000).  Samples from the 

Drammenfjord and freshwater lake also contained BDE 153 and BDE 154, and the Wadden Sea and 

freshwater lake samples contained BDE 209.  The lower-brominated PBDEs appear in the 1960s, and 

BDE 209 appears about 10 years later. The Drammenfjord sediment core shows increasing 

concentrations of BDE 47 starting in the 1940s (range, 0.02–0.18 ng/g dry weight) and increasing 

concentrations of BDE 99 (range, 0.5–0.28 ng/g dry weight), BDE 100 (range, not detected–0.07 ng/g dry 

weight), and BDE 154 (range, not detected–0.06 ng/g dry weight) beginning in the 1950s up to 1999.  In 

the sediment core from Lake Woserin, lower-brominated PBDE congeners were detected in the sediment 

horizons beginning in the late 1950s, and the concentrations increased until the late 1970s, and then 

leveled off when residues of BDE 209 first appeared.  A similar leveling-off trend is also observed in the 

Wadden Sea core (Zegers et al. 2000).  It is important to note that this study identified the presence of 

PBDEs compounds in sediments from the late 1950s and early 1960s.  This is nearly a decade prior to any 

significant commercial production of these substances.  The existence of PBDEs at these early dates may 

be a result of vertical mixing of sediment cores or blurring of core horizons through burrowing activity of 

benthic organisms, or may lend some credibility to the likelihood that either the substances identified in 

the environment as PBDEs are not necessarily PBDEs. 

6.4.4 Other Environmental Media 

Dust. The predominant PBDE exposure pathway for the general population of the United States is from 

indoor dust (EPA 2010; Lorber 2008).  Total PBDE (sum of BDE 28, 47, 66, 85, 99, 100, 153, 154, 183, 

http:detected�0.06
http:detected�0.07
http:0.5�0.28
http:0.02�0.18
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206, and 209) levels in dust samples obtained from 20 residences located near the Columbia River in 

Washington state ranged from 311 to 19,700 ng/g, with BDE 209 being the predominant congener 

(Shreder and LaGuardia 2014).  Total PBDE concentrations in settled dust from 10 office buildings 

located in Michigan ranged from 1,340 to 38,900 ng/g (median, 15,800 ng/g) (Batterman et al. 2010).  

BDE 47, BDE 99, and BDE 209 had the highest concentrations for the individual congeners, with a 

maximum value of 29,000 ng/g measured for BDE 209 in one of the office buildings.  A study of eight 

office buildings in Boston, Massachusetts had even greater PBDE concentrations in settled dust.  BDE 

209 was detected in 100% of the samples at concentrations ranging from 912 to 106,204 ng/g (Watkins et 

al. 2011).  Total pentaBDE congeners ranged from 141 to 61,264 ng/g in these office buildings.  Lower 

concentrations of the lesser brominated congeners, Σtri–hexaBDE, were detected in dust samples in 

Europe as compared to the United States and Canada (Harrad et al. 2008).  Concentrations of BDE 209 in 

dust samples are similar in the United States and the United Kingdom.  Congener pattern analysis of 

indoor dust suggests that North American dusts are contaminated with decaBDE and pentaBDE 

commercial formulations, whereas U.K. dusts are predominantly contaminated with decaBDE.  For 

example, the average concentration of total PBDE congeners in eight homes located in West Midlands, 

United Kingdom was about 215 ng/g, with a range of 16.2–625.4 ng/g (Harrad et al. 2006).  Dust samples 

obtained from Spain and Belgium had total PBDE ranges of 2.9–380.2 and 6.2–384.8 ng/g, respectively 

(Harrad et al. 2006).  Concentrations in North America also seem to be greater than even source-

dominated areas in other parts of the world. The mean total concentration of 10 PBDE congeners in dust 

samples obtained from an office building located near a large automotive shredding and metal recycling 

facility in Brisbane, Australia was 2,014 ng/g (Hearn et al. 2013).  

Food.  Food ingestion typically accounts for <20% of the total PBDE intake for adults in North America 

(EPA 2010; Lorber 2008); however, it accounts for the majority of intake for the European population, 

with the exception of BDE 209 where dust exposure is the primary source (Abdallah and Harrad 2014; 

Trudel et al. 2011).  Schecter et al. (2006) measured concentrations of 13 PBDE congeners in 62 food 

samples in the United States.  Concentrations of total PBDEs ranged from 7.9 pg/g in milk to 3,762 pg/g 

in canned sardines.  Fish, meat, and dairy products tended to have the highest concentrations of PBDEs. 

The results of these measurements for meat and fish are reproduced in Table 6-4.  A survey of three 

categories of baby food (formula, cereal, and puree) from the United States and China found the median 

concentrations of total PBDE (sum of BDE 17, BDE 28, BDE 47, BDE 49, BDE 100, BDE 153, BDE 

183, and BDE 209) were 21 and 36 pg/g in foods purchased in the United States and China, respectively 

(Liu et al. 2014). 
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Table 6-4.  PBDE Concentrations (pg/g Wet Weight) in 18 U.S. Meat and Fish 

Samplesa
 

Lipid BDE BDE BDE BDE BDE BDE BDE BDE BDE BDE BDE BDE BDE Total 
Sample (%) 17 28 47 66 77 85 99 100 138 153 154 183 209 PBDEsb 

U.S. meat samples 
Bacon A 52.3 ND ND ND ND ND ND ND ND ND ND ND ND ND 165 

(5.2) (7.1) (78.8) (5.2) (5.2) (5.2) (28.8) (6.8) (5.2) (5.2) (5.2) (5.2) (166.6) 
Bacon B 43.4 ND ND ND ND ND NA ND ND ND ND ND ND ND 39 

(0.4) (2.1) (19.9) (0.4) (0.2) (15.6) (2.8) (0.4) (1.1) (0.9) (1.7) (32.8) 
Bacon C 35.3 0.7 ND 30.1 NA NA 1.4 16.8 4.8 ND 4.5 2.8 14.3 28.4 105 

(2.0) (0.7) 
Beef 30.7 ND 59.7 87.5 ND ND ND 35.5 6.2 ND 6.8 4.6 ND ND 258 
(ground) A (3.1) (3.1) (3.1) (3.1) (3.1) (4.2) (95.7) 
Beef 13.6 0.2 ND 23.4 0.5 NA NA 32.3 4.5 0.4 4.7 2.5 NA 9.7 79 
(ground) B (0.7) 
Beef 13.7 ND ND 35.1 ND NA 1.7 40.3 6.9 ND 4.9 3.7 3.8 ND 105 
tenderloin (1.4) (1.5) (1.4) (1.4) (11.1) 
Chicken 4.9 ND 0.5 60.5 NA NA NA 128 17.1 2.2 12.0 10.8 3.2 48.5 283 
breast (0.04) 
Duck 75.1 ND ND 286 2.7 ND 15.2 609 122 7.3 52.3 42.9 31.6 113 1,283 

(0.5) (3.0) (0.3) 
Ground 7.3 ND ND 11.0 ND NA ND 18.9 4.6 ND 4.1 2.6 5.8 80 129 
chicken (0.7) (1.5) (0.7) (0.7) (0.7) 
Ground 19.7 ND ND ND ND ND 3.2 56.8 16.8 ND 9.6 6.3 ND ND 186 
lamb (2.0) (2.1) (23.0) (2.0) (2.0) (2.0) (2.0) (150.6) 
Ground 21.5 ND ND 53.8 ND NA 3.1 74.2 12.9 4.3 18.7 15.0 19.9 ND 221 
pork (2.2) (3.5) (2.2) (31.3) 
Ground 11.1 0.2 ND 98 0.8 ND NA 217 54.4 3.9 32.9 24.1 36.8 245 713 
turkey (0.5) (0.1) 
Pork 8.9 0.1 ND 6.9 NA NA NA 16.3 1.8 0.2 1.0 1.2 1.3 11.7 41 

(0.5) 
Pork 23.7 ND ND 387 ND ND 16.8 688 74.5 5.6 81.6 55.3 14.6 49.7 1,378 
sausage A (1.3) (6.9) (1.0) (0.3) 
Pork 24.4 ND ND 39.4 ND ND 2.6 71.6 8.3 ND 22.0 13.7 10.7 ND 244 
sausage B (2.4) (3.4) (2.4) (2.4) (2.4) (139) 
Sausage 26.2 ND ND ND ND NA 3.1 40.1 6.4 ND 5.9 4.9 6.9 ND 1,426 
A (2.6) (5.5) (34.8) (2.6) (2.6) (51.0) 
Sausage 28.5 ND ND 94.1 ND ND ND 43.7 8.3 ND 8.5 9.2 ND ND 195 
B (2.9) (3.2) (3.5) (2.9) (2.9) (2.9) (2.9) (41.7) 
Wieners 32.9 ND ND 386 1.4 ND 11.1 703 53.9 7.2 106 49.8 14.3 ND 1,348 

(0.3) (1.5) (0.2) (28.7) 
Mean 26.3 0.76 4.59 93.2 1.19 0.83 4.93 157 22.7 2.33 21.1 14 10.1 53.3 383 
Median 24.1 0.66 1.03 39.4 1.08 0.57 2.62 42 7.57 1.37 7.68 5.63 5.83 38.1 190 
Minimum 4.87 0.02 0.24 6.93 0.21 0.06 0.36 7.79 1.39 0.16 0.53 0.44 0.86 5.53 39 
Maximum 75.1 2.62 59.7 387 2.74 2.62 16.8 703 121 7.28 106 55.3 36.8 245 1,426 
U.S. fish samples 
Canned 0.3 0.1 0.6 5.1 0.2 NA 0.2 3.2 0.6 ND 0.3 0.2 1.1 4.9 16.6 
tuna A (0.0) 
Canned 0.5 ND 0.2 2.1 0.2 NA ND 1.1 0.4 ND 0.2 0.3 2.1 8.8 15.5 
tuna B (0.1) (0.1) (0.1) 
Catfish A 11.1 4.6 6.4 372 4.3 NA NA 589 116 5.1 37.1 39.6 7.3 1269 2,450 
Catfish B 5.3 4.6 5.1 438 13.5 ND 41.6 834 102 7.9 49.9 45.8 4.9 ND 1,547 

(0.1) (15.9) 
Catfish C 5.2 2.2 3.7 137 0.7 ND 11.7 184 39.5 ND 15.8 15.2 ND ND 437 

(0.5) (2.7) (1.6) (49.4) 
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Table 6-4.  PBDE Concentrations (pg/g Wet Weight) in 18 U.S. Meat and Fish 

Samplesa
 

Sample 
Lipid 
(%) 

BDE 
17 

BDE 
28 

BDE 
47 

BDE 
66 

BDE 
77 

BDE 
85 

BDE 
99 

BDE 
100 

BDE 
138 

BDE 
153 

BDE 
154 

BDE 
183 

BDE 
209 

Total 
PBDEsb 

Catfish 5.7 1.1 3.7 197 6.3 NA 16.4 282 53.0 ND 18.4 21.3 3.8 22.7 627 
fillet (farm) (4.1) 
Halibut 0.2 0.6 4.1 76.6 2.8 NA ND 10.6 12.4 ND 1.1 2.6 1.8 11.4 124 

(0.1) (0.1) 
Herring 9.1 4.1 56.3 2,072 69.4 3.6 ND 267 221 ND 29.3 69.9 2.5 ND 2,809 

(0.9) (0.9) (26.4) 
Mahi 0.5 0.6 ND 24.1 2.0 NA 0.6 13.0 5.1 ND 1.4 4.9 4.3 ND 66 

(2.0) (0.8) (16.6) 
Salmon A 8.0 79.2 92.6 1,222 30.6 ND NA 93.2 348 ND 27.7 98.8 1.4 ND 1,999 

(0.2) (0.2) (9.0) 
Salmon B 13.9 118 142 2,081 59.1 ND NA 147 353 ND 36.6 142 ND ND 3,082 

(0.1) (0.2) (1.2) (7.0) 
Salmon C 10.3 18.4 49.4 1,103 35.3 ND ND 239 217 ND 18.3 45.1 ND ND 1,732 

(0.1) (0.1) (0.1) (1.3) (11.2) 
Salmon D 6.3 1.4 5.2 94.7 5.2 ND ND 15.4 7.1 ND 1.4 5.0 ND ND 141 

(0.9) (0.6) (0.6) (0.8) (9.1) 
Salmon E 12.3 1.7 20.4 356 ND ND ND 84.4 84.2 ND 10.1 29.8 ND ND 605 

(2.1) (1.2) (1.2) (1.2) (1.4) (29.2) 
Salmon 7.4 11.1 50.5 1,000 63.1 NA 7.9 410 210 ND 37.4 104 3.7 20.5 1,919 
fillet (farm) (1.4) 
A 
Salmon 6.9 2.3 27.9 517 24.3 NA ND 168 115 ND 16.0 35.8 1.7 681 1,590 
fillet (farm) 
B 

(0.7) (0.7) 

Sardines 9.6 3.3 53.6 2,748 85.6 ND ND 358 257 ND 51.9 139 ND ND 3,726 
(5.0) (1.0) (1.0) (3.2) (51.4) 

Shark 0.4 1.1 29.8 784 29.5 0.3 NA 57.8 608 0.4 112 291 2.0 5.4 1,920 
Shrimp 0.6 0.3 3.6 75.6 NA NA NA 9.4 14.3 ND 1.2 2.6 0.2 ND 108 

(0.1) (1.3) 
Tilapia 1.0 ND 

(0.1) 
ND 
(0.7) 

5.9 NA NA 0.1 1.3 0.6 ND 
(0.1) 

0.2 0.5 ND 
(0.2) 

ND 
(4.0) 

11 

Trout A 4.2 4.8 22.2 320 NA NA ND 79.8 66.5 0.2 11.8 26.3 4.4 ND 549 
(0.2) (26.7) 

Trout B 10.1 4.3 49.3 826 ND ND ND 128 198 ND 24.7 61.3 2.5 ND 1,319 
(5.6) (1.0) (1.0) (1.0) (42.9) 

Tuna 0.2 ND ND 16.6 0.7 NA ND ND 2.9 ND ND ND 0.5 23.4 48 
(0.1) (1.0) (0.0) (4.6) (0.1) (0.4) (1.0) 

Wild perch 1.2 ND 
(0.1) 

0.7 10.2 0.4 NA ND 
(0.1) 

2.3 2.1 ND 
(0.1) 

0.7 2.4 0.6 5.9 25 

Mean 5.43 11.01 26.19 603 20.8 0.78 4.29 166 126 0.89 21 49.3 2.08 91.8 1,120 
Median 5.52 1.97 5.77 338 5.23 0.30 0.35 88.8 75.3 0.33 15.9 28. 1.68 10.1 616 
Minimum 0.15 0.03 0.20 2.11 0.18 0.06 0.02 1.15 0.43 0.02 0.21 0.21 0.12 0.63 11.14 
Maximum 13.9 118 142 2,748 85.6 3.60 41.6 834 608 7.94 112 291 7.32 1,269 3,726 

aLimits of detection (LODs) are shown in parentheses. Total PBDE concentrations and statistics for each congener were calculated by
 
assuming that nondetected concentrations were one-half the LOD; for calculations, these were treated as zero.

bTotals rounded to the nearest whole number for hundreds and to the nearest decimal place for tens.
 

NA = not available; ND = not detected
 

Source:  Adapted from Schecter et al. (2006)
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Huwe et al. (2002a) reported total PBDE concentrations in farm chickens raised in two different regions 

of the United States. The total PBDE concentration of discrete samples of chickens raised in Arkansas 

was 39.4 ng/g whole weight, while one composite sample of chickens raised in North Dakota was 

1.7 ng/g whole weight.  In the United States, chickens fed ball clay (a sedimentary, kaolinite clay) and 

chickens bought in the grocery store were analyzed for total PBDEs (ENVIRON 2003b).  BDE 99 was 

the dominant congener in all samples. Total PBDEs ranged between 4 and 35 ng/g lipid weight in 

chickens fed ball clay and 0.5 ng/g lipid weight in store-bought chicken.  Ohta et al. (2002) determined 

the concentration of total PBDEs in vegetables and meat samples from Japan. The concentrations of 

PBDEs in spinach, potato, and carrot were 134, 47.6, and 38.4 pg/g fresh weight, respectively.  The 

highest concentrations of total PBDEs and BDE 47 were found in spinach.  Interestingly, different 

congener patterns were found among the vegetables analyzed.  Compared to root vegetables, which had 

high concentrations of BDE 153, spinach (representing a leafy vegetable) might be strongly influenced by 

PBDE contamination in air.  The concentrations of PBDEs in pork, beef, and chicken were 63.6, 16.2, and 

6.25 pg/g fresh weight, respectively.  PBDE concentrations were highest in pork samples; however, the 

reason for this is unknown (Ohta et al. 2002).  Bocio et al. (2003) determined the concentrations of 

PBDEs in food samples from Catalonia, Spain during 2000.  The highest concentration of total PBDEs 

was found in oils and fats (587.7–569.3 pg/g), followed by fish and shellfish (333.9–325.3 pg/g), meat 

and meat products (109.2–102.4 pg/g), and eggs (64.5–58.3 pg/g).  In all of these food groups, a 

predominance of the tetra- and pentaBDE homologs, followed by hexaBDE, was observed in the sum 

total PBDEs.  By contrast, PBDEs were not detected in the groups of fruits, cereals, or tubers.  Four types 

of commercial fish oils sold in Sweden were found to contain PBDEs (0.2–28.1 ng/g lipid weight) 

(Haglund et al. 1997).  The highest concentration of PBDEs was found in the cod liver oil.  These oils 

were from products marketed as dietary supplements for humans.  The concentrations of PBDEs in 

seafood from the Inland Sea of Japan were determined for samples collected in 1998 (Hori et al. 2000).  

BDE 28, BDE 47, BDE 66, BDE 99, BDE 100, BDE 153, and BDE 154 were detected in all analyzed 

seafood samples.  BDE 47 was detected as the predominant congener, with concentrations ranging from 

58 to 2,100 pg/g wet weight.  Harrad et al. (2004) determined the concentrations of several PBDE 

congeners in omnivorous and vegan diet samples from the United Kingdom.  Median concentrations of 

BDE 47, BDE 99, BDE 100, BDE 153, and BDE 154 in omnivorous diet samples were 66.8, 63.8, 10, 20, 

and 20 pg/g dry weight, respectively.  In vegetarian samples, median concentrations of BDE 47, BDE 99, 

BDE 100, BDE 153, and BDE 154 were 47.2, 56.7, 10.0, 20, and 20 pg/g dry weight, respectively. 

Concentrations of BDE 47, BDE 99, and total PBDE were found to be statistically higher in omnivorous 

diet samples compared to vegetarian diet samples. 
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Biosolids and Effluents.  The concentrations of PBDEs in biosolids (sewage sludge) and effluents are 

summarized in Table 6-5.  PBDEs were detected in 11 biosolids obtained from Virginia, New York, 

Maryland, and California (Hale et al. 2001c). The total concentrations of pentaBDE in biosolids ranged 

from 1,100 to 2,290 ng/g dry weight.  The concentration of decaBDE (BDE 209) varied widely among 

biosolids from the four states; the concentration of BDE 209 ranged from 84.8 to 4,890 ng/g dry weight in 

the biosolid samples. 

Levels of PBDEs in biosolids were analyzed using samples from the EPA 2001 National Sewage 

Sludge Survey (NSSS) (Venkatesan and Halden 2014).  Thirty-two PBDEs were detected in the samples 

analyzed.  The total mean±standard deviation PBDE concentration detected in biosolids composites was 

9,388±7,778 µg/kg dry weight.  Deca, nona, and penta BDE congeners accounted for roughly 57, 18, and 

13% of the total, respectively.  Using these data and the estimated annual biosolids production and 

disposal figures in the United States, the annual mean loading rate of PBDEs was estimated to range from 

47,900 to 60,100 kg/year.  Analysis of samples collected between August 2006 and March 2007 (2– 

3 years after the voluntary phase-out of penta and octa PBDE formulations) indicated that the levels of 

8 out of 11 major congeners in biosolids had declined approximately 10–57 % when compared to 2001 

levels. 

Sewage sludge in the vicinity of the Dan River (Virginia) were collected and analyzed for PBDEs (Hale 

et al. 2002).  Congener patterns suggestive of both penta- and decaBDE commercial products were 

present at concentrations of 1,370 ng/g dry weight (sum of BDE 47 to BDE 154) and from 1,470 ng/g dry 

weight, respectively.  While no known industrial source of pentaBDE discharged to this plant, the 

distribution pattern for lower-brominated congeners matched the pentaBDE commercial product. 

Sewage sludge samples from 13 WWTPs in Germany were sampled (Hagenmaier et al. 1992). The mean 

concentration of tri- to heptaBDEs was 8.37 ng/g, with tri-, tetra-, penta-, hexa-, and heptaBDEs at 

concentrations of 0.65, 3.06, 3.02, 0.49, and 0.22 ng/g, respectively.  Concentrations of penta- and 

hexaBDEs were highest in these samples.  de Boer et al. (2000b) determined the concentration of PBDEs 

in sewage treatment plant effluents from the Netherlands.  The concentration of total PBDEs (the sum of 

BDE 47, BDE 99, and BDE 100) ranged from 11 to 35 ng/g dry weight with the overwhelming majority 

as BDE 47, while the concentrations of BDE 209 ranged from 310 to 920 ng/g dry weight.  Kohler et al. 

(2003) determined the concentrations of decaBDE in sewage sludge from Switzerland between 1993 and 

2002. These authors reported that the average concentration of decaBDE increased with time from 220 to 

1,100 ng/g dry weight, corresponding to an average increase of 560%. 
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Table 6-5.  Concentrations (ng/g Dry Weight) of Several Polybrominated Diphenyl
 
Ethers (PBDEs) in Biosolids (Sewage Sludge) and Effluents
 

Sample type Location BDE 47 BDE 99 BDE 100 ΣPBDEsa BDE 209 Reference 
Sewage 
sludge 

Dan River, 
Virginia 

No data No data No data 2,840* 1,470 Hale et al. 2002 

Sewage 
sludge 

11 biosolid 
samples from 
Virginia, New 
York, 
Maryland, 
and California 

No data No data No data 1,100– 
2,290* 

No data Hale et al. 2001c 

Sewage 
sludge 

Gothenburg, 
Sweden 

15 19 3.5 38 No data Nylund et al. 
1992 

Sewage 
sludge 

Klippan, 
Sweden 

22 18 5.4 45.4 No data Sellström et al. 
1999; Sellström 
and Jansson 
1995 

Sewage 
Sludge 

Rimbo, 
Sweden 

53 53 13 119 No data Sellström et al. 
1999; Sellström 
and Jansson 
1995 

Sewage 
sludge 

Three plants, 
Stockholm, 
Sweden 

39–91 48–120 11–28 98–239 140–350 Sellström et al. 
1999 

Sewage 
sludge 

Germany No data No data No data 04–15* No data Hagenmaier et 
al. 1992 

Sewage 
treatment 

Netherlands, 
several sites 

11–35 <1 No data 11–35 310–920 de Boer et al. 
2000b 

plant effluents 

aΣPBDEs is the sum of BDE 47, BDE 99, and BDE 100, but if more congeners are included, this is marked with an 
asterisk (*).
 

BDE = brominated diphenyl ether
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World Trade Center Site. In 2001, PBDEs were detected in dust and smoke samples taken near the
 

World Trade Center disaster site (Lioy 2002).  The highest concentration was for decaBDE (i.e., 


BDE 209), which was present in thermoplastics (e.g., computers).  Concentrations of PBDE congeners 


were 107–174 μg/kg dry weight basis for BDE 47, 51.1–74.1 μg/kg dry weight basis for BDE 100, 155–
 

293 μg/kg dry weight basis for BDE 99, 42.0–53.5 μg/kg dry weight basis for BDE 153, 219–305 μg/kg 


dry weight basis for BDE 154, and 1,330–2,660 μg/kg dry weight basis for decaBDE (BDE 209).  


Concentrations of PBDEs were found to be similar to concentrations found in sewage sludge (Lioy 2002).  


Freshwater Fish. Monitoring data indicated that the concentrations of PBDEs were historically
 

increasing in freshwater organisms, with higher concentrations near point sources.  The congener profiles
 

show the highest concentrations for BDE 47. The presence of PBDEs in freshwater aquatic organisms 


taken from remote regions suggests that diffuse sources of PBDEs are also important.  A sampling of
 

concentrations of PBDEs in freshwater fish samples in the United States are summarized in Table 6-6.  


Fish were sampled from two U.S. lakes, Hadley Lake, Indiana near a possible PBDE point source, and 


Lake of the Ozarks, Missouri, with no known sources (Dodder et al. 2000).  Mean total PBDE
 

concentrations (sum of BDE 47, BDE 99, BDE 100, BDE 153, and BDE 154) were higher in crappie
 

(Pomoxis annularis) and bluegill (Lepomis macrochirus) from Hadley Lake (1,500 and 1,900 ng/g lipid
 

weight, respectively) than from Lake of the Ozarks (340 and 390 ng/g lipid, respectively).  BDE 47, 


BDE 99, BDE 153, and BDE 154 were the primary congeners.  From the Lake of Ozarks, BDE 47 was 


the dominant congener in fish.  The total PBDE concentrations in smelt (Osmerus mordax) from Lakes 


Superior and Ontario were 150±9 and 240±30 ng/g lipid, respectively (Dodder et al. 2002).  The
 

dominant congeners in these fish were BDE 47 and BDE 99.  


An analysis of fish tissue samples from selected locations in Washington State showed that total PBDE
 

concentrations ranged from 29 ng/g lipid in rainbow trout from a remote spring-fed stream (Douglas 


Creek, Washington) to 19,000 ng/g lipid in rainbow trout from the urbanized Spokane River, Washington 


(Johnson and Olson 2001).  The tetra- and pentaBDE isomers were the major compounds present.  


TetraBDE to hexaBDE were found in carp (Cyprinus carpio) from the Buffalo River (New York), a
 

polluted area around the Great Lakes (Loganathan et al. 1995). TetraBDEs dominated the congener
 

pattern with 94–96% of total PBDEs.  TetraBDE and pentaBDE concentrations ranged from 13 to 22 ng/g 


fresh weight.  Asplund et al. (1999a) found tri- to hexaBDEs in steelhead trout (Oncorhynchus mykiss) 


sampled in 1995 from Lake Michigan.  The combined concentration of BDE 47, BDE 99, BDE 100, 
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Table 6-6.  Concentrations (ng/g Lipid Weight, Except as Noted) of Several 
Polybrominated Diphenyl Ethers (PBDEs) in Freshwater Fish Samples 

from the United States 

Sample 
type Location BDE 47 BDE 99 BDE 100 ΣPBDEsa BDE 209 Reference 
Lake trout Lake Michigan 93–230 9.0–48 12–45 120–350* No data Streets et al. 

2006 
Lake trout Lake Superior 22–79 8.5–53 5.2–19 39–180* No data Streets et al. 

2006 
Lake trout Lake Huron 32–59 7.8–13 6.5–12 50–94* No data Streets et al. 

2006 
Lake trout Lake Ontario 45–140 6.5–34 7.7–24 64–230* No data Streets et al. 

2006 
Lake Trout Lake Ontario 4.3–114 59–680 7.4–1,285 269–3,339* 2.3–12 Ismail et al. 

2009 
Alewife Grand Traverse 16 No data No data 36 No data Stapleton and 

Bay, Lake Baker 2003 
Michigan 

Bloater Grand Traverse 11 (fw) No data No data 23 (fw) No data Stapleton and 
chub Bay, Lake Baker 2003 

Michigan 
Bluegill Hadley Lake, 420 320 240 1,900 No data Dodder et al. 

Indiana 2000 
Bluegill Lake of the 200 91 59 390 No data Dodder et al. 

Ozarks, Missouri 2000 
Burbot Grand Traverse 43 (fw) No data No data 86 (fw) No data Stapleton and 

Bay, Lake Baker 2003 
Michigan 

Carp United States No data No data No data 13–22* No data Loganathan et 
(fw) al. 1995 

Carp Detroit River, 3.0 (fw) 0.50 (fw) 0.48 (fw) 40.7* No data Rice et al. 2002 
Grosse Isle, 
Michigan 

Carp Des Plaines 2.54 (fw) 0.5 (fw) 0.44 (fw) 281* No data Rice et al. 2002 
River, Joliet, 
Illinois 

Carp Des Plaines 1.34 (fw) 0.50 (fw) 0.49 (fw) 78.3* No data Rice et al. 2002 
River, Joliet, 
Illinois 

Carp (fillet) Yakima River, No data No data No data 22 (fw) No data Johnson and 
Washington Olson 2001 

Crappie Hadley Lake, 250 430 150 1,500* No data Dodder et al. 
Indiana 2000 

Crappie Lake of the 190 78 59 340* No data Dodder et al. 
Ozarks, Missouri 2000 

Deepwater Grand Traverse 2.8 (fw) No data No data 3 (fw) No data Stapleton and 
sculpin Bay, Lake Baker 2003 

Michigan 
Lake trout Grand Traverse 75 (fw) No data No data 126 (fw) No data Stapleton and 

Bay, Lake Baker 2003 
Michigan 
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Table 6-6.  Concentrations (ng/g Lipid Weight, Except as Noted) of Several 
Polybrominated Diphenyl Ethers (PBDEs) in Freshwater Fish Samples 

from the United States 

Sample 
type Location BDE 47 BDE 99 BDE 100 ΣPBDEsa BDE 209 Reference 
Lake trout Lake Ontario, No data No data No data 540* No data Alaee et al. 1999 

United States 
Lake trout Lake Ontario, 58 (fw) 14 (fw) 5.7 (fw) No data No data Luross et al. 

United States 2002 
Lake trout Lake Huron, No data No data No data 240* No data Alaee et al. 1999 

United States 
Lake trout Lake Huron, 27 (fw) 7.7 (fw) 3.8 (fw) No data No data Luross et al. 

United States 2002 
Lake trout Lake Superior, No data No data No data 140* No data Alaee et al. 1999 

United States 
Lake trout Lake Superior, 29 (fw) 12 (fw) 4.1 (fw) No data No data Luross et al. 

United States 2002 
Lake trout Lake Erie, No data No data No data 117* No data Alaee et al. 1999 

United States 
Lake trout Lake Erie, 16 (fw) 2.0 (fw) 2.5 (fw) No data No data Luross et al. 

United States 2002 
Largescale Yakima River, No data No data No data 64 (fw) No data Johnson and 
sucker Washington Olson 2001 
(whole) 
Largescale Spokane River, No data No data No data 105 (fw) No data Johnson and 
sucker Washington Olson 2001 
(whole) 
Mountain Spokane River, No data No data No data 1,250 (fw) No data Johnson and 
whitefish Washington Olson 2001 
(whole) 
Rainbow Douglas Creek, No data No data No data 1.5 (fw) No data Johnson and 
trout Washington Olson 2001 
(whole) 
Rainbow Spokane River, No data No data No data 20–174 No data Johnson and 
trout Washington (fw) (fillet) Olson 2001 

297 (fw) 
(whole) 

Northern Spokane River, 59–160 0.3–<0.4 17–47 No data Not Furl and 
pike Washington detected Meredith 2010 
minnow 
Mountain Spokane River, 127–942.6 81–942.6 26.3– No data Not Furl and 
whitefish Washington 368.1 detected Meredith 2010 
Largescale Spokane River, 87–270 0.2–<4.4 13–45 No data Not Furl and 
sucker Washington detected Meredith 2010 
Salmon Grand Traverse 34 (fw) No data No data 95 (fw) No data Stapleton and 

Bay, Lake Baker 2003 
Michigan 

Salmon Lake Michigan, 52.1 (fw) 9.3 (fw) 9.7 (fw) 2,440 No data Manchester-
United States Neesvig et al. 

2001 
Smelt Lake Superior, 5.7 (fw) 1.8 (fw) 0.98 (fw) 150 <1.5 (fw) Dodder et al. 

United States 2002 
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Table 6-6.  Concentrations (ng/g Lipid Weight, Except as Noted) of Several 
Polybrominated Diphenyl Ethers (PBDEs) in Freshwater Fish Samples 

from the United States 

Sample 
type Location BDE 47 BDE 99 BDE 100 ΣPBDEsa BDE 209 Reference 
Smelt Lake Ontario, 10 (fw) 5.3 (fw) 1.6 (fw) 240 <1.6 (fw) Dodder et al. 

United States 2002 
Starry Columbia River, No data No data No data 30 (fw) No data Johnson and 
flounder Washington Olson 2001 
(whole) 
Steelhead Lake Michigan, 1,700 600 360 3,000* No data Asplund et al. 
trout United States 1999b 
Whitefish Columbia River, No data No data No data 72 (fw) No data Rayne et al. 

United States 2003a 
Whitefish Grand Traverse 9.8 (fw) No data No data 18 (fw) No data Stapleton and 

Bay, Lake Baker 2003 
Michigan 

aΣPBDEs is the sum of BDE 47, BDE 99, and BDE 100, but if more congeners are included, this is marked with an 
asterisk (*).
 

BDE = brominated diphenyl ether; dw = dry weight; fw = fresh weight
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BDE 153, and BDE 154 was 3,000 ng/g lipid weight (Asplund et al. 1999b).  Lake trout (Salvelinus 

namaycush) from Lakes Ontario, Huron, and Superior were also found to have di- to heptaBDEs with 

combined concentrations of 545, 237, and 135 ng/g lipid weight, respectively (Alaee et al. 1999).  

Lake trout from Lake Erie had 117 ng/g lipid weight (Luross et al. 2000).  Variations in local sources, 

combined with atmospheric transport, may explain differences that were seen in congener profiles for the 

different lakes.  A retrospective temporal study for the years 1978, 1983, 1988, 1993, and 1998 using 

archived trout samples from Lake Ontario show a dramatic increase in total PBDE concentrations over 

time (Luross et al. 2000).  At 50 freshwater sites in Virginia, muscle samples from 253 fish samples were 

collected and analyzed for PBDEs (Hale et al. 2000, 2001b).  Approximately 85% of the samples 

contained BDE 47, the predominant congener, at measurable concentrations.  Concentrations were 

>1,000 ng/g lipid weight at 9 of 50 sites. The highest combined PBDE concentrations (up to 57,000 ng/g 

lipid weight) were observed in carp downstream of textile and furniture facilities.  BDE 47 concentrations 

were greater than 2,2’,4,4’,5,5’-hexachlorobiphenyl (PCB 153) concentrations in 58% of the samples 

analyzed.  PBDEs were identified in fish collected from the Detroit River (Michigan) and Des Plaines 

Rivers (Illinois).  In Detroit River fish (carp and largemouth bass), the congener patterns were dominated 

by BDE 47; however, in the Des Plaines River carp, the dominant congeners were heptaBDE congeners 

(BDE 181 and BDE 183), lesser amounts of BDE 190, and two hexaBDEs (BDE 154 and BDE 153).  

Possible sources for the heptaBDE congeners were not obvious Ozarks (340 and 390 ng/g lipid, 

respectively).  BDE 47, BDE 99, BDE 153, and BDE 154 were the primary congeners.  From the Lake of 

Ozarks, BDE 47 was the dominant congener in fish.  The total PBDE concentrations in smelt (O. mordax) 

from Lakes Superior and Ontario were 150±9 and 240±30 ng/g lipid, respectively (Dodder et al. 2002).  

The dominant congeners in these fish were BDE 47 and BDE 99. An analysis of fish tissue samples from 

selected locations in Washington State showed that total PBDE concentrations ranged from 29 ng/g lipid 

in rainbow trout from a remote spring-fed stream (Douglas Creek, Washington) to 19,000 ng/g lipid in 

rainbow trout from the urbanized Spokane River, Washington (Johnson and Olson 2001).  The tetra- and 

pentaBDE isomers were the major compounds present.  TetraBDE to hexaBDE were found in carp 

(C. carpio) from the Buffalo River (New York), a polluted area around the Great Lakes (Loganathan et al. 

1995).  TetraBDEs dominated the congener pattern with 94–96% of total PBDEs.  TetraBDE and 

pentaBDE concentrations ranged from 13 to 22 ng/g fresh weight.  Asplund et al. (1999a) found tri- to 

hexaBDEs in steelhead trout (O. mykiss) sampled in 1995 from Lake Michigan.  The combined 

concentration of BDE 47, BDE 99, BDE 100, BDE 153, and BDE 154 was 3,000 ng/g lipid weight 

(Asplund et al. 1999b).  Lake trout (S. namaycush) from Lakes Ontario, Huron, and Superior were also 
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found to have di- to heptaBDEs with combined concentrations of 545, 237, and 135 ng/g lipid weight, 

respectively (Alaee et al. 1999). 

The National Study of Chemical Residues in Lake Fish Tissue (1998–2009) is one of the statistically-

based surveys conducted by EPA that analyzed the concentrations of PBDEs and other contaminants in 

fish from 500 lakes in the continental United States (EPA 2009c, 2013k).  The most prevalent PBDE 

congeners detected in both predator and bottom dweller fish were reported as BDE 47, BDE 99, and 

BDE 100 (EPA 2013k).  

Ismail et al. (2009) studied the temporal trends of PBDE congeners in trout obtained from Lake Ontario 

from 1979 to 2004.  Concentrations of most PBDE congeners (BDE 28, BDE 47, BDE 99, BDE 100, 

BDE 153, and BDE 154) increased dramatically from 1979 to the mid-1990s and then either leveled off 

or decreased from 1998 to 2004; average concentration and standard error values are presented in 

Figure 6-2.  The temporal trend of BDE 209 was different than for the other congeners, however.  

Concentrations of BDE 209 in lake trout increased more slowly from 1979 until the mid-1990s, but its 

concentrations increased dramatically from the late 1990s (3.3±0.8 ng/g in 1998) until 2004 (12±5.3 ng/g 

in 2004), corresponding to its increased use in consumer products. 

The concentrations of PBDEs in freshwater fish samples from Europe are summarized in Table 6-7.  

Between 1986 and 1988, concentrations of BDE 47, BDE 99, and BDE 100 were measured in whitefish 

(Coregonus spp.) from a remote mountain lake in Northern Sweden (Lake Storvindeln), in Arctic char 

(Salvelinus alpinus) from a heavily populated lake (Lake Vättern) in south-central Sweden with numerous 

municipal and industrial point sources, and in trout (Salmo trutta) and pike (Esox lucius) from several 

sites along Dalslands Canal in west central Sweden (Jansson et al. 1993).  No point sources of PBDEs 

were identified from these sites.  Whitefish from the remote lake contained the lowest concentrations 

(26 ng/g lipid weight) of PBDEs, whereas the Arctic char, from a heavily populated lake, contained 

520 ng/g lipid weight PBDEs.  In both samples, BDE 47 was the predominant congener.  PBDE 

concentration in pike and trout from the Dalslands Canal ranged from 180 to 210 ng/g lipid weight and 

from 280 to 1,200 ng/g lipid weight, respectively.  The congener pattern in these samples was similar to 

the technical mixture, Bromkal 70-5DE, with equal quantities of both BDE 47 and BDE 99.  The 

concentrations in pike and trout are of the same order of magnitude as in the Arctic char, indicating the 

spread of PBDEs from diffuse sources (de Wit 2002).  In 1979 and 1980, high concentrations of tri- to 

hexaBDEs (range, 950–27,000 ng/g lipid weight in muscle tissues) were measured in fish sampled along 

a river in Sweden (Viskan) where numerous textile industries are located (Andersson and Blomkvist 
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Figure 6-2.  Temporal Trends in the Concentrations (ng/g Lipid Weight) of PBDE
 
Congeners in Lake Trout from Lake Ontario, Canada
 

Source: Ismail et al. 2009 
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Table 6-7.  Concentrations (ng/g Lipid Weight Except as Noted) of Several 
Polybrominated Diphenyl Ethers (PBDEs) in Freshwater Fish Samples 

from Europe 

Sample 
type Location BDE 47 BDE 99 BDE 100 ΣPBDEsa BDE 209 Reference 
Freshwater Pyrenees 0.40–0.51 0.24 0.16–0.18 No data No data Gallego et al. 
fish Mountains 2007 
Freshwater Tatras 0.20–0.26 0.17–0.21 0.043 No data No data Gallego et al. 
fish Mountains 2007 
Arctic char Lake Vättern, 400 64 51 520 No data Sellström et al. 

Sweden 1993 
Bream Netherlands 0.2–130 Not No data No data No data de Boer et al. 

(several sites) (dw) detected 2000b 
Eels Netherlands <20–1,400 No data No data <50–1,700 No data de Boer 1990 
Osprey Sweden 1,800 140 200 2,140 No data Sellström et al. 

1993 
Pike Dalslands canal, 94–98 60–79 25–36 180–210 No data Sellström et al. 

Sweden 1993 
Pike River Viskan, <46–2,000 <37– <14– <130– Trace Sellström et al. 

Sweden, 1,600 1,000 4,600 1998a 
upstream and 
downstream 

Several Germany No data No data No data 19–983* No data Krüger 1988 
fish 
species 
Trout Dalslands canal, 120–460 130–590 33–150 280–1,200 No data Sellström et al. 

Sweden 1993 
Whitefish Lake 15 7.2 3.9 26 No data Sellström et al. 

Storvindeln, 1993 
Sweden 

Whitefish Lake Geneva, 26 13 2.5 44* No data Zennegg et al. 
Switzerland 2003 

Whitefish Lake Greifen, 96 52 9.1 165* No data Zennegg et al. 
Switzerland 2003 

Whitefish Lake Biel, 75.9 39 7.1 128* No data Zennegg et al. 
Switzerland 2003 

Whitefish Lake Lucerne, 56 46 10 121* No data Zennegg et al. 
Switzerland 2003 

Whitefish Lake Zürich, 56 25 4.5 89* No data Zennegg et al. 
Switzerland 2003 

Whitefish Lake Nauchatel 41 20 4.0 68* No data Zennegg et al. 
Switzerland 2003 

Whitefish Lake Constance, 32 15 2.9 52* No data Zennegg et al. 
Switzerland 2003 
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Table 6-7.  Concentrations (ng/g Lipid Weight Except as Noted) of Several 
Polybrominated Diphenyl Ethers (PBDEs) in Freshwater Fish Samples 

from Europe 

Sample 
type Location BDE 47 BDE 99 BDE 100 ΣPBDEsa BDE 209 Reference 
Whitefish Lake Thun, 

Switzerland 
19 12 2.5 36* No data Zennegg et al. 

2003 

aΣPBDEs is the sum of BDE 47, BDE 99, and BDE 100, but if more congeners are included, this is marked with an 
asterisk (*).
 

BDE = brominated diphenyl ether
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1981).  These textile industries have used PBDEs in the production of textiles.  BDE 47 was the 

predominant congener at 70–80% of the total PBDEs.  In 1977, the PBDEs were not detected in fish 

sampled at the same sites. The elevated concentrations of BDE 47, BDE 99, and BDE 100 were later 

confirmed in a follow-up study in which fish were caught from approximately the same locations 

(Sellström et al. 1993).  In the current study, BDE 47 was the predominant congener at 65–96% of total 

PBDEs.  Several fish species were sampled (pike, perch, bream, eel, tench, and sea trout) in these studies. 

In 1995, fresh samples of pike and sediments were collected at four of eight sites along River Viskan in 

order to search for point sources of contaminants.  The combined concentrations of BDE 47, BDE 99, and 

BDE 100 ranged from not detected to 4,600 ng/g lipid weight; with BDE 47 being the predominant 

congener (50–90% of total).  DecaBDE (BDE 209) was found in a few fish at trace amounts.  The lowest 

concentrations of the PBDEs were found upstream of the industries.  The concentrations of PBDEs 

increased further downstream as more industries were passed (Sellström et al. 1998a).  Concentrations of 

BDE 47 ranged from <20 to 1,700 ng/g lipid in eels (Anguilla anguilla) from Dutch rivers and lakes (at 

10 locations); BDE 47 comprised 70% of the total PBDEs (de Boer 1990). Bream (Abramis brama) 

sampled from several sites in the Netherlands had concentrations of BDE 47 ranging from 0.2 to 130 ng/g 

dry weight (de Boer et al. 2000b).  BDE 99 was below the detection limits. BDE 153 ranged from 

<0.04 to 4.1 ng/g dry weight.  Allchin et al. (1999) conducted a study of PBDEs in plaice (Pleuronectes 

platessa), flounder (Platichthys flesus), and dab (Limanda limanda) collected in the estuaries of rivers in 

the United Kingdom.  Suspected sources of PBDEs in the estuaries include a manufacturer of pentaBDE 

and octaBDE, several industries using pentaBDE, and several landfills receiving wastes suspected to 

contain PBDEs.  Concentrations of BDE 47, BDE 99, pentaBDE (as technical mixture DE-71), and 

octaBDE (as technical mixture DE-79) in fish ranged from not detected to 9,500 ng/g lipid weight, not 

detected to 370 ng/g lipid weight, 47–1,200 ng/g lipid weight, and not detected to 1,200 ng/g lipid weight. 

The highest concentrations were at Tees Bay downstream from a manufacturing plant on the River Tees. 

These results are similar to the situation found in Sweden along the River Viskan (Andersson and 

Blomkvist 1981; Sellström et al. 1993).  Freshwater mussels (Dreissena polymorpha) were collected at 

several locations in the Netherlands and analyzed for BDE 47, BDE 99, BDE 153, and BDE 209 (de Boer 

et al. 2000b).  Concentration ranges for the congeners were 0.7–17, 0.4–11, and <0.1–1.5 ng/g dry weight 

for BDE 47, BDE 99, and BDE 153, respectively; BDE 209 was below the detection limit.  Poma et al. 

(2014) analyzed freshwater zebra mussels in Lake Maggiore, Northern Italy for the presence of PBDEs 

and other brominated flame retardants. Total tri- to heptaBDE concentrations ranged from 1.0 ng/g for 

samples obtained in in May 2011 to 144.6 ng/g for samples collected in September 2012.  The authors 

noted that even though penta- BDE was banned in Europe in 2004, increasing concentrations of tri- to 

heptaBDE congeners in mussels from 2011 to 2012 were observed in the samples obtained.  Average 
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values of hepta to decaBDE congeners in zebra mussels ranged from 88.2 to 182.8 ng/g and tended to be 

dominated by BDE 209, with average concentrations of 71.2–144.7 ng/g (Poma et al. 2014).  The 

presence of the lower brominated octa and hepta congeners was likely due to metabolism of BDE 209 

within the organism or the environmental debromination of BDE 209 followed by uptake by the zebra 

mussels. 

Saltwater Fish. Spatial trends show higher concentrations of lower-brominated BDE congeners found 

near human populated areas.  The congener profiles show the highest concentrations for BDE 47.  

Representative concentrations of several PBDEs in marine aquatic species are summarized in Table 6-8.  

BDEs were detected in 10/10 white croakers and 8/8 shiner surfperch obtained from the San Francisco 

Bay at concentrations of (total PBDEs) 470–2, 260 and 730–3,930 ng/g lipid, respectively (Klosterhaus et 

al. 2012).  Mean levels of total PBDEs in halibut, jack smelt, leopard shark, northern anchovy, shiner 

surfperch, striped bass white croaker, and white sturgeon collected from the San Francisco Bay in 2009 

ranged from 1.5 to 8.3 ng/g wet weight (Sutton et al. 2015).  In the year 2000, sole liver collected from 

five sites along the Canadian west coast (Crofton, Bamfield, Kitimat, Trincomali, and Vancouver) were 

analyzed for 14 BDE congeners (Ikonomou et al. 2002); the total PBDE concentrations were 64–340 ng/g 

lipid while the three highest congener concentrations were 27–160 ng/g lipid (BDE 47), 8.5–54 ng/g lipid 

(BDE 100), and 9.5–46 ng/g lipid (BDE 99).  The highest concentrations were found in sole samples 

collected near Vancouver, Canada.  DecaBDE was not detected in these samples at the level of procedural 

blank.  Farmed salmon collected at two locations in Canada were analyzed for PBDE congeners (Easton 

et al. 2002).  Forty-one congeners were detected with BDE 47 at the highest concentration (690 and 

2,600 ng/g wet weight) followed by BDE 99 and BDE 100; total BDE congener concentrations were 

1,188 and 4,147 ng/g wet weight for the two samples. Likewise, wild salmon from four locations in 

Canada were analyzed for BDE congeners.  Concentrations were a factor of 10 lower for these samples 

compared to farmed salmon samples.  The total PBDE concentration for the 41 detected congeners ranged 

from 38.7 to 485.2 ng/g wet weight. The concentration of the highest congener, BDE 47, ranged from 

29 to 280 ng/g wet weight (Easton et al. 2002).  PBDE concentrations in skipjack tuna from Asian 

offshore waters, off-Seychelles, off-Brazil, and open seas were determined for samples collected during 

1996–2001 (Ueno et al. 2003).  The concentration of total BDEs in muscles tissues ranged from not 

detected (<0.05 ng/g lipid) to 53 ng/g lipid.  The concentration of the highest congener in muscle tissues, 

BDE 47, ranged from <0.1 to 15 ng/g lipid.  BDE 99, BDE 100, BDE 153, and BDE 154 also were 

detected; BDE 209 was below the detection limit (<5.0 ng/g lipid) for these samples.  Samples collected 

off the coast of the Seychelles (relatively pristine area) did not have detectable concentrations of any 

PBDEs, while samples collected in industrial areas of southeast Asia had the highest.  Fall-caught 
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Table 6-8.  Concentrations (ng/g Lipid Weight) of Several Polybrominated 

Diphenyl Ethers (PBDEs) in Marine Aquatic Species
 

Sample type Location BDE 47 BDE 99 BDE 100 ΣPBDEsa BDE 209 Reference 
California San No data No data No data 1.8±0.5* ND Sutton et al.2015 
halibut Francisco 

Bay 
(ww) 

Jack smelt San No data No data No data 1.4±0.4* ND Sutton et al.2015 
Francisco 
Bay 

(ww) 

Leopard 
shark 

San 
Francisco 
Bay 

No data No data No data 5.0±1.2* 

(ww) 
ND Sutton et al.2015 

Northern San No data No data No data 7.9±2.9* ND Sutton et al.2015 
anchovy Francisco 

Bay 
(ww) 

Shiner San No data No data No data 8.3±2.9* ND Sutton et al.2015 
surfperch Francisco 

Bay 
(ww) 

Striped bass San 
Francisco 
Bay 

No data No data No data 5.0±2.6* 

(ww) 
ND Sutton et al.2015 

White San No data No data No data 4.3±2.5* ND Sutton et al.2015 
croacker Francisco 

Bay 
(ww) 

White San No data No data No data 2.8±1.3* ND Sutton et al.2015 
sturgeon Francisco 

Bay 
(ww) 

Winter Northwest 35 2.5 6.4 52* ND Shaw et al. 2009 
Flounder Atlantic 
Atlantic Northwest 40 6.9 6.8 82* ND Shaw et al. 2009 
Herring Atlantic 
American Northwest 42 4.0 7.0 69* 1.9 Shaw et al. 2009 
Plaice Atlantic 
White Hake Northwest 25 0.63 7.2 42* 0.91 Shaw et al. 2009 

Atlantic 
Alewife Northwest 8.3 3.6 1.7 18* ND Shaw et al. 2009 

Atlantic 
Atlantic Northwest 20 7.5 4.1 69* 1.6 Shaw et al. 2009 
Mackerel Atlantic 
Silver Hake Northwest 19 6.3 4.0 38* ND Shaw et al. 2009 

Atlantic 
Farmed 
Salmon 

Canada 690; 
2,600 
(ww) 

140; 390 
(ww) 

130; 470 
(ww) 

1,187; No data 
4,147 (ww) 

Easton et al. 2002 

Salmon Canada 29–280 ND–97 4.2–43 38.7–485.2 No data Easton et al. 2002 
(wild) (ww) (ww) (ww) (ww) 
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6.  POTENTIAL FOR HUMAN EXPOSURE 

Table 6-8.  Concentrations (ng/g Lipid Weight) of Several Polybrominated 

Diphenyl Ethers (PBDEs) in Marine Aquatic Species
 

Sample type Location BDE 47 BDE 99 BDE 100 ΣPBDEsa BDE 209 Reference 
Sole liver West coast, 27–160 9.5–46 8.5–54 64–340* ND Ikonomou et al. 

Canada 2002 
Skipjack Seychelles, <0.1 <0.05 <0.05 ND <5.0 Ueno et al. 2003 
tuna Indian 

Ocean 
Skipjack East China 9.0–15 2.4–4.7 3.4–4.4 23–34 <5.0 Ueno et al. 2003 
tuna Sea 
Skipjack Pacific 2.9–7.9 0.18–3.0 0.56–2.1 5.8–21 <5.0 Ueno et al. 2003 
tuna Ocean 
Herring Baltic Sea 19–38 7.8–17 3.4–6 30–61 No data de Wit 2002 

Sellström et al. 
1993 

Herring Baltic Sea 3.2–27 ND–2.9 1.3–1.9 3.2–32 No data Haglund et al. 1997 
Herring Baltic Sea 7.6–24 4.3–3.9 No data 12.9–28.3* No data Strandman et al. 

1999 
Herring Baltic Sea 6.3 0.6 0.8 12* No data Burreau et al. 1999 
Herring Kattegatt, 12 3.4 1.6 17 No data de Wit 2002; 

Sweden Sellström et al. 
1993 

Herring North Sea 8.4–100 No data No data No data No data de Boer 1990 
Sprat Baltic Sea 17.5– 1.9–9.5 No data 21–149* No data Strandman et al. 
(different 140.8 1999 
age groups) 
Sprat Baltic Sea 4.3 0.7 0.8 8.4* No data Burreau et al. 1999 
Cod liver North Sea 170 No data No data 1.9–360 No data de Boer 1989 
Salmon Baltic Sea 167 52 44 220 No data Haglund et al. 1997 
Salmon Baltic Sea 190 52 46 290 No data Asplund et al. 

1999b 
Salmon Baltic Sea 46 7.3 6.4 86* No data Burreau et al. 1999 
Several fish Japan No data No data No data 0.1–17* No data Watanabe et al. 
species 1987 
Yellowfin Japan 0.5 0.4 0.25 1.9* No data Ohta et al. 2000 
tuna 
Yellowtail Japan 17 4.5 4.0 30.5* No data Ohta et al. 2000 
Yellowtail Japan 29 3.3 5.3 44* No data Ohta et al. 2000 
(cultured) 
Salmon Japan 22 8.1 5.3 46* No data Ohta et al. 2000 
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Table 6-8.  Concentrations (ng/g Lipid Weight) of Several Polybrominated 

Diphenyl Ethers (PBDEs) in Marine Aquatic Species
 

Sample type Location BDE 47 BDE 99 BDE 100 ΣPBDEsa BDE 209 Reference 
Several 
flatfish 

Seven river 
estuaries, 
Great Britain 

73–9,500 16–790 No data No data ND Allchin et al. 1999 

Flounder Netherlands, 
several sites 

0.6–20 
(dw) 

<0.01–4.6 No data No data No data de Boer et al. 
2000b 

aΣPBDEs is the sum of BDE 47, BDE 99, and BDE 100, but if more congeners are included, this is marked with an 
asterisk (*).
 

BDE = brominated diphenyl ether; dw = dry weight; ND = not detected; ww = wet weight
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herring (Clupea harengus) muscle from five sites along the Swedish coast was analyzed for BDE 47, 

BDE 99, and BDE 100; the combined concentration of these three congeners ranged from 17 to 61 ng/g 

lipid, with BDE 47 being the dominant congener (Sellström et al. 1993).  Likewise, the concentration of 

BDE 47 in Baltic herring ranged from 3.2 to 27 ng/g lipid in different age groups; the combined 

concentration of BDE 47, BDE 99, and BDE 100 ranged from 3.2 to 32 ng/g lipid (Haglund et al. 1997); 

2-year-old herring had the lowest concentrations and 5-year-old herring had the highest concentrations.  

Similarly, Strandman et al. (1999) observed increasing concentrations with age of BDE 47, BDE 99, and 

BDE 153 in Baltic sprat (Sprattus sprattus, age 3–13 years).  However, this trend was not evident for 

herring.  BDE 47 was the primary congener with concentrations ranging from 7.6 to 24 ng/g lipid weight 

for 1–3-year-old sprat, 17–140 ng/g lipid weight for 3–13-year-old sprat, and 7.6–24 ng/g lipid weight in 

herring.  The concentrations of BDE 47, BDE 99, and BDE 100 in whole-body composites of herring 

were 6.21, 0.62, and 0.81 ng/g lipid, respectively; in sprat, the concentrations were 4.32, 0.71, and 

0.80 ng/g lipid, respectively (Burreau et al. 1999).  Baltic sea herring had similar concentrations of 

BDE 47 (46.3 ng/g lipid) compared to 8.4–100 ng/g lipid of BDE 47 found by de Boer (1990) for herring 

collected from three regions of the North Sea.  BDE 47, BDE 99, and BDE 153 concentrations in Baltic 

salmon (Salmo salar) muscle were 167, 52, and 4.2 ng/g lipid, respectively (Haglund et al. 1997).  

BDE 47, BDE 99, and BDE 100 concentrations were 47, 7.2, and 6.3 ng/g lipid, respectively, in whole-

body composites (Burreau et al. 1999).  In another study, the concentrations of BDE 47, BDE 99, and 

BDE 100 were determined in muscle, ripe eggs, and blood plasma from Baltic salmon (Asplund et al. 

1999a).  The mean concentrations of PBDEs in tissues from Baltic salmon (ng/g lipid weight) were as 

follows: BDE 47 (muscle, 190; ripe eggs, 64; blood, 190), BDE 99 (muscle, 52; ripe eggs, 16; blood, 55), 

and BDE 100 (muscle, 46; ripe eggs, 18; blood, 59).  Cod (Gadus morhua) liver samples at three 

locations of the North Sea had combined concentrations of BDE 47 and BDE 99 of 1.9–360 ng/g lipid (de 

Boer 1989).  BDE concentrations in flounder were 0.6–20 ng/g dry weight for BDE 47 and <0.01– 

4.6 ng/g dry weight for BDE 99 from several sites in the Netherlands (de Boer et al. 2000b). 

Concentrations of BDE 153 and BDE 209 were below the detection limit.  In 1996, de Boer et al. (2001) 

measured the concentrations of two BDE congeners in flounder liver samples from the Amsterdam and 

Rotterdam harbors, and off the Dutch coast; BDE 47 and BDE 99 ranged from 15 to 280 and from <2 to 

24 ng/g lipid weight, respectively.  Olsson et al. (1999) detected BDE 47 in perch (Perca fluviatilis) from 

Latvia in a study examining environmental contamination in coastal areas of the former Soviet Union; the 

concentration of BDE 47 ranged from 6.4 to 10 ng/g lipid weight in the perch.  

Watanabe et al. (1987) detected PBDEs in numerous marine fish and shell fish in Japan. TetraBDE and 

pentaBDE concentrations ranged from 0.1 and 17 ng/g fresh weight, with tetraBDE being the major 
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congener.  DecaBDE was also detected in a mussel sample from Osaka Bay (at 1.4 μg/kg wet weight).  

Japanese market fish were analyzed for PBDEs. The highest combined PBDE concentrations (BDE 28, 

BDE 47, BDE 66, BDE 99, BDE 100, BDE 153, and BDE 154) were in salmon, cultured yellowtail, and 

wild yellowtail muscle (46, 44, and 30.5 ng/g lipid weight, respectively) and lowest concentrations in 

yellowfin tuna (1.9 ng/g lipid weight) (Ohta et al. 2000).  BDE 47 was major congener in all samples.  In 

another study, several fish species from Japan were analyzed for 15 BDE congeners (Hori et al. 2000).  

The PBDE concentrations ranged from 0.00136 to 2.1 ng/g fresh weight, with BDE 47 as the predominant 

congener.  Seven species of marine fish (conger eel, flounder, gray mullet, horse mackerel, red sea bream, 

sea bass, and yellowtail) were collected from the Inland Seas near Seto, Japan (Akutsu et al. 2001). 

Seven PBDEs (BDE 28, BDE 47, 2,3’,4,4’-tetraBDE [BDE 66], BDE 99, BDE 100, BDE 153, and 

BDE 154) were detected in all samples, with BDE 47 being the most abundant congener.  Concentrations 

of total PBDEs in gray mullets and yellowtails were 63 and 15 ng/g lipid weight, respectively. 

Marine Aquatic Organisms. Marine mussels (Mytilus edulis) collected at several locations in the 

Netherlands and analyzed for BDE 47, BDE 99, BDE 153, and decaBDE (BDE 209) (de Boer et al. 

2000b).  Concentrations of BDE 47 and BDE 99 were 0.9–4.3 and 0.3–1.6 ng/g dry weight, respectively.  

BDE 153 and BDE 209 were not detected.  Di- to heptaBDE were analyzed for in hepatopancreas 

samples from Dungenes crab from several sites on the Strait of Georgia, British Columbia, Canada 

(Ikonomou et al. 1999).  The primary congener detected was BDE 47.  The combined concentration of 

BDE 47 and BDE 99 was approximately 100–350 ng/g lipid weight. 

Marine Animals. In marine animals, temporal trends show increasing concentrations of lower

brominated BDE congeners with higher concentrations found near human-populated areas.  In all marine 

animal studies, the congener profiles show the highest concentrations for BDE 47.  The concentrations of 

several PBDEs in marine animals are summarized in Table 6-9.  Frouin et al. (2011) reported PBDE 

concentrations measured from serum and blubber samples obtained from six harbor seal pups (Phoca 

vitulina) live captured in May 2007, six harbor seal pups (Phoca vitulina) live captured in May 2008, six 

grey seal pups (Halichoerus grypus) live captured early January 2008, and six harp seal pups (Phoca 

groenlandica) live captured in March 2008 from the Gulf of St. Lawrence or the St. Lawrence Estuary. 

The ƩPBDEs in serum (BDE 47, BDE 99, BDE 100, BDE 153, BDE 154, and BDE 155) and blubber 

(BDE 28, BDE 47, BDE 49, BDE 66, BDE 99, BDE 100, BDE 153, BDE 154, BDE 155, and BDE 183) 

were strongly correlated.  BDE 47 was detected in all serum samples and accounted for 66–73% of 

ƩPBDEs.  ƩPBDE concentrations in lipid ranged from 21 to 530 ng/g lipid weight and from 34 to 

600 ng/g lipid weight in serum.  PBDEs have been detected in several species of seal from several 
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Table 6-9.  Concentrations (ng/g Lipid Weight) of Several Polybrominated 

Diphenyl Ethers (PBDEs) in Marine Animals
 

Sample type Location BDE 47 BDE 99 BDE 100 ΣPBDEsa BDE 209 Reference 
Bottlenose Gulf of Mexico No data No data No data 8,000 No data Kuehl and 
dolphin Haebler 1995 
Harbor seal Northwest 904 134 49 1,385* 1.2 Shaw et al. 2009 

Atlantic 
Harbor seal San Francisco No data No data No data 530–5,075* No data Klosterhaus et al. 

Bay, California 2012 
Cormorant San Francisco No data No data No data 3,425–5,550* No data Klosterhaus et al. 
eggs Bay, California 2012 
Harbor seal San Francisco 46– 17–303 No data No data No data She et al. 2000 

Bay, California 6,682 
Cormorant Suisan Bay, No data No data No data 19,000±4,000* No data Sutton et al. 2015 
eggs CA (2002) 
Cormorant Suisan Bay, No data No data No data 6,100±5,200* No data Sutton et al. 2015 
eggs California 

(2006) 
Cormorant Suisan Bay, No data No data No data 440±1708 No data Sutton et al. 2015 
eggs California 

(2009) 
Cormorant Suisan Bay No data No data No data 1,300±900* No data Sutton et al. 2015 
eggs California 

(2012) 
Cormorant Central Bay, No data No data No data 9,100±2200 No data Sutton et al. 2015 
eggs California 

(2002) 
Cormorant Central Bay, No data No data No data 3,700±500 No data Sutton et al. 2015 
eggs California 

(2004) 
Cormorant Central Bay, No data No data No data 1,800±400 No data Sutton et al. 2015 
eggs California 

(2006) 
Cormorant Central Bay, No data No data No data 1,800±300 No data Sutton et al. 2015 
eggs California 

(2009) 
Cormorant Central Bay, No data No data No data 1,100±200 No data Sutton et al. 2015 
eggs California 

(2012) 
Cormorant South Bay No data No data No data 4,200±400 No data Sutton et al. 2015 
eggs California 

(2002) 
Cormorant South Bay No data No data No data 3,300±300 No data Sutton et al. 2015 
eggs California 

(2004) 
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Table 6-9.  Concentrations (ng/g Lipid Weight) of Several Polybrominated 

Diphenyl Ethers (PBDEs) in Marine Animals
 

Sample type Location BDE 47 BDE 99 BDE 100 ΣPBDEsa BDE 209 Reference 
Cormorant South Bay No data No data No data 4,400±2,100 No data Sutton et al. 2015 
eggs California 

(2006) 
Cormorant South Bay No data No data No data 2,100±1,200 No data Sutton et al. 2015 
eggs California 

(2009) 
Cormorant South Bay No data No data No data 1,100±100 No data Sutton et al. 2015 
eggs California 

(2012) 
Harbor seal San Francisco 1,304 112 87.1 1,730* No data She et al. 2002 

(blubber) Bay, California 

Herring Gull Lake Superior, 253–323 202–284 83.6–113 664–887 (fw)* No data Norstrom et al. 

Eggs United States (fw) (fw) (fw) 2002 

Herring Gull Lake Michigan, 522–602 323–459 167–203 1,366–1,400 No data Norstrom et al. 

Eggs United States (fw) (fw) (fw) (fw)* 2002 

Herring Gull Lake Huron, 146–291 74.6–161 37.3–89.5 308–652 (fw)* No data Norstrom et al. 

Eggs United States (fw) (fw) (fw) 2002 


and Canada 
Herring Gull Detroit River, 322 (fw) 130 (fw) 92.6 (fw) 639 (fw)* No data Norstrom et al. 
Eggs United States 2002 
Herring Gull Lake Erie, 70–163 52–55.9 24.6–51.8 192–340 (fw)* No data Norstrom et al. 
Eggs United States (fw) (fw) (fw) 2002 
Herring Gull Niagara River, 168 (fw) 111 (fw) 53 (fw) 432 (fw)* No data Norstrom et al. 
Eggs United States 2002 
Herring Gull Lake Ontario, 220–401 113–322 66.5–102 530–1,003 No data Norstrom et al. 
Eggs Canada (fw) (fw) (fw) (fw)* 2002 
Herring Gull St. Lawrence 220 (fw) 89.8 (fw) 56.6 (fw) 453 (fw)* No data Norstrom et al. 
Eggs River, United 2002 

States 
Harbor seal St. Lawrence 52–408 No data No data 72–530* No data Fouin et al. 2011 

Estuary and 
Gulf of St. 
Lawrence 

Grey seal St. Lawrence 41 No data No data 69* No data Fouin et al. 2011 
Estuary and 
Gulf of St. 
Lawrence 

Harp seal St. Lawrence 14 No data No data 21* No data Fouin et al. 2011 
Estuary and 
Gulf of St. 
Lawrence 

Beluga Canadian No data No data No data 81–160* No data Alaee et al. 1999 
whale Arctic 
Beluga Southeast 10 0.9 1.6 15* No data Stern and 
whale Baffin, Canada Ikonomou 2000 
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6.  POTENTIAL FOR HUMAN EXPOSURE 

Table 6-9.  Concentrations (ng/g Lipid Weight) of Several Polybrominated 

Diphenyl Ethers (PBDEs) in Marine Animals
 

Sample type Location BDE 47 BDE 99 BDE 100 ΣPBDEsa BDE 209 Reference 
Bottlenose 	 South Atlantic No data No data No data 180–220 No data Kuehl et al. 1991 
dolphin Ocean 
Brunnich’s Svalbard, No data No data No data 130 No data Jansson and 
guillemot Sweden Asplund 1987 
Cormorant	 England, 170– 50–250 50–1,500 300–6,400* No data Allchin et al. 2000 

United 3,500 
Kingdom 

Cormorant	 Rhine delta, No data No data No data 28,000 (fw) No data de Boer 1990 
liver Germany 
Galaucous Bear Island, 290–634 160 No data No data No data de Wit 2002 
gull Norway (Arctic) 
Grey seal Baltic Sea 650 40 38 730 No data	 de Wit 2002; 

Sellström et al. 
1993 

Grey seal Baltic Sea 308 54 57 419 No data Haglund et al. 
1997 

Grey seal Baltic Sea No data No data No data 208 No data Andersson and 
Wartanian 1992 

Harbor British 50– No data No data 350–2,300* No data Ikonomou et al. 
porpoise Columbia, 1,200 2000 

Canada 
Harbor England and 227– No data No data 440–7,670 No data Law et al. 2000 
porpoise Wales, United 6,790 

Kingdom 
Harbor seal Baltic Sea No data No data No data 90 No data Jansson and 

Asplund 1987 
Harbor seal Skagerrak, No data No data No data 230 No data Andersson and 

Norway and Wartanian 1992 
Sweden 

Harbor seal North Sea 390– 42–660 25–450 600–6,000 No data de Boer et al. 
4,900 1998b 

Long-finned Faeroe Islands 410– 160–600 87–280 843–3,160* No data Lindström et al. 
pilot whale 1,780 1999 
Long-finned Faeroe Islands 66–860 24–170 12–98 126–1,250* No data van Bavel et al. 
pilot whale 1999 
Minke whale Netherlands 630 160 79 870 No data de Boer et al. 

1998b 
Ringed seal Baltic sea 256 33 61 350 No data Haglund et al. 

1997 
Ringed seal Baltic sea No data No data No data 320 No data Andersson and 

Wartanian 1992 
Ringed seal Svalbard, 47 1.7 2.3 51 No data de Wit 2002; 

Sweden Sellström et al. 
1993 
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Table 6-9.  Concentrations (ng/g Lipid Weight) of Several Polybrominated 

Diphenyl Ethers (PBDEs) in Marine Animals
 

Sample type Location BDE 47 BDE 99 BDE 100 ΣPBDEsa BDE 209 Reference 
Ringed seal Canadian 

Arctic 
No data No data No data 25.8–50* No data Alaee et al. 1999 

Ringed seal Holman Island, 
Northwest 

2.8 No data No data 2.4–4.9* No data Ikonomou et al. 
2000 

Territories, 
Canada 

Sperm 
whale 

Netherlands 130–250 32–64 21–35 187–349 No data de Boer et al. 
1998b 

White-
beaked 

Netherlands 5,500 1,000 1,200 7,700 No data de Boer et al. 
1998b 

dolphin 

aΣPBDEs is the sum of BDE 47, BDE 99, and BDE 100, but if more congeners are included, this is marked with an 
asterisk (*).
 

BDE = brominated diphenyl ether; fw = fresh weight
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different sites.  In San Francisco Bay, California, the concentrations of PBDEs in harbor seals have 

increased dramatically based on samples obtained from 1989 to 1998.  The samples from 1998 had PBDE 

concentrations among the highest reported for this species (She et al. 2002). The concentration of total 

PBDEs (sum of BDE 47, BDE 99, BDE 100, BDE 153, and BDE 154) in harbor seal blubber increased 

by over a factor of 50 from a concentration of 88 ng/g lipid for species samples collected in 1988 to a 

concentration of 2,985–8,325 ng/g lipid for species samples collected in 1998.  The highest 

concentrations reported were for BDE 47, which increased from 45.6 ng/g lipid for blubber samples in 

1989 to 2,343–6,682 ng/g lipid for blubber samples collected in 1998. The dominance of the tetraBDE 

congeners over other congeners may indicate that tetraBDEs bioaccumulate more than the higher

brominated congeners (She et al. 2002).  

In the Baltic Sea, female grey seals (Halichoerus grypus) sampled in 1979–1985 contained 730 ng 

PBDE/g lipid in their blubber (sum of BDE 47, BDE 99, and BDE 100) (Jansson et al. 1993); male grey 

seals had 280 ng PBDE/g lipid weight (Andersson and Wartanian 1992).  Male ringed seals (Pusa 

hispida) from the Baltic Sea had 320 ng PBDE/g lipid weight (Andersson and Wartanian 1992).  Baltic 

gray and ringed seal blubber sampled between 1981 and 1988 contained 419 and 350 ng PBDEs/g lipid 

(total of BDE 47, BDE 99, and BDE 100), respectively (Haglund et al. 1997).  In 1981, female ringed 

seals from Svalbard in the Swedish Arctic contained 40–51 ng PBDEs/g lipid in blubber (Jansson and 

Asplund 1987, Jansson et al. 1993; Sellström et al. 1993).  Higher concentrations of PBDEs are generally 

evident in Baltic Sea ringed seals (320–350 ng/g lipid) (Andersson and Wartanian 1992; Haglund et al. 

1997) compared to Arctic ringed seals (26–51 ng/g lipid) (Alaee et al. 1999; Jansson et al. 1987).  The 

concentration of PBDEs in harbor seals from Skagerrak on the Swedish west coast was 230 ng PBDE/g 

lipid (Andersson and Wartanian 1992). 

She et al. (2000) analyzed the concentration of BDE 47, BDE 99, and BDE 153 in harbor seals from the 

San Francisco Bay area. Mean concentrations for BDE 47, BDE 99, and BDE 153 were 1,124, 107, and 

50 ng/g lipid weight, respectively.  Alaee et al. (1999) found that ringed seals from the Canadian Arctic 

had mean PBDE concentrations (sum of di- to hexaBDEs) of 25.8 ng/g lipid weight (females) and 

50.0 ng/g lipid weight (males). The lower concentrations in female seals suggest that PBDEs are 

transferred to young through breast milk.  On Holman Island, Northwest Territory, Canada (Arctic) in 

1996, ringed seals had total PBDE concentrations of 2.4–4.9 ng/g lipid for males. The concentrations of 

PBDEs were found to increase with age (Ikonomou et al. 2000).  In a temporal trend study, archived 

samples of blubber from ringed seals from Holman Island, Northwest Territory, Canada were analyzed 

for PBDE concentrations. The concentration of PBDE in samples collected between 1981 and 1996 
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increased from approximately 0.3 ng/g lipid weight in 1981 to 3.6 ng/g lipid weight in 1996 (Ikonomou et 


al. 2000).  


The concentrations of PBDEs have been determined in harbor porpoises (Phocaena phocaena) from 


British Columbia, Canada (Ikonomou et al. 2000) and from the coasts of England and Wales (Law et al. 


2000).  In British Colombia (Canada) samples, the total PBDE concentrations (sum of tri- to hepta


congeners) were 350–2,300 ng/g lipid weight; BDE 47 was found at the highest concentrations in these 


samples (range, 50–1,200 ng/g lipid weight) (Ikononmou et al. 2000).  Concentrations of total PBDEs 


(sum of 13 congeners) along the coast of England and Wales, ranged from 450 to 7,670 ng/g lipid weight, 


with BDE 47 concentrations ranging from 227 to 6,790 ng/g lipid weight (Law et al. 2000). 


During a mass mortality event on the south Atlantic coast in 1987–1988, blubber samples were collected 


from three bottlenose dolphins (Tursiops truncatus); these samples contained 180–220 ng PBDEs/g lipid 


(Kuehl et al. 1991).  Blubber samples, taken from stranded bottlenose dolphins from several locations 


around the Gulf of Mexico in 1990, contained 3,110 ng PBDEs/g lipid (Kuehl and Haebler 1995).  On the 


Dutch coast in early 1998, de Boer et al. (1998b) found PBDEs in blubber of one whitebeaked dolphin 


(Lagenorhynchus albirostris); the concentrations of BDE 47, BDE 99, and BDE 100 were 5,500, 1,000, 


and 1,200 ng/g lipid weight, respectively. 


The concentration of 19 PBDEs was determined in long-finned pilot whale (Globicephala melas) from 


the Faeroe Islands in the north Atlantic (Lindström et al. 1999).  Young males and females had the highest 


concentrations, ranging from 3,000 to 3,160 ng/g lipid; lower concentrations were observed for both adult 


females (840–1,050 ng/g lipid) and males (1,610 ng/g lipid). The predominant isomers in all samples 


were BDE 47 and BDE 99, accounting for 70% of the sum of 19 congeners.  van Bavel et al. (1999) also 


studied the concentrations of PBDEs in long-finned pilot whales.  They observed a similar trend with 


young animals having higher PBDE concentrations (740 ng/g lipid weight) and adult animals having 


lower concentrations (females, 230 ng/g lipid; males, 540 ng/g lipid).  In Beluga whales sampled in 1997 


from southeast Baffin (Cumberland Sound), the concentrations of total PBDEs and BDE 47 were 15 and 


10 ng/g lipid weight, respectively (Stern and Ikonomou 2000).  Between 1982 and 1997, total PBDE 


concentrations in archived blubber samples of beluga whales from southeast Baffin Canada increased 


significantly.  For this time period, BDE 47, BDE 99, BDE 100, and BDE 154, and total PBDEs 


increased by factors of 6.5, 10.3, 7.9, 30.6, and 6.8, respectively (Stern and Ikonomou 2000).  Three 


sperm whales (Physeter macrocephalus) and one minke whale (Balaenoptera acutorostrata) found 


stranded on the Dutch coast in early 1998 were analyzed for PBDEs (de Boer et al. 1998a, 1998b). 


Exposure to PBDEs for these animals occurred in the deep Atlantic through the food web.  The 
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concentrations of PBDEs in these marine mammals were as follows: sperm whale (BDE 47, 130– 

250 ng/g lipid weight; BDE 99, 32–64 ng/g lipid weight; and BDE 100, 21–35 ng/g lipid weight) and 

minke whale (BDE 47, 630 ng/g lipid weight; BDE 99, 160 ng/g lipid weight; BDE 100, 79 ng/g lipid 

weight); BDE 209 (decaBDE) was below detection limits in all samples. 

PBDEs, methoxylated (MeO-) PBDEs, and hydroxylated (OH-) PBDEs were evaluated in whole blood 

samples collected from northern fur seal (Callorhinus ursinus), spotted seal (Phoca largha), Steller sea 

lion (Eumetopias jubatus) and ribbon seal (Phoca fasciata) (Nomiyama et al. 2014), and harbor porpoise 

and Dall’s porpoise (Ochiai et al. 2013) from northern Japanese coastal waters. The samples contained 

3.9–280 pg/g median values of 6OH-BDE 47; <1.0–51 pg/g median values of 2’MeO-BDE 68; 2.9– 

1,020 pg/g median values of 6MeO-BDE 47; <1–18 pg/g median values of 6MeO-BDE 99; and <100– 

230 pg/g median values of total PBDEs. 

Marine Birds. Increasing concentrations of PBDEs have been found in marine birds and eggs, with 

BDE 47 found at the highest concentrations.  Di- and triBDE have been detected, but not quantified, in 

black skimmer (Rynchops nigra) tissues and eggs in the United States (Stafford 1983).  In 2000, herring 

gull eggs collected from 15 locations around the Great Lakes (United States and Canada) were pooled and 

analyzed for PBDEs (Norstrom et al. 2002).  A total of 25 di- to hepta-BDE congeners were identified in 

herring gull through the Great Lakes system.  No mono-, octa-, nona-, or decaBDEs were found at the 

detection limit of the analysis (0.01–0.05 ng/g wet weight).  Seven congeners, BDE 28, BDE 47, BDE 99, 

BDE 100, BDE 153, BDE 154, and BDE 184, constituted 97.5% of total PBDEs (192–1,400 ng/g wet 

weight).  BDE 47 was the dominant congener (70–602 ng/g wet weight) followed by BDE 99 (52– 

459 ng/g wet weight). The highest concentrations (1,003–1,400 ng/g wet weight) were found in two Lake 

Michigan colonies and in Toronto Harbor, Lake Ontario (Norstrom et al. 2002).  Muscle tissues from 

ospreys (Pandion haliaetus), found dead at various locations around Sweden, were pooled and analyzed 

for PBDEs (Jansson et al. 1993; Sellström et al. 1993).  The ospreys’ diet was freshwater fish.  The 

combined concentration of BDE 47, BDE 99, and BDE 100 was 2,100 ng/g lipid in samples collected 

between 1982 and 1986; BDE 47 was the primary congener (86%) in these samples (n=35).  High 

concentrations of PBDEs may reflect biomagnification and/or fish consumption along their migratory 

routes.  The concentrations of PBDEs in common guillemots (Uria aalge) collected in 1979–1981 from 

the Baltic and North Seas were 370 and 80 ng/g lipid, respectively (Jansson and Asplund 1987).  As part 

of the Swedish National Environmental Monitoring Program, guillemot eggs (St. Karlsö, Baltic Sea) are 

collected yearly and placed in the Swedish Natural History Museum’s Environmental Specimens Bank. 

The concentrations of BDE 47, BDE 99, and BDE 100 in pooled egg samples from the specimen bank 

http:0.01�0.05
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showed a significant increase from 1969 to the beginning of the 1990s, with highs of 1,100 ng/g for 

BDE 47 in 1984 and 190 ng/g for BDE 99 in 1990 (Sellström et al. 1993, 1999).  Between 1992 and 

1997, PBDE concentrations started to decrease statistically.  In 1997, the PBDE concentration (sum of 

BDE 47, BDE 99, and BDE 100) was 190 ng/g lipid, with BDE 47 as the predominant congener.  

Cormorant eggs obtained from the San Francisco Bay regions had total PBDE concentrations ranging 

from 3,425 to 5,550 ng/g (median, 5,500 ng/g) and was dominated by the penta (BDE 47, BDE 99, BDE 

100) congeners (Klosterhaus et al. 2012).  Sutton et al. (20015) noted decreasing levels of PBDEs in 

cormorant eggs obtained from three locations in northern California.  Eggs collected from Suisun, 

Central, and South Bays in 2012 had total PBDE levels 93, 88, and 74% lower, respectively, when 

compared to the levels in eggs collected in 2002 (see Table 6-9). 

Human Body Tissues and Fluids. The quantitative determination of the concentrations of PBDEs in 

body tissues and fluids is important in determining the human body burden of these chemicals.  

Increasing concentrations of lower-brominated PBDEs have been measured in blood and breast milk in 

temporal trend studies.  Individuals who consumed fish had a somewhat higher concentration of total 

PBDEs in body fluids compared to individuals who ate less fish. 

Lipid adjusted serum levels of 11 BDE congeners collected from the U.S. general population were 

reported in the Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables 

(CDC 2015).  Serum levels for BDE 17, BDE 28, BDE 47, BDE 66, BDE 85, BDE 99, BDE 100, 

BDE 153, BDE 154, and BDE 183 were evaluated in samples collected between 2003 and 2008; BDE 

209 was evaluated in samples collected from 2005 to 2008.  In the NHANES 2003–2004 survey years, 

congener BDE 47 was detected at a concentration of 20.5 ng/g lipid (geometric mean), the highest 

concentration for all samples.  BDE 28, BDE 99, BDE 47, BDE 100, and BDE 153 were in >60% of 

participants (Sjödin et al. 2008).  BDE 17 was not detected above the limit of detection of 1.0 and 0.6 

ng/g lipid in survey years 2003–2004 and 2005–2008, respectively.  BDE 209 was not detected above the 

limit of detection, 6.0 and 5.8 ng/g lipid, in survey years 2005–2006 and 2007–2008, respectively.  

BDE 47, BDE 99, BDE 100, BDE 153, and BDE 154 were detected in 98, 100, 100, 96, and 48%, 

respectively, of serum samples collected from 48 mothers participating in the California Childhood 

Leukemia Study from 2006 to 2007 (Whitehead et al. 2015a).  Median serum levels ranged from below 

the detection limit for BDE 154 to 35 ng/g lipid for BDE 47.  BDE 47 and BDE 153 were detected in 

whole blood of 61 and 85%, respectively, of 191 children participating in the California Childhood 

Leukemia Study from 1999 to 2007 (Whitehead et al. 2015b).  The median, 75th percentile, 90th 
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percentile, and maximum levels were 410, 820, 1,500, and 17,000 pg/mL, respectively, for BDE 47 and 

130, 270, 460, and 6,500 pg/mL, respectively, for BDE 153.  

Tables 6-10, 6-11, and 6-12 summarize representative concentrations of PBDEs found in blood (serum), 

adipose tissue, breast milk, and other body tissues or fluids, respectively.  These studies indicate that 

concentrations of lower-brominated BDEs in body fluids are a factor of 10–100-fold higher for 

individuals living in the United States compared to individuals living in other regions of the world 

(e.g., Europe).  Serum samples collected from 12 U.S. blood donors in 1988 were analyzed for PBDEs, 

and BDE 47, BDE 153, BDE 183, and BDE 209 were detected (Patterson et al. 2000; Sjödin et al. 

2001b).  Concentrations of these congeners were similar to those found in the Sjödin et al. (1999b) study 

for the control group.  The median concentrations and ranges of BDE 47, BDE 153, BDE 183, BDE 209, 

and total PBDEs (sum of four congeners) were 0.63 (<0.4–24); 0.35 (0.08–2.0); 0.17 (0.09–1.3); <1 (<1– 

34); and 2.2 ng/g lipid weight, respectively (Sjödin et al. 2001b).  DecaBDE was found at concentrations 

above the limit of quantification (1 pmol/g lipid) in 5 of 12 serum samples (Patterson et al. 2000).  

Schecter et al. (2005) provided a summary of PBDE (BDE 17, BDE 28, BDE 47, BDE 66, BDE 77, BDE 

85, BDE 99, BDE 100, BDE 138, BDE 153, BDE 154, BDE 183, and BDE 209) concentrations in blood 

from 29 adults residing in Mississippi and 10 adults in New York City.  These blood samples were 

obtained in 2003.  These data were then compared to archived blood samples from 100 individuals 

obtained in 1973 from the Dallas, Texas area and stored at the University of Texas Southwestern Medical 

Center.  The 13 PBDE congeners were not detected in the blood samples from the 100 individual 

collected in 1973, but all congeners were detected in at least one of the blood samples obtained from the 

29 residents of Mississippi collected in 2003.  BDE 28, BDE 47, BDE 77, BDE 99, BDE 100, BDE 138, 

BDE 153, BDE 154, and BDE 183 were all detected in at least one of the blood samples obtained in 2003 

from New York City residents.  BDE 47 followed by BDE 99 were the predominant congeners detected 

in both the Mississippi and New York residents blood samples collected in 2003. 

Rawn et al. (2014) analyzed data from nearly 5,000 serum samples collected from the Canadian Health 

Measures Survey (CHMS) from 2007 to 2009. PBDE congeners were detected in all samples tested, with 

a range of values of 27–130 ng/g lipid (total PBDEs) and a GM of 46 ng/g lipid. BDE 47 was the 

predominant congener with a GM of 22 ng/g lipid followed by BDE 153 (GM=9.4 ng/g lipid), BDE 99 

(GM=4.6 ng/g lipid), BDE 100 (GM=4.1 ng/g lipid), and BDE 209 (GM 1.1 ng/g lipid) (Rawn et al. 

2014). 
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Table 6-10.  Concentrations (ng/g Lipid Weight) of Several Polybrominated
 
Diphenyl Ethers (PBDEs) in Human Blood Samplesa
 

Sample 
type Location BDE 47 BDE 99 BDE 100 ΣPBDEsa BDE 209 Reference 
Human United States (in 0.63 0.32 0.17 	 2.2* <0.1 Sjödin et al. 2001b 

blood 1988) 

Human Mississippi and 25 11.1 4.7 (mean) 52.6 2.7 Schecter et al. 

blood New York City (mean) (mean) (mean) (mean) 2010 


(in 2003) 
Maternal Indiana 28 (9.2– 5.7 (2.4– 4.2 (1.9– 37 (15– No data Mazdai et al. 2003 
serum 310) 68) 110) 580) 
Fetal Indiana 25 (8.4– 7.1 (2.2– 4.1 (1.8– 39 (14– No data Mazdai et al. 2003 
serum 	 210) 54) 91) 460) 
Maternal Texas 14.9 3.0 2.8 27.8* Schecter et al. 
serum 2010 
Human United States (in 20.5 No data 3.93 (geo- No data No data CDC 2015 
serum 2003–2004) 	 (geo metric 

metric mean) 
mean) 

Human United States (in 21.2–74.9 4.16–23.3 4.06–14.2 	 No data No data CDC 2015 
serum 2005–2006) 	 (weighted (weighted (weighted 

arithmetic arithmetic arithmetic 
mean) mean) mean) 

Human United States (in 20.5–53.1 4.30–10.7 4.12–11.0 	 No data No data CDC 2015 
serum 2007–2008) 	 (weighted (weighted (weighted 

arithmetic arithmetic arithmetic 
mean) mean) mean) 

Human Australia 	 2.6–55.1 0.9–24.2 0.6–14.1 24 No data Toms et al. 2009 
serum 	 (newborn); 

31 (0– 
2 years); 
41 (2– 
6 years); 
26 (7– 
12 years); 
20 (13–30 
years); 
9.4 (>31 ye 
ars) (mean) 

Maternal France 2.831 1.939 0.365 No data 5.783 Antignac et al. 
serum 2009 
Cord France 	 No data 7.434 1.467 No data 27.110 Antignac et al. 
serum 2009 
Maternal Spain 2.3 0.35 No data 9.6 <0.7 Vizcaino et al. 
serum 2011 
Cord Spain 2.3 1.5 No data 9.6 <1.2 Vizcaino et al. 
serum 2011 
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Table 6-10.  Concentrations (ng/g Lipid Weight) of Several Polybrominated
 
Diphenyl Ethers (PBDEs) in Human Blood Samplesa
 

Sample 
type Location BDE 47 BDE 99 BDE 100 ΣPBDEsa BDE 209 Reference 
Human 
Serum 

Canada 23 
(mean) 

5.4 
(mean) 

4.4 (mean) 48 (mean) 1.9 
(mean) 

Rawn et al. 2014 

Maternal China 0.75 No data No data 29.26 2.12 Li et al. 2013a 
serum (mean) (mean) (mean) 
Cord China 0.62 No data No data 41.12 1.33 Li et al. 2013a 
serum (mean) (mean) (mean) 
Human Sweden No data No data No data 2.1* No data Klasson Wehler et 
blood al. 1997 
Human 
blood 

Japan 0.001 <LOQ No data No data No data Fujii et al. 2014 

Human 
blood 

Sweden, 
computer dis
assembly 
workers 

2.9 
(median) 

No data No data 26* 4.8 Sjödin et al. 1999a 

Human 
blood 

Sweden, 
cleaning 
personnel/office 
workers 

1.5–1.6 No data No data 3.3–4.1* <0.7 Sjödin et al. 1999a 

Human 
blood 

Sweden, high 
fish intake 

2.1 No data No data No data No data Bergman et al. 
1999; Sjödin et al. 
2000 

Human 
blood 

Sweden, no fish 
intake 

0.40 No data No data No data No data Bergman et al. 
1999; Sjödin et al. 
2000 

Maternal 
blood 

Sweden 0.83 (0.3– 
5.1) 

0.19 
(<0.01– 
1.43) 

0.17 
(<0.01– 
0.52) 

2.07 (0.71– 
8.39) 

No data Meironyte 
Guvenius et al. 
2003 

Cord 
blood 

Sweden 0.98 
(0.33– 
3.28) 

0.07 0.07 0.46–4.28 No data Meironyte 
Guvenius et al. 
2003 

Human 
blood 

Germany 3.9 No data No data 5.6* No data Schröter-Kermani 
et al. 2000 

aΣPBDEs is the sum of BDE 47, BDE 99, and BDE 100, but if more congeners are included, this is marked with an 
asterisk (*).  All values are median values unless stated otherwise. 

BDE = brominated diphenyl ether; LOQ = limit of quantitation 
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Table 6-11.  Concentrations (ng/g Lipid Weight) of Several Polybrominated
 
Diphenyl Ethers (PBDEs) in Human Adipose Tissue Samples
 

Location BDE 47 BDE 99 BDE 100 ΣPBDEsa BDE 209 Reference 
Northern California 7.0–28 (18, 3.1–7.3 No data No data No data She et al. 2000 

mean) (4.9 mean) 
San Francisco, 16.5 (5.2– No data No data No data No data Petreas et al. 2003 
California 196) 
Sweden 8.8 1.1 1.8 11.7 No data Haglund et al. 1997 
Sweden 2.2 (mean) 1.6 (mean) 0.1 (mean) 5* (mean) No data Meironyté Guvenius 

and Norén 1999 
Finland 7.3 (mean) 2.3 (mean) No data 6.2–22* No data Strandman et al. 1999 
Finland 0.55 0.74 No data No data No data Smeds and Saukko 

2003 
Spain 1.36 0.42 No data No data Meneses et al. 1999 

(mean) (mean) 
Japan 0.459 0.118 0.250 1.288* No data Choi et al. 2003 
France 0.651 0.166 0.168 0.752 Antignac et al. 2009 

aΣPBDEs is the sum of BDE 47, BDE 99, and BDE 100, but if more congeners are included, this is marked with an 
asterisk (*).  All values are median values unless otherwise stated. 

BDE = brominated diphenyl ether; ND = not detected 
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Table 6-12.  Concentrations (ng/g Lipid Weight) of Several Polybrominated 

Diphenyl Ethers (PBDEs) in Human Breast Milk Samples
 

Location BDE 47 BDE 99 BDE 100 ΣPBDEsa BDE 209 Reference 
Texas 18.4 5.7 2.9 34.0 8.24 

(maximum) 
Schecter et al. 2003 

Texas 24.0 4.3 3.5 39.7* No data Schecter et al. 2010 

California 29.7 6.40 5.65 54.5 1.41 Park et al. 2011 

Pennsylvania 26 No data 4 No data No data LaKind et al. 2009 

Philippines (mean) 0.9 0.22 0.19 1.8* <0.05 Malarvannan et al. 
2013 

France 1.152 0.527 0.226 1.615 Antignac et al. 2009 
Uppsala County, 
Sweden 

1.78 0.43 0.27 3.15 No data Lind et al. 2003 

Sweden 1.8 0.442 0.340 3.373* No data Darnerud et al. 1998 
Finland 0.85 0.35 No data Strandman et al. 

2000 
Birmingham, United 
Kingdom 

2.80 0.69 0.45 5.00* 0.25 Abdallah and Harrad 
2014 

Japan 0.18–0.57 0.09–0.13 0.07–0.18 0.65–1.48* Ohta et al. 2000 
Japan No data No data No data 0.66–2.8* No data Ohta et al. 2002 
Japan 0.57 0.33 No data No data No data Fujii et al. 2014 
Sweden No data No data No data 0.07* 

(1972); 
0.28 
(1976); 
0.48 
(1980); 
0.72 
(1984-5); 
1.21 
(1990) 
2.15 
(1994); 
3.11 
(1996); 
4.01 
(1997) 

No data Norén and Meironyté 
2000 

aΣPBDEs is the sum of BDE 47, BDE 99, and BDE 100, but if more congeners are included, this is marked with an 
asterisk (*).  Concentrations are median concentrations unless stated otherwise 

BDE = brominated diphenyl ether 
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Serum samples were collected from a group of 50 Laotian immigrants (aged 19–40) participating in a 

reproductive outcome study in the San Francisco Bay area (Petreas et al. 2002).  Participants were 

recruited and sampled in the late 1990s.  The mean concentration of BDE 47 in serum was approximately 

95 ng/g lipid. The contemporary samples were compared to serum samples taken from a group of over 

400 women from the San Francisco Bay in the 1960s.  Concentrations of BDE 47 in all archived samples 

were below the limit of detection.  Petreas et al. (2003) expanded their investigation to include a diverse 

group of local women from the San Francisco Bay area sampled in the late 1990s. Their results 

confirmed earlier findings reported in Petreas et al. (2002).  Mean concentrations of BDE 47 in serum 

samples taken from California women ranged from 5 to 510 ng/g lipid, with a median (16.5 ng/g lipid) 3– 

10 times higher than those reported from Europe (Petreas et al. 2003).  In 2001, Mazdai et al. (2003) 

determined the concentration of six PBDE congeners (BDE 47, BDE 99, BDE 100, BDE 153, BDE 154, 

and BDE 183) and total PBDEs in maternal and fetal blood samples taken from subjects in Indianapolis, 

Indiana.  Median concentrations of total PBDE (sum of six congeners) were 39 and 37 ng/g lipid for fetal 

and maternal serum, respectively.  BDE 47 was the predominant congener reported at median 

concentrations of 25 and 28 ng/g lipid for fetal and maternal serum samples, respectively.  When 

compared with serum PBDE concentrations for a similar population of Swedish mothers and newborns, 

the concentrations for the Indiana population were 20–69-fold higher for maternal blood and 30–106-fold 

higher for fetal blood.  In fact, the median blood concentrations for this study were comparable to 

Swedish workers considered to have direct work-related exposures.  These observations indicated that 

women in some areas of North America are exposed to much higher concentrations of lower-brominated 

BDEs (i.e., BDE 47) than European women.  In general, the PBDE congener profile found in human 

serum was similar to that detected in environmental samples, except that there was an apparent decrease 

in the proportion of BDE 99.  BDE 183 was detected in <17% of the samples even though it is the 

primary congener in octaBDE commercial mixtures (Mazdai et al. 2003).  The conclusion that PBDE 

concentrations are higher in North America than in Europe is further supported by a study conducted in 

the Netherlands that analyzed maternal serum from 90 female volunteers collected at the 35th week of 

pregnancy, and in cord serum of a number of their infants (Meijer et al. 2008).  Median concentrations of 

BDE 47, BDE 99, BDE 100, BDE 153, and BDE 154 in maternal serum were reported as 0.8, 0.2, 0.2, 

1.6, and 0.5 ng/g lipid weight, respectively.  Median concentrations of BDE 47, BDE 99, BDE 100, 

BDE 153, and BDE 154 in cord serum were 0.5, 0.1, 0.1, 0.9, and 0.3 ng/g lipid weight, respectively 

(Meijer et al. 2008).  These concentrations are on the same order of magnitude as reported in other areas 

of Europe and much lower than concentrations typically detected in the United States (Vizcaino et al. 

2011). 
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Six PBDE congeners (BDE 28, BDE 47, BDE 66, BDE 99, BDE 100, and BDE 153) were quantified in 

40 human blood-plasma samples from Sweden. The highest concentrations in plasma were for 

BDE 47 and BDE 99; these congeners made up 70% of the total PBDE concentration.  The mean 

concentration of total PBDE was 2.1±1.4 ng/g lipid weight (Klasson Wehler et al. 1997).  Whole-blood 

samples from a German environmental specimen bank, collected in 1985, 1990, 1995, and 1999, 

contained measurable quantities of BDE 28, BDE 47, BDE 66, BDE 85, BDE 99, BDE 100, BDE 153, 

and BDE 154.  An increasing temporal trend was also observed; the mean total PBDE concentration (sum 

of eight congeners) increased from 3.9 ng/g lipid weight in 1985 to 5.6 ng/g lipid weight in 1999.  For the 

1999 sample, BDE 47 was the major congener found, with a mean concentration of 3.9 ng/g lipid weight.  

The total PBDE concentrations were significantly lower in female blood samples (Schröter-Kermani et al. 

2000).  In a study of the influence of diet on concentrations of PBDEs, BDE 47 was measured in blood 

serum from persons with high fish intake and no fish intake (Bergman et al. 1999; Sjödin et al. 2000).  

High-fish-intake groups of Swedish and Latvian men had median BDE 47 concentrations of 2.2 and 

2.4 ng/g lipid weight, respectively, whereas the no-fish-intake groups had median concentrations of 

0.4 and 0.26 ng/g lipid weight, respectively (Sjödin et al. 2000). 

Serum samples collected in 2006–2007 and analyzed for different age groups in Australia suggest that 

PBDE concentrations increase from infant to toddler and then gradually decrease over time (Toms et al. 

2009).  Mean total PBDE (sum of BDE 47, BDE 99, BDE 100, and BDE 153) concentrations in cord 

blood of 0–2 year olds, 2–6 year olds, 7–12 year olds, 13–30 year olds, and >31 year olds were 24, 31, 41, 

26, 20, and 9.4 ng/g lipid, respectively.  The peak mean concentration was observed in toddlers 2.6– 

3 years of age (51 ng/g lipid), which is later than when breastfeeding usually ceases, suggesting a lower 

capacity to eliminate PBDEs or greater exposure through unique exposure pathways more common for 

this age group (e.g., ingestion or dermal exposure of contaminated dust particles in carpeting). 

BDE 47, BDE 153, BDE 154, BDE 183, and BDE 209 were measurable in blood plasma from three 

groups of workers (i.e., workers at a computer-disassembly plant, workers in a computerized office, and a 

control group) (Sjödin et al. 1999a).  The median concentrations (sum of five congeners) were highest for 

the computer-disassembly plant workers (26 ng/g lipid weight); the office workers had a median 

concentration of 4.1 ng/g lipid weight and the control group had a median concentration of 3.3 ng/g lipid 

weight.  The congener patterns for the control group and office workers were similar, with 

BDE 47 having the highest concentrations.  For the computer disassembly plant workers, the median 

concentrations of BDE 183, BDE 153, BDE 154, BDE 47, and BDE 209 were 7.8, 4.5, 1.2, 2.9, and 
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4.8 ng/g lipid weight, respectively.  Blood serum samples from 19 full-time computer technicians were 

analyzed (Hagmar et al. 2000a). The serum concentrations of BDE 153, BDE 183, and BDE 209 in these 

samples were found to be approximately 5 times higher than the control and office workers in the Sjödin 

et al. (1999a) study.  The median concentration for total PBDEs (for the sum of five congeners) was 

10.6 pmol/g (7.0 ng/g) lipid weight.  The highest concentrations were of BDE 153.  Two octaBDE 

congeners and one nonaBDE congener were also detected.  Connections were observed between fish 

consumption and serum concentrations for congeners BDE 47, BDE 153, and BDE 183, and between 

worktime at the computer and congeners BDE 153 and BDE 183. 

DecaBDE, as well as hexa- through nonaBDE, has been found in composite samples from the 1987 

National Human Adipose Tissue Survey repository (Cramer at al 1990; Stanley et al. 1991). The 

concentrations ranged from not detected to 1 ng/g fat for hexaBDE, 0.001–2 ng/g fat for heptaBDE and 

not detected to 8 ng/g fat for octaBDE.  NonaBDE concentrations were estimated to be >1 ng/g fat; 

decaBDE was estimated to range between not detected and 0.7 ng/g fat.  In the late 1990s, breast adipose 

samples collected in northern California contained quantifiable amounts of BDE 47, BDE 99, and 

BDE 153 (She et al. 2000). Mean concentrations were 18 ng/g lipid weight for BDE 47, 4.9 ng/g lipid 

weight for BDE 99, and 2.2 ng/g lipid weight for BDE 153.  Average total PBDEs concentrations 

(86 ng/g lipid) were the highest human concentrations reported to date.  Petreas et al. (2003) expanded 

their investigation to include a diverse group of local women from the San Francisco Bay area sampled in 

the late 1990s. Their results confirmed earlier findings reported in She et al. (2000).  Mean 

concentrations of BDE 47 in adipose tissues samples taken from California women were 28.9 ng/g lipid. 

In the adipose tissue of a 74-year-old Swedish male, the BDE 47 concentration was 8.8 ng/g lipid weight 

(Haglund et al. 1997).  

Adipose and liver tissue from two Swedish males were examined for several PBDEs (BDE 28, BDE 47, 

BDE 85, BDE 99, BDE 100, BDE 153, and BDE 154) (Meironyté Guvenius and Norén 1999).  The 

distribution of congener concentrations in the adipose and liver tissues for each individual were similar. 

BDE 47, BDE 99, and BDE 153 were the predominant congeners with adipose BDE 47 concentrations 

ranging from 2 to 2.4 ng/g lipid weight, BDE 99 concentrations of 1.6 ng/g lipid weight, BDE 100 

concentrations of 0.1 ng/g lipid weight, and BDE 153 concentrations ranging from 1 to 1.3 ng/g lipid 

weight.  The total PBDE concentration (i.e., the sum of the seven congeners) in adipose tissue was 5 ng/g 

lipid weight.  Human liver and adipose tissues from one woman and four men autopsied in Sweden in 

1994 were analyzed for PBDEs containing 3–6 bromine atoms (Meironyté Guvenius and Norén 2001). 

PBDEs were found in all of the tissue samples. The sums of nine congeners (BDE 17, BDE 28, BDE 47, 
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BDE 66, BDE 100, BDE 99, BDE 85, BDE 154, and BDE 153) were 5–18 and 4–8 ng/g lipids in liver 

and adipose tissue, respectively.  The PBDE congeners BDE 47, BDE 99, and BDE 153 occurred at the 

highest concentrations and constituted 87–96 and 84–94% of the total sum in liver and adipose tissue, 

respectively.  Strandman et al. (1999) measured the concentration of BDE 47, BDE 99, and BDE 153 in 

adipose tissue samples from 10 randomly selected individuals in Finland.  Mean concentrations were 

7.3 ng/g fat for BDE 47, 2.2 ng/g fat for BDE 99, and 2.3 ng/g fat for BDE 153. Concentrations of 

PBDEs were measured in adipose tissue samples from 13 individuals (3 women, 10 men) from 

Tarragona, Spain; the mean concentrations of BDE 47, BDE 99, and BDE 153 were 1.36, 0.42, and 

1.83 ng/g lipid weight, respectively.  The mean concentrations of pentaBDE and hexaBDE were 0.93 and 

1.83 ng/g lipid weight, respectively (Meneses et al. 1999). 

Human Milk. Schecter et al. (2003) reported the first findings on concentrations of PBDEs congeners in 

human milk from individuals in the United States.  Forty-seven individual milk samples were analyzed 

from nursing mothers, 20–41 years age, from a milk bank in Austin, Texas, and a community health clinic 

in Dallas, Texas, both in the year 2001. The median concentration of the sum of PBDE congeners was 

34.0 ng/g lipid.  The predominant congener was BDE 47 (18.4 ng/g lipid); other congeners detected were 

BDE 17, BDE 28, BDE 66, 2, BDE 85, BDE 99, BDE 100, BDE 138, BDE 153, BDE 154, and BDE 183 

at median concentrations of 0.01, 1.2, 0.14, 0.41, 5.7, 2.9, 0.09, 2.0, 0.22, and 0.07 ng/g lipid, 

respectively.  DecaBDE was detected in 7 out of 47 samples with a maximum concentration of 8.24 ng/g 

lipid.  PBDE concentrations in breast milk from this study were similar to concentrations found in U.S. 

blood and adipose tissue lipid from California and Indiana and are 10–100 times greater than human 

tissue concentrations in Europe (Schecter et al. 2003).  These data have been updated to include 2001– 

2004 samples and are provided in Table 6-13 (Schecter et al. 2005).  

Median concentrations of BDE 47, BDE 100, and BDE 153 were 26, 4, and 3.5 ng/g lipid, respectively, in 

breast milk samples collected from 10 mothers in Pennsylvania (LaKind et al. 2009).  The detection 

frequency was 100% for each congener in all 35 samples collected. 

Norén and Meironyté (1998, 2000) examined the temporal trends of PBDE concentrations in pooled 

breast milk samples from mothers in Stockholm, Sweden.  Between 1972 and 1997, the concentration of 

PBDEs in human breast milk increased, with a doubling rate of 5 years.  In the 1997 sample, the 

concentration of PBDEs (sum of eight congeners) was 4 ng/g lipid, whereas the 1972 sample contained 

0.07 ng/g lipids (Meironyté et al. 1999).  The authors suggest that the current exposure of humans to 

PBDEs may not be only diet; other exposure routes may result from the presence of PBDE in both work 
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Table 6-13. Concentrations of PBDE Congeners in Human Milk from Nursing 

Mothers in the United States (2001–2004) (ng/g Lipid)
 

BDE congener 

Female 
Lipid 
(%) 

Age 
(years) 

Nursing 
(weeks) 17 28 47 66 77 85 99 100 138 153 154 183 209 Sum 

1a 4.8 31 3 ND 0.2 2.9 0.02 ND 0.08 0.7 0.7 ND 1.5 0.06 ND ND 6.2 
2a 1.3 29 3 ND 0.3 3.5 ND ND 0.08 0.7 0.5 ND 0.9 0.06 0.06 ND 6.2 
3a 2.1 23 74 ND 0.2 3.9 0.06 ND 0.11 1.5 0.6 ND 0.4 0.08 ND ND 6.9 
4b 4.8 32 21 — 0.3 3.5 0.14 — 0.08 1.6 0.7 0.09 1.4 0.09 0.04 — 8 
5a 2.6 22 40 0.01 0.3 6.3 0.05 ND 0.23 2.8 1.2 ND 0.7 0.2 0.05 ND 11.8 
6a 3.6 36 109 ND 0.4 7.8 0.09 ND 0.23 2.4 1.1 0.01 0.4 0.11 ND ND 12.5 
7a 1.9 32 20 ND 0.7 8.2 0.04 ND 0.22 1.3 1.7 ND 0.9 0.12 0.08 ND 13.3 
8a 6.3 25 2 ND 0.4 7.9 0.02 ND 0.38 2.3 2.7 ND 0.8 0.15 0.06 ND 14.7 
9b 2.1 35 29 — 0.7 8.8 0.19 — 0.17 1.5 1.7 0.16 2 0.06 0.03 — 15.2 
10a 5.5 32 30 ND 0.4 8 0.01 ND 0.44 2.9 2 ND 0.9 0.14 0.24 0.48 15.6 
11b 5 20 2 0.01 1.1 10.9 0.05 ND 0.18 2 2.4 ND 1.3 0.17 0.04 ND 18.1 
12a 3.4 23 3 0.01 0.4 8 0.03 ND 0.35 3.1 2.7 ND 2 0.21 0.61 0.93 18.3 
13b 1.3 32 16 — 0.8 10.5 ND — 0.35 2.5 2.2 0.19 2 0.12 0.03 — 18.6 
14a 3.4 25 NA 0.02 1.1 12 0.13 ND 0.23 2.5 1.8 ND 1.3 0.15 0.08 1.85 21.1 
15a 2.9 21 29 0.03 0.5 10.7 0.09 ND 0.27 5.5 2.1 ND 0.9 0.35 0.07 2.74 22.4 
16b 3.5 30 30 — 0.7 6.9 ND — 0.12 1.3 4.6 0.41 8.5 0.19 0.06 — 22.8 
17a 1 23 2 ND 0.9 14.2 0.11 ND 0.37 3.7 2.6 ND 1.3 0.24 0.09 ND 23.5 
18b 3.7 23 19 — 0.7 13.2 0.57 — 0.29 3.7 2.5 0.29 1.9 0.17 0.06 — 23.5 
19a 3.2 26 2 ND 1.3 17.4 0.19 ND 0.35 4 2.1 ND 0.7 0.18 ND ND 26.2 
20b 3.5 34 22 — 1 14.3 0.29 — 0.46 5.7 3.6 0.25 1.4 0.2 0.1 — 27.3 
21b 3.1 33 60 — 1.4 18.4 ND — 0.25 4.1 1.8 0.09 2.1 0.16 0.06 — 28.3 
22b 4.9 38 26 — 1.2 17.4 ND — 0.34 7.1 2.3 0.14 0.6 0.3 0.12 — 29.6 
23a 3.4 30 2 0.01 0.7 15.2 0.06 ND 0.42 4.2 2.3 ND 3 0.22 0.03 3.97 30.1 
24a 5.1 28 53 0.01 1.1 20 0.18 ND 0.53 5.1 3.9 0.01 2.7 0.32 0.11 ND 34 
25b 4.7 35 NA — 1.3 20.9 0.56 — 0.31 6.3 2.9 0.14 1.2 0.22 0.17 — 34.1 
26a 1.1 41 38 0.02 1.5 19.5 0.11 ND 0.41 3.4 3.3 ND 7.7 0.18 ND ND 36.1 
27b 6.1 37 25 — 7.6 17.2 1.19 — 0.35 6.1 2.3 0.18 1.7 0.27 0.05 — 36.8 
28b 3 27 51 — 1.4 28.2 ND — 0.51 7.5 2.9 0.25 0.7 0.2 0.75 — 42.4 
29b 4.8 25 NA — 1.8 21.6 0.94 — 0.5 9.4 4.4 0.47 5.8 0.6 0.06 — 45.5 
30b 2.2 39 11 — 1.1 26.8 ND — 0.75 8.9 5.3 0.58 2 0.45 0.1 — 46 
31b 5.6 34 NA — 2.7 31.8 ND — 0.42 7.8 3.1 0.09 0.8 0.22 0.1 — 47 
32b 3.4 27 10 — 2.6 30.1 0.75 — 0.57 5.9 6.5 0.32 2.5 0.34 0.09 — 49.6 
33a 2.8 20 13 0.02 1.1 31.3 0.17 ND 0.13 10.2 5.9 0.02 1.5 0.48 0.11 2.96 53.9 
34b 4 20 13 — 3.4 33.5 2.32 — 0.49 5.8 5.8 0.27 2.6 0.32 0.06 — 54.6 
35b 3.3 26 17 — 1.4 32.3 0.7 — 0.66 9.6 5.7 0.46 12.4 0.51 0.05 — 63.8 
36b 2.2 20 16 — 1.4 25.5 0.75 — 0.76 8 18.3 1.75 18.3 0.94 0.08 — 75.8 
37a 1.1 22 51 0.04 2.2 44.3 0.55 0.03 0.64 10.8 8.1 0.02 14.7 0.56 ND ND 81.9 
38b 4.3 29 38 — 5.2 34.8 0.61 — 1.94 9.8 29.2 1.2 14.5 0.96 0.1 — 98.2 
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Table 6-13. Concentrations of PBDE Congeners in Human Milk from Nursing 

Mothers in the United States (2001–2004) (ng/g Lipid)
 

BDE congener 

Female 
Lipid 
(%) 

Age 
(years) 

Nursing 
(weeks) 17 28 47 66 77 85 99 100 138 153 154 183 209 Sum 

39a 1 26 22 0.02 1.7 54.7 0.54 ND 1.63 23.6 10 ND 4.8 1.15 0.07 ND 98.2 
40b 4.9 32 38 — 3.4 49.7 1.21 — 1.2 7.7 21.1 1.4 16.3 0.93 0.15 — 103.1 
41b 3.4 30 9 — 3.9 63.1 3.13 — 2.81 30.1 16.2 3.29 17.2 1.94 0.08 — 141.6 
42b 1.2 21 2 0.1 10.1 120.9 1.68 0.06 2.64 30.3 20.1 0.13 16.4 2.07 ND ND 204.3 
43b 1.2 33 15 — 8 139.6 ND — 4.12 44.6 23 4.47 21.8 2.76 0.18 — 248.5 
44a 1 23 2 0.06 3.6 172.4 1.14 ND 6.28 69.8 31.9 0.08 8.4 3.07 0.16 ND 296.9 
45b 2.1 34 13 — 7.5 199.6 6.67 — 7.73 108.5 31.7 4.12 6.9 3.62 0.36 — 376.7 
46a 1.7 33 47 0.18 6.1 196.2 2.07 0.16 6.46 111 31 0.27 15.5 7.21 1.32 8.24 385.5 
47b 5.1 29 28 — 16.1 271.5 3.16 — 6.29 50.4 47.4 6.86 14.1 2.87 0.12 — 418.8 
48 3.18 NA 0.011 0.6 9.9 0.058 NA NA 2.7 1.3 0.022 0.62 0.13 0.072 2.4 17.81 
49 3.28 NA 0.016 1.2 25 0.12 NA NA 11 4.5 0.092 3.1 0.57 0.092 0 45.69 
50 3.9 NA 0.016 4.4 41 0.098 NA 1.3 11 11 0.15 6.1 0.71 0.14 0 75.91 
51 3.12 NA 0.015 2.3 37 0.11 NA 0.49 6.7 6.9 0.086 11 0.39 0.11 0 65.10 
52 6.31 NA 0.01 1.8 14 0.084 NA NA 2.9 2.9 0.033 2.1 0.17 0.1 0 24.1 
53 7.04 37 0.02 0.71 16 0.13 NA 0.46 5.8 2.5 0.03 2.2 0.28 0.057 0.02 28.21 
54 3.29 33 0.014 0.76 9 0.056 NA 0.14 1.5 2.1 0.01 2.6 0.094 0.051 0.05 16.37 
55 2.44 38 0.02 1.2 19 0.18 NA 0.35 5 2.7 0.02 2.4 0.27 0.051 2.5 33.69 
56 6.5 NA 0.005 0.9 6.1 0.088 NA 0.082 1 1.2 0.01 6.7 0.077 0.029 0.03 16.22 
57 5.55 NA 0.005 0.9 6.1 0.088 NA 0.082 1 1.2 0.01 3.4 0.077 0.029 0.03 12.92 
58 6.75 NA 0.046 1.5 24 0.18 NA 0.38 4.8 2.7 0.02 2.1 0.22 0.57 0.05 36.57 
59 3.08 NA 0.016 1.2 10 0.086 NA 0.18 2 1.3 0.01 4 0.15 0.096 0.1 19.14 

aAustin milk bank sample.
 
bDallas milk bank sample.
 

NA = not available; ND = not detected
 

Source:  Schecter et al. 2005
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and home environments.  PBDE concentrations were studied in breast milk obtained from mothers 

pregnant for the first time (n=39, ages 22–36 years old) from Uppsala County, Sweden (Darnerud et al. 

1998).  The mean value of total PBDEs (sum of eight congeners) was 4.4 ng/g fat; the major congener 

was BDE 47, contains ca. 55% of the total PBDEs.  Lind et al. (2003) reported concentrations of PBDEs 

in human breast milk sampled from Uppsala County, Sweden.  Total PBDEs, BDE 47, BDE 99, and 

BDE 100 concentrations were 4.01, 2.35, 0.62, and 0.38 ng/g lipid, respectively.  In human breast milk 

from 25 German mothers, the concentrations of PBDEs ranged from 0.6 to 11 ng/g lipid (de Wit 2002).  

In 1992, the mean concentration of total PBDEs (sum of BDE 28, BDE 47, BDE 99, BDE 100, BDE 153, 

and BDE 183) was 5.8 ng/g lipid weight for samples (n=6) from mothers from Ontario and Quebec, 

Canada (Ryan and Patry 2000).  Combined samples from 1992 representing four regions of Canada and 

one representing all Canadian provinces had total PBDE concentrations ranging from 2.6 to 19 ng/g lipid 

weight; the highest concentrations were observed in the New Brunswick, Nova Scotia, and Prince Edward 

Island.  Breast milk samples from Finland, collected between 1994 and 1998, had concentrations of total 

PBDEs (sum of BDE 28, BDE 47, BDE 99, and BDE 153) ranging from 0.88 to 5.9 ng/g lipid weight 

(Strandman et al. 2000).  In Japan, breast milk samples had total PBDE concentrations (sum of BDE 28, 

BDE 47, BDE 99, BDE 100, BDE 153, and BDE 154) ranging from 0.66 to 2.8 ng/g lipid weight (Ohta et 

al. 2002).  Women who consumed fish had a somewhat higher concentration of total PBDEs (range, 1.4– 

2.8 ng/g lipid weight) compared to women who ate less fish (range, 0.67–0.87 ng/g lipid weight). 

BDE 47 was the major congener in most of the samples; BDE 153 concentrations were analogous to 

BDE 47 concentrations in some samples (Ohta et al. 2002). 

Hydroxy- and Methoxy- Derivatives in Biota.  Hydroxy- and methoxy- derivatives of PBDEs have been 

identified in biota.  However, their origin in the environment has not yet been explained.  Anthropogenic 

sources of these compounds have not been found.  Tetra- and pentabrominated methoxy (MeO) BDEs 

were found in herring, salmon, grey seal, ringed seal, and white-tailed sea eagle from the Baltic region 

(Asplund et al. 1999a; Haglund et al. 1997) as well as beluga whale from Svalbard and pilot whale from 

the Faroe Islands (van Bavel et al. 2001).  The concentrations of hydroxy- and methoxy- derivatives were 

of the same order of magnitude as PBDEs present in the samples.  Biogenic production via metabolism of 

PBDEs or natural production via biobromination has been suggested as the origin for these compounds.  

Naturally produced methoxy-tetrabrominated diphenyl ethers have been reported in tropical marine 

sponges (sp. Dysidea) as well as in green algae (sp. Cladophora) collected in Japan (Kierkegaard et al. 

2004).  Kierkegaard et al. (2004) found that the concentrations of 6-methoxy-2,2’,4,4’-tetraBDE in 

herring from five locations along the Swedish coast increased from south to north in the Baltic Sea.  No 

http:0.67�0.87
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correlation between the concentrations of BDE congeners and methoxy-brominated diphenyl ethers was 

observed, indicating sources other than PBDEs for these compounds. 

Biomonitoring Historical Trends and Future Projections. Concentrations of PBDE in human and 

animal tissues have increased since their development and widespread use as flame retardants in 

commercial products.  Blood samples collected from U.S. residents in 1973 did not contain measurable 

concentrations of PBDE congeners; however, many congeners have been identified at varying 

concentrations in U.S. blood samples since the widespread use of PBDEs as flame retardants (Schecter et 

al. 2005).  For example, the CDC reported BDE congener concentration in serum collected in 2003–2004 

from the general U.S. population (CDC 2015).  The total geometric mean concentrations ranged from 

below the limit of detection for BDE 17 to 20.5 ng/g lipid for BDE 47.  In general, body burden 

concentrations of PBDEs in North America are higher than in Europe due to higher historical demand and 

usage.  Since all production and use of penta-, octa-, and now decaBDE have ceased in the United States, 

future biomonitoring results will likely show a gradual decline in body burden concentrations of these 

substances in U.S. residents as products containing PBDEs ultimately become rare.  Age-dependent data 

on PBDE levels indicate several sources of human exposure.  Serum samples collected in Australia 

suggest that PBDE levels increase from infant to toddler and then gradually decrease over time (Toms et 

al. 2009).  Peak average concentrations were observed in toddlers 2.6–3 years of age (51 ng/g lipid), 

which is later than when breastfeeding usually ceases, suggesting a lower capacity to eliminate PBDEs or 

greater exposure through unique exposure pathways more common for this age group (e.g., ingestion or 

dermal exposure of contaminated dust particles in carpeting).  The EPA Exposure Assessment of 

Polybrominated Diphenyl Ethers published in May of 2010, summarizes many other biomonitoring 

studies not discussed here and the reader is encouraged to consult this assessment for additional analysis 

of the environmental fate and biomonitoring of PBDEs (EPA 2010). 

6.5  GENERAL POPULATION AND OCCUPATIONAL EXPOSURE 

Humans are exposed to PBDEs by a wide variety of routes including ingestion of contaminated foods 

inhalation of air, ingestion of contaminated dusts/soils, and dermal exposure routes.  The EPA published 

an exposure assessment of the U.S. population to PBDEs and determined that the overall weight-of

evidence suggested that bulk of U.S. exposures occur in indoor environments through ingestion and 

contact with house dust.  It concluded that house dust accounts for between 80 and 90% of total exposures 

of the general population, with the remainder due primarily to food ingestion.  Watkins et al. (2011) 
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determined that regular hand washing decreases the mass of PBDEs on hands from dust samples and is 

thus expected to reduce intake from hand-to-mouth activities. 

Intake doses of BDE 47, BDE 99, BDE 100, and BDE 153 from all exposure pathways for the North 

American population were modeled by Wong et al. (2013).  The model assumed intake of PBDEs 

increased exponentially to a peak in 2004, and has since exponentially declined. The intakes of BDE 47, 

BDE 99, BDE 100, and BDE 153 were estimated as 3.88–54, 1.59–2.39, 1.17–2.98, and 1.37–2.44 ng/kg 

body weight/day depending upon how the intakes were fit to measured body burden data using different 

elimination half-lives.  Trudel et al. (2011) used eight different exposure pathways (oral uptake of food, 

dust, soil, and organic films; inhalation of air; and dermal uptake of dust, soil, and organic films) to model 

intakes of PBDEs for different age/gender groups in North American and European populations.  The 

mean intakes for total PBDEs in the North American population were 210.0, 80.0, 79.0, 69.0, 43.0, 28.0, 

and 22.0 ng/kg body weight/day for infants, toddlers, children, female teenagers, male teenagers, female 

adults, and male adults, respectively.  These concentrations are about 3–8 times greater than the estimated 

intakes for European populations.  Lorber (2008) also estimated PBDE intake of the U.S. population 

through similar exposure routes. The adult intake of total PBDEs was estimated as 7.7 ng/kg body 

weight/day, while the intake of children aged 1–5 years was 49.3 ng/kg body weight/day.  The intakes for 

6–11 year olds and 12–19 year olds were estimated as 14.4 and 9.1 ng/kg body weight/day, respectively 

(Lorber 2008).  Exposure from indoor house dust accounted for about 82% of the intake (66% from 

soil/dust ingestion, 16% from soil/dust dermal contact) of total PBDEs, while inhalation and ingestion of 

food and water accounted for <20% of the total intake.  BDE 47, BDE 99, BDE 100, and BDE 209 were 

the predominant congeners, accounting for 26, 28, 11, and 27%, respectively, of the total intake (Lorber 

2008).  The EPA 2010 Exposure Assessment of Polybrominated Diphenyl Ethers calculated the adult 

intake dose of total PBDEs to be 7.1 ng/kg body weight/day (EPA 2010). The largest source contributing 

to PBDE exposure in the United States was reported to be house dust (ingestion and dermal exposure), 

contributing about 90% of the overall estimated intakes.  The EPA exposure assessment estimated 

children intakes as 47.2 ng/kg body weight/day for 1–5 year olds, 13.0 ng/kg body weight/day for 6– 

11 year olds, and 8.3 ng/kg body weight/day for 12–19 year olds. Intake modeling using a breastfeeding 

pathway, which used measured milk concentrations and infant ingestion rates of human milk, led to 

estimated infant intakes of 141 ng/kg body weight/day (EPA 2010).  While exposure to dust appears to be 

the predominant exposure pathway for the general population of North American residents, PBDE 

exposure through dietary routes appears to be more important for European communities (Abdallah and 

Harrad 2014; Law et al. 2008).  

http:1.37�2.44
http:1.17�2.98
http:1.59�2.39
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Breast adipose samples collected in northern California in the late 1990s contained quantifiable amounts 

of BDE 47, BDE 99, and BDE 153 (She et al. 2000).  Mean concentrations were 18 ng/g lipid weight for 

BDE 47, 4.9 ng/g lipid weight for BDE 99, and 2.2 ng/g lipid weight for BDE 153.  In studies of the 

general populations of other countries, it has also been shown that exposure to lower-brominated PBDE 

congeners by the general population is widespread (see Section 6.4.4; Haglund et al. 1997; Meneses et al. 

1999).  In general, concentrations of decaBDE in human tissues and body fluids are lower than for the 

lower-brominated congeners, presumably due to a more rapid elimination half-life (Trudel et al. 2011).  

Consumption of fish has been associated with elevated concentrations of PBDEs in tissues from the 

Swedish population (Bergman et al. 1999).  In Sweden, fish consumption is about 30 g/day; this translates 

to an estimated 0.1 μg of pentaBDE and 0.3 μg of total PBDEs from fish that is ingested by humans daily 

(WHO 1994a).  The fish of greatest concern to humans are bottom feeders like carp and catfish.  Harrad 

et al. (2004) estimated the daily dietary intakes of PBDEs in omnivorous and vegan diet samples from the 

United Kingdom.  In this study, the median lower bound estimates of dietary exposure (i.e., where a 

congener is below the detection limit, the concentration is assumed to be zero) for BDE 47, BDE 99, 

BDE 100, BDE 153, BDE 154, and total PBDEs were 46.4, 42.6, 0, 0, 0, and 90.5 ng/day, respectively 

(Harrad et al. 2004).  The International Polar Year Inuit Health Survey in 2007–2008 evaluated PBDE 

blood concentration for 2,172 Inuit adults in Canada (Laird et al. 2013).  The sum concentration of 

BDE 47, BDE 99, and BDE 100 in the general population ranged from 0.04 to 10.6 μg/L in blood plasma.  

Like PCBs, there may be a higher risk of exposure to PBDEs in Native Americans who reside in the 

Arctic region and consume whale and seal blubber (Jaret 2000). 

Workers involved in the production and manufacture of PBDE-containing plastics and plastic products 

are exposed to PBDEs.  Body burden data indicate higher concentrations for workers exposed to PBDEs 

than for the general population.  Occupational exposure to PBDEs also occurs in workers at plants that 

dismantle electronic equipment, computer monitor repair technicians, and automobile drivers, as well as 

other professions (Lindström 1999).  Occupational exposure occurs primarily by inhalation.  Inhalation of 

vapor-phase PBDEs is expected to be low due to the low vapor pressures of PBDEs (see Table 4-4); 

however, the inhalation of particulate phase PBDEs is possible during plastic reprocessing where grinding 

or shredding of polymers with PBDEs occurs.  Occupational exposure may also likely involve oral 

exposure to particulate PBDEs as a result of hand-to-mouth activity. 

Air samples were taken from an electronics dismantling plant, an office with computers, and outdoors and 

then analyzed for PBDEs (Sjödin et al. 1999a, 2001a).  The electronics dismantling plant had the highest 
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concentrations of PBDEs, with mean concentrations of 2.5 pmol/m3 (1.25 ng/m3) for BDE 47, 

4.6 pmol/m3 (2.6 ng/m3) for BDE 99, 6.1 pmol/m3 (3.93 ng/m3) for BDE 153, 26 pmol/m3 (18.8 ng/m3) 

for BDE 183, and 38 pmol/m3 (36.5 ng/m3) for decaBDE (BDE 209) (Sjödin et al. 1999a, 2001a).  Air 

samples were found to be 4–10 times higher in PBDE concentrations near a plastic shredder when 

compared to other locations in the plant (range, 0.42–200 ng/m3).  Concentrations of PBDEs in the office 

(range, <0.002–0.09 ng/m3) were 400–4,000 times lower than in the plant, and PBDEs were not detected 

in outside air (Sjödin et al. 1999a, 2001a). 

Lipid adjusted serum levels of 11 BDE congeners collected from the US general population were reported 

in the Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables (CDC 

2015; also see http://www.cdc.gov/biomonitoring/ ). Serum levels for BDE 17, BDE 28, BDE 47, 

BDE 66, BDE 85, BDE 99, BDE 100, BDE 153, BDE 154, and BDE 183 were evaluated in samples 

collected between 2003 and 2008; BDE 209 was evaluated in samples collected from 2005 to 2008.  In 

the NHANES 2003–2004 survey years, congener BDE 47 was detected at a concentration of 20.5 ng/g 

lipid (geometric mean), the highest concentration for all samples. BDE-153 had the second highest 

geometric mean concentration of 5.7 ng/g lipid.  BDE 28, BDE 99, BDE 47, BDE 100, and BDE 153 

were in ≥60% of participants (Sjödin et al. 2008).  The serum levels of BDE 47, BDE 99, and BDE 153 

were highest in the youngest age group (12–19 years old) and decreased for the older age groups (from 

20–39 to 40–59 years old) and then increased in the ≥60 years old age group. 

BDE 47, BDE 153, BDE 154, BDE 183, and decaBDE (BDE 209) were measurable in blood plasma from 

three groups of workers (i.e., workers at a computer disassembly plant, workers in a computerized office, 

and a control group) (Sjödin et al. 1999b).  The median concentrations (sum of five congeners) were 

highest for the computer disassembly plant workers (26 ng/g lipid weight); the office workers had a 

median concentration of 4.1 ng/g lipid weight and the control group had a median concentration of 

3.3 ng/g lipid weight.  The congener patterns for the control group and office workers were similar, with 

BDE 47 having the highest concentrations.  For the computer disassembly plant workers, the median 

concentrations of BDE 183, BDE 153, BDE 154, BDE 47, and BDE 209 were 7.8, 4.5, 1.2, 2.9, and 

4.8 ng/g lipid weight, respectively.  Blood serum samples from 19 full-time computer technicians were 

analyzed (Hagmar et al. 2000a). The serum concentrations of BDE 153, BDE 183, and BDE 209 in these 

samples were found to be approximately 5 times higher than the control and office workers in the Sjödin 

et al. (1999b) study.  The median concentration for total PBDEs (for the sum of five congeners) was 

10.6 pmol/g (7.0 ng/g) lipid weight.  The highest concentrations were for BDE 153.  Two octaBDE 

congeners and one nonaBDE congener were also detected. 

http://www.cdc.gov/biomonitoring
http:0.002�0.09
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6.6  EXPOSURES OF CHILDREN 

This section focuses on exposures from conception to maturity at 18 years in humans.  Differences from 

adults in susceptibility to hazardous substances are discussed in Section 3.7, Children’s Susceptibility. 

Children are not small adults.  A child’s exposure may differ from an adult’s exposure in many ways.  

Children drink more fluids, eat more food, breathe more air per kilogram of body weight, and have a 

larger skin surface in proportion to their body volume.  A child’s diet often differs from that of adults.  

The developing human’s source of nutrition changes with age:  from placental nourishment to breast milk 

or formula to the diet of older children who eat more of certain types of foods than adults.  A child’s 

behavior and lifestyle also influence exposure.  Children crawl on the floor, put things in their mouths, 

sometimes eat inappropriate things (such as dirt or paint chips), and spend more time outdoors.  Children 

also are closer to the ground, and they do not use the judgment of adults to avoid hazards (NRC 1993). 

Body burden data, as well as intake modeling, suggest that infants and toddlers have higher exposures to 

PBDEs as compared to older children or adults.  PBDE concentrations increase from infant to toddler and 

then gradually decrease over time.  PBDE intake values for children have been estimated using several 

models (EPA 2010; Lorber 2008; Trudel et al. 2011; Wong et al. 2013).  Using the model developed by 

the EPA, total PBDE intakes for children residing in the United States were estimated as 47.2 ng/kg body 

weight/day for 1–5 year olds, 13.0 ng/kg body weight/day for 6–11 year olds, and 8.3 ng/kg body 

weight/day for 12–19 year olds. Data from fetal tissue and several studies, including measurements of 

PBDE congeners from umbilical cord blood, indicate that the fetus is exposed to PBDEs through the 

mother.  

Schecter et al. (2003, 2005) reported the first findings on concentrations of PBDEs congeners in human 

milk from individuals in the United States.  The median concentration of the sum of PBDE congeners was 

34.0 ng/g lipid with BDE 47 (18.4 ng/g lipid) as the predominant congener.  DecaBDE was detected in 

7 out of 47 samples with a maximum concentration of 8.24 ng/g lipid.  The concentrations of PBDEs in 

breast milk from this study were 10–100 times greater than human tissue concentrations in Europe 

(Schecter et al. 2003).  Guo et al. (2016) found that PBDE levels in breast milk samples declined in 

females from California over two sampling periods (2003–2005 and 2009–2012).  The geometric mean of 

total PBDE congeners (sum of BDE 28, 47, 99, 100, 153, and 154) in breast milk was 67.8 ng/g lipid in 

the 2003–2005 sampling period (n=82) and 45.7 ng/g lipid in the 2009–2012 sampling period (n=66). 
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PBDE levels were shown to increase in human milk samples collected from different regions of Canada 

from 1992 to 2002, but declined slightly from 2002 to 2005  (Ryan and Rawn 2014).  The median and 

geometric mean levels of total PBDEs (sum of BDE 28, 47, 99, 100, 153, 154, and 183) in collected milk 

samples were 2.992 and 3.536 ng/g lipids in 1992, respectively, and 22.104 and 25.162 ng/g lipid, 

respectively, in 2002.  The median and geometric mean of total PBDEs in milk samples collected in 

March and April 2005 were 19.948 and 21.082 ng/g lipid, respectively.  

PBDEs were detected in human placental tissues (n=102) collected between 2010 and 2011 in Durham 

County, North Carolina (Leonetti et al. 2016). The geometric mean concentration of total PBDE (sum of 

BDE 47, 99, 100, 153, 154, and 209) was 17.6 ng/g lipid.  The detection frequencies of the individual 

congeners were:  BDE 47, 91.2%; BDE 99, 68.6%; BDE 100, 88.2%, BDE 153, 93.1%; BDE 154, 

83.3%; and BDE 209, 52.9%.  

PBDEs were detected at a median concentration of 53,000 ng/g in a variety of toys such as hard plastic 

toys (racing cars, vehicles, toy weapons, etc.), foam toys, rubber/soft plastic toys (dolls and teethers), and 

stuffed toys that were purchased in China from 2007 to 2008 (Chen et al. 2009).  These findings suggest 

additional possible exposure routes to children and toddlers through mouthing activities and dermal 

contact with toys. 

PBDE congeners (predominantly BDE 47, 99, and 209) were detected in 100% of dust samples collected 

from 40 California daycare and preschool centers (Bradman et al. 2014).  The mean and median total 

PBDE (BDE 47, 99, 100, 118, 153, 154, 183, 190, 197, 203, 205, 206, 207, and 209) levels in dust 

samples were 7,956.6 and 4,225 ng/g, respectively.  Individual congeners (BDE 47, 99, 100 153, 154, and 

209) were detected in indoor air samples at the facilities at mean levels ranging from 0.001 to 1.63 ng/m3. 

Hoffman et al. (2016) analyzed serum levels and handwipe samples from 83 children aged 12–36 months 

residing in the state of North Carolina.  Correlations between serum and handwipe levels of PBDE 

congeners and behavioral patterns were observed.  For example, increased age and increased activity was 

positively correlated to levels of PBDEs in serum and handwipe samples, while time spent sleeping (a 

measure of inactivity) was negatively correlated with PBDE levels in serum. It was reported that for each 

additional hour of sleep, BDE 47, BDE 99, BDE 100, and BDE 153 serum levels decreased by 12, 15, 9, 

and 10%, respectively, in the children.  BDE 47, BDE 99, BDE 100, and BDE 153 levels in handwipes 

decreased 30, 31, 30, and 23% for each additional hour of sleep.  
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6.7  POPULATIONS WITH POTENTIALLY HIGH EXPOSURES 

Workers who were involved in the production and manufacture of PBDE-containing plastics and plastic 

products were exposed to higher concentrations of PBDEs than the general population.  Body burden data 

indicate higher concentrations for workers exposed to PBDEs than for the general population.  

Occupational exposure to PBDEs also occurs in workers at plants that dismantle electronic equipment, 

computer monitor repair technicians, and automobile drivers, as well as other professions (Lindström 

1999).  Occupational exposure occurs primarily by inhalation and ingestion of dust containing PBDEs.  

Stapleton et al. (2008) examined PBDE serum concentrations in workers involved with foam recycling 

and carpet installation in the United States.  Serum PBDE concentrations in foam recyclers (median, 

160 ng/g lipid) and carpet installers (median, 178 ng/g lipid) were significantly greater than a non-

occupationally exposed control group (median, 19.3 ng/g lipid).  

Firefighters appear to have higher exposure potential to PBDEs and other types of flame retardants 

because they are exposed to the combustion products of the flame retardants as well as the original forms 

of the chemicals.  In a study conducted to examine exposure to PBDEs in 101 firefighters from Southern 

California, the median and geometric mean for total PBDEs (sum of BDE 28, 47, 99, 100, and 153) in the 

serum of the firefighters were 59.1 and 66.2 ng/g lipid, respectively (Park et al. 2015).  These levels are 

approximately 40% greater when compared to the general population. The median and geometric mean 

for the same total PBDE congeners obtained from a subset of the NHANES survey with similar age and 

gender as the firefighters were 36 and 40.8 ng/g lipid, respectively. 

6.8  ADEQUACY OF THE DATABASE 

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the 

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether 

adequate information on the health effects of PBDEs is available.  Where adequate information is not 

available, ATSDR, in conjunction with NTP, is required to assure the initiation of a program of research 

designed to determine the health effects (and techniques for developing methods to determine such health 

effects) of PBDEs. 

The following categories of possible data needs have been identified by a joint team of scientists from 

ATSDR, NTP, and EPA.  They are defined as substance-specific informational needs that if met would 

reduce the uncertainties of human health assessment.  This definition should not be interpreted to mean 
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that all data needs discussed in this section must be filled.  In the future, the identified data needs will be 

evaluated and prioritized, and a substance-specific research agenda will be proposed. 

6.8.1 Identification of Data Needs 

Physical and Chemical Properties. Many of the relevant physical and chemical properties of the 

PBDEs are available (see Tables 4-3 and 4-4).  Very limited data are available on the physical and 

chemical properties for the individual congeners (Braekevelt et al. 2003; Tittlemier et al. 2002). 

Important data, such as Kow, Koc, vapor pressure, and Henry’s Law constant, are necessary for the 

prediction of the environmental fate and transport of PBDEs. 

Production, Import/Export, Use, Release, and Disposal. According to the Emergency 

Planning and Community Right-to-Know Act of 1986, 42 U.S.C. Section 11023, industries are required 

to submit substance release and off-site transfer information to the EPA.  The TRI, which contains this 

information for 2014, became available in March 2016.  This database is updated yearly and should 

provide a list of industrial production facilities and emissions. 

There are no current manufacturers of technical PBDEs in the United States.  PentaBDE and octaBDE 

mixtures were voluntarily withdrawn from the U.S. marketplace by their manufacturers at the end of 

2004, leaving only decaBDE being marketed for use in commercial products in the United States (EPA 

2010).  In December of 2009, the two remaining U.S. producers of decaBDE, Albemarle Corporation and 

Chemtura Corporation (formerly known as the Great Lakes Chemical Corporation), and the largest U.S. 

importer, ICL Industrial Products, Inc., announced commitments to phase out manufacture and 

importation of decaBDE for most uses in the United States by December 31, 2012, and to end 

manufacture and import for all uses by the end of 2013 (EPA 2013j).  Many consumer goods enter the 

United States from other countries such as China.  OctaBDE was never produced in China, and 

manufacture of the commercial pentaBDE mixture stopped in 2004; however, there are currently no 

restrictions on the use of decaBDE, which had a production volume of 20,500 metric tons in 2011 (Ni et 

al. 2013).  It is unclear if items being treated with decaBDE are still entering U.S. markets from other 

parts of the world. 

Given the importance assigned to dust ingestion as an exposure pathway to Americans, more data are 

needed on human bioavailability of PBDEs from external matrices, such as dust, as well as food for 
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exposure characterization.  Characterization of the quantity of dust containing PBDEs, ingested by 

humans, and in particular young children, would improve exposure estimates. 

Environmental Fate. Based on limited data, photolysis appears to be the dominant transformation 

process for some PBDEs (e.g., decaBDE) (Hua et al. 2003).  PBDEs absorb light in the environmental 

spectrum.  Hua et al. (2003) found that decaBDE and the commercial octaBDE absorbed light up to 

325 nm, which indicates that these compounds may be susceptible to photodegradation at environmental 

wavelengths.  However, the importance of photochemical transformation reactions in the environment 

cannot be determined due to lack of quantitative rate information (EU 2002, 2003a).  Better data on 

degradation via hydroxyl radical reaction and photolysis are needed.  Based on a very limited number of 

studies, biodegradation does not appear to be significant for commercial mixtures of PBDEs (EU 2002, 

2003a).  Limited studies have been done on biodegradation of PBDEs in the environment under both 

aerobic and anaerobic conditions, especially studies investigating dehalogenation mechanisms (EU 2002, 

2003a).  More studies are needed to determine conclusively if commercial PBDE mixtures, such as 

decaBDE, are degraded to lower-brominated congeners (e.g., BDE 47), which appear to bioaccumulate in 

fish, animals, and humans (see Section 6.4).  Additional data on degradation via hydroxyl radical reaction 

and photolysis are needed.  Since the toxicity and the environmental fate of PBDEs depend on specific 

PBDEs congeners, development of more data regarding congener-specific fate and transport of PBDEs in 

the environment are needed. 

Bioavailability from Environmental Media. The absorption and distribution of PBDEs as a result 

of inhalation, ingestion, and dermal exposure are discussed in Sections 3.4.1 and 3.4.2. PBDEs will exist 

in both the vapor and particulate phase in both indoor and outdoor air, and more data are needed 

regarding the bioavailability of these substances in these two phases (Harrad et al. 2004) and the 

bioavailability of PBDEs from PBDE-contaminated toys (Chen et al. 2009). 

Food Chain Bioaccumulation. An abundance of monitoring data illustrates the uptake of lower

brominated diphenyl ethers by aquatic organisms, which results in bioconcentration (see Section 6.4.4; 

Hardy 2002b).  Congener components of the pentaBDE commercial product tend to bioconcentrate to 

different extents.  DecaBDE and octaBDE commercial products do not bioconcentrate to the extent of the 

penta mixtures; however, monitoring data clearly show that even the higher-brominated congeners are 

taken up.  More information on bioaccumulation and biomagnification of PBDE and its congeners is 

needed in assessing human health risks. 
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Exposure Levels in Environmental Media. Reliable monitoring data for the levels of PBDEs in 

contaminated media at hazardous waste sites are needed so that the information obtained on levels of 

PBDEs in the environment can be used in combination with the known body burden of PBDEs to assess 

the potential risk of adverse health effects in populations living in the vicinity of hazardous waste sites. 

More monitoring data on the concentrations of total PBDEs and PBDE congeners in air in remote, rural, 

and urban areas, as well as areas near hazardous waste sites and incinerators, are needed.  Although 

concentrations are predicted to be low, monitoring data on PBDE concentrations in finished drinking 

water nationwide would be helpful.  Sediment concentrations of PBDEs tend to be dominated by higher

brominated congeners (e.g., decaBDE or BDE 209) (deWit 2002; Dodder et al. 2002; Hale et al. 2001b, 

2002). Monitoring data indicated that the concentrations of PBDEs are increasing in aquatic organisms 

with higher concentrations near point sources (Alaee et al. 1999; Dodder et al. 2000; Johnson and Olson 

2001; Loganathan et al. 1995; Luross et al. 2000).  Additional monitoring data on environmental 

concentrations of PBDEs would to useful to determine the extent of contamination in environmental 

media, and also the mechanisms of human exposure to this class of chemicals. 

Exposure Levels in Humans. Body-burden data indicate that there are low-level exposures to 

lower-brominated PBDEs for the general population.  Information about the average daily intake of 

PBDEs is available (Bergman et al. 1999; EPA 2010; Lindström 1999; Lorber 2008; WHO 1994a).  

PBDE concentrations are reported in the current literature for serum, blood, breast milk, and adipose 

tissue of the general population and occupationally exposed individuals (CDC 2015; EPA 2010; WHO 

1994a).  Additional data regarding the concentrations of PBDEs in body fluids or tissues of people who 

reside near hazardous waste sites are needed. This information is necessary for assessing the need to 

conduct health studies on these populations. 

Exposures of Children. The most important exposure pathway for infants to PBDEs likely occurs 

through ingestion of breast milk (EPA 2010).  PBDE intakes for infants and young children are typically 

greater than older children and adults (EPA 2010; Lorber 2008; Trudel et al. 2011; Wong et al. 2013).  

Since children tend to spend more time playing in carpeting, this leads to the potential to greater exposure 

to PBDEs through indoor dust.  PBDEs have been detected in a variety of toys such as hard plastic toys 

(racing cars, vehicles, toy weapons, etc.), foam toys, rubber/soft plastic toys (dolls and teethers), and 

stuffed toys that were purchased in China from 2007 to 2008 (Chen et al. 2009).  These findings indicate 

additional possible exposure routes to children and toddlers through mouthing activities and dermal 

contact with toys.  Although there has been a gradual phase-out of pentaBDE, octaBDE, and now 
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decaBDE, products are still in households that contain these substances.  Therefore, continued 

biomonitoring data of infants and children is needed. 

Child health data needs relating to susceptibility are discussed in Section 3.12.2, Identification of Data 

Needs: Children’s Susceptibility. 

Exposure Registries. No exposure registries for PBDEs were located.  This substance is not 

currently one of the compounds for which a sub-registry has been established in the National Exposure 

Registry. The substance will be considered in the future when chemical selection is made for sub-

registries to be established.  The information that is amassed in the National Exposure Registry facilitates 

the epidemiological research needed to assess adverse health outcomes that may be related to exposure to 

this substance. 

6.8.2 Ongoing Studies 

A prospective study of 316 mothers enrolled during pregnancy being conducted at the Icahn School of 

Medicine at Mount Sinai, New York will examine prenatal exposure to complex mixtures of endocrine-

disrupting compounds including PBDEs (RePORTER 2016). 

A study being conducted at the University of California, Berkeley is designed to examine exposures and 

health effects in vulnerable populations, such as pregnant women and children living in California, where 

stricter flammability standards have resulted in very high flame retardant exposures (RePORTER 2016). 

The Center for Children's Environmental Health Research at the University of California, Berkeley will 

examine novel methods of examining prenatal exposure to PBDEs and other compounds using shed 

deciduous teeth and geographic information system (GIS) methods with remote sensing (RePORTER 

2016).  

A study at the University of Cincinnati is investigating two groups of persistent organic chemicals for 

their associations with adverse effects in child neurobehavior: PBDEs and perfluoroalkyl chemicals 

(including perfluorooctane sulfonic acid [PFOS] and perfluorooctanoic acid [PFOA]).  The research 

project will provide novel information to the public about the developmental neurotoxicity of these 

chemicals.  It will also generate new data regarding PBDE exposure routes to aid in future prevention 

initiatives (RePORTER 2016). 
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A study is being conducted at the University of California, San Diego that is collecting and analyzing 

sediment and biota sample in the in the Southern California Bight for PBDEs (RePORTER 2016). 
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7. ANALYTICAL METHODS 

The purpose of this chapter is to describe the analytical methods that are available for detecting, 

measuring, and/or monitoring PBDEs, their metabolites, and other biomarkers of exposure and effect to 

PBDEs.  The intent is not to provide an exhaustive list of analytical methods.  Rather, the intention is to 

identify well-established methods that are used as the standard methods of analysis.  Many of the 

analytical methods used for environmental samples are the methods approved by federal agencies and 

organizations such as EPA and the National Institute for Occupational Safety and Health (NIOSH).  Other 

methods presented in this chapter are those that are approved by groups such as the Association of 

Official Analytical Chemists (AOAC) and the American Public Health Association (APHA). 

Additionally, analytical methods are included that modify previously used methods to obtain lower 

detection limits and/or to improve accuracy and precision. 

PBDEs are analyzed in environmental and biological samples by methods quite similar to those used for 

PCBs (de Kok et al. 1977; Fries 1985b; Pomerantz et al. 1978).  The analytical methods for PBDEs were 

developed relatively recently.  There have been many advances in the technology and costs of analytical 

instruments used in the efforts directed at PBDE analysis.  GC/MS with capillary columns (i.e., congener 

specific) is the primary analytical technique now used for PBDEs.  

Covaci et al. (2003) and Stapleton (2006) reviewed the determination of brominated flame retardants, 

with emphasis on PBDEs in environmental and human samples.  The analysis methodology for PBDEs 

includes several steps: sample collection and storage, sample pretreatment, extraction, cleanup and 

fractionation, and analytical determination.  Care must be taken to assure that the sample collection 

follows quality-assurance protocols and that equipment and containers are free from contamination.  It is 

important that laboratories utilize blanks when reporting trace concentrations of PBDEs.  This practice 

will minimize the influence of trace contamination samples that can originate from a variety of sources. 

Most sample collections are by grab sampling; however, PBDEs may be concentrated from water onto 

sorbents.  Desiccation of solid samples (e.g., soil, sediment, and sewage sludge) is largely done for 

convenience.  Dry samples are more efficiently homogenized, allowing for parallel determination of other 

analytes (e.g., lipid content) (Covaci et al. 2003). 

PBDEs are typically separated from the biological and environmental media by extraction with organic 

solvents.  Liquid-solid extraction (e.g., Soxhlet apparatus) remains a widely used technique for solid 
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samples despite recent advances in other extraction techniques. Typical solvents are hexane, toluene, 

hexane/acetone mixtures, or dichloromethane.  New extractions techniques, such as accelerated solvent 

extraction (ASE) or microwave-assisted extraction (MAE), are also currently used by a number of 

laboratories. The advantage of these techniques is lower solvent consumption and reduced extraction 

time.  Supercritical fluid extraction with solid-phase trapping has been used for the extraction of 

brominated flame retardants from sediment with CO2 as the supercritical fluid.  Extraction with 

pressurized hot water (PHWE) has been used for the analysis of brominated analytes from sediment. 

Liquid-liquid extraction has been applied for river and seawater samples, using hexane/acetone mixtures. 

Solid-phase extraction has been used for the analysis of acidic and neutral brominated flame retardants 

from human plasma (Covaci et al. 2003). 

Cleanup steps are necessary to remove compounds that may interfere with the determination (e.g., humic 

acids, lipids) of PBDEs.  Lipids (e.g., oils and fats) may be destroyed with concentrated sulfuric acid 

treatment either directly to the extract or using impregnated silica columns.  Chromatography (e.g., gel 

permeation, silica gel, Florisil) is used to remove other matrix interferences and to fractionate samples 

(Covaci et al. 2003). 

The identification and quantitation of PBDEs are most often accomplished by GC techniques.  Capillary 

or high-resolution gas chromatography (HRGC) columns capable of separating a substantial proportion of 

the congeners are indispensable, and GC detectors possessing high selectivity and sensitivity for the 

PBDEs are required.  Historically, flame-ionization detectors (FID) or electron-capture detectors (ECD) 

were used.  However, the MS detectors have become the main detection tool for PBDEs.  MS detectors 

have selectivity for PBDEs and can distinguish and individually measure homologs that may co-elute on a 

particular HRGC column.  The use of MS is indispensable in the definitive identification of PBDE 

congeners.  One method of detection is ECNI as an ionization technique in combination with GC/MS 

analysis (de Boer et al. 2000a). This method is advantageous because it offers a high sensitivity for 

compounds with four or more bromine atoms.  However, ECNI, although generally more sensitive and 

less costly than other ionization methods for PBDE analysis, does not provide information on the 

molecular ion cluster (as required for qualitative identification).  It is also more subject to brominated 

interferences and does not allow the use of 13C-labeled standards for quantification (Ikonomou and Rayne 

2002).  Conversely, electron ionization (EI) methods suffer from fragmentation of the molecular ions, 

creating difficulties in both identification and quantitation of congeners in full-scan and single ion 

monitoring (SIM) modes, respectively.  For example, loss of bromine atoms from PBDE congeners 

during EI may lead to incorrect identification of the parent ion as a lower-brominated congener.  In 
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addition, the relatively unpredictable fragmentation during EI restricts the utility of applying relative 

response factors (RRFs) of one congener for which an analytical standard is available (e.g., 

2,2,4,4’-tetraBDE or BDE 47) for other members of its homolog group (e.g., tetraBDEs).  This can result 

in either under- or overestimating concentrations of congeners for which analytical standards are not 

available (Ikonomou and Rayne 2002).  In general, hepta- through decaBDE congeners are difficult to 

determine accurately by GC analysis, especially in biological samples (Ikonomou and Rayne 2002).  

The analysis of BDE 209 and BDE 154 has some analytical difficulties.  For example, BDE 209 (1) is not 

stable at high temperatures in the GC injector and GC column; (2) is sensitive to degradation by UV light 

(i.e., both sunlight and fluorescent light); (3) behaves differently in the MS source from those of 

chlorinated and lower-brominated compounds (de Boer and Cofino 2002); and (4) may easily adsorb to 

small dust particles in the laboratory, which may result in sample contamination (Covaci et al. 2003).  

Thermal decomposition of BDE 209 can be avoided using a short GC column and a thermally inert GC 

injection port (Beser et al. 2014).  In contrast, BDE 154 usually co-elutes from most gas chromatographic 

columns with 2,2’,4,4’,5,5’-hexabromobiphenyl (PBB-153).  In order to ensure the separation of 

BDE 154 and PBB 153, analysts need to use a sufficiently long GC column.  Thus, in order to accurately 

determine the concentrations of BDE 209 and BDE 154 in analytical samples, analysts are required 

perform two separate GC measurements under different operating conditions. The difficulties in the 

determination of BDE 209 have been addressed through the use of liquid chromatography (LC)/MS/MS 

(Abdallah et al. 2009).  The analytes, BDE 47, BDE 85, BDE 99, BDE 100, BDE 153, BDE 154, 

BDE 183, BDE 196, BDE 197, BDE 203, BDE 206, BDE 207, BDE 208, and BDE 209, were separated 

and ionized in a single run using an isotope dilution method for indoor dust samples. 

7.1  BIOLOGICAL MATERIALS 

Methods for the determination of organobromine compounds such as PBDEs generally consist of the 

following steps:  extraction of the analyte from the sample matrix; cleanup to remove interfering 

compounds; and analysis (separation and quantitation).  The primary method of analysis is GC coupled 

with MS.  Analytical methods have been developed for the determination of PBDEs in blood or serum, 

urine, feces, adipose tissue, liver, breast milk, and hair.  The methods for determining PBDE residues in 

biological samples are provided in Table 7-1. 
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Table 7-1. Analytical Methods for Determining Polybrominated Diphenyl Ethers 
(PBDEs) in Biological Materials 

Sample 
matrix Preparation method 

Analytical 
method 

Sample 
detection limit Percent recovery Reference 

Animal 
tissues 
(muscle, fat, 
and egg) 

Extraction with sulfuric 
acid; clean up with GPC/ 
silica column/carbon 
column 

GC/MS 
(NCI) 

No data No data Sellström et 
al. 1993 

Animal 
serum 

Extraction with CH2Cl2 in 
hexane; H2SO4 to remove 
lipids; washed with NaOH 
followed by distilled water, 
then dehydrated through 
anhydrous Na2SO4 

ELISA 
(specific 
for 
BDE 27) 

0.2 µg/L 82–138 Ahn et al. 
2009 

Human 
adipose 
tissue 

Soxhlet extraction; clean up 
using 2 solid-phase 
extraction cartridges 

Capillary 
GC-EILR
MS 

0.05–0.30 ng/g 
lipid 

81–103 Covaci et al. 
2002 

Human 
adipose 
tissue 

Extraction with methylene 
chloride; evaporate; clean 
up on silica gel followed by 
clean up on alumina and on 
a carbon/silica gel column 

HRGC/ 
HRMS 

0.73–120 pg/g No data Cramer et al. 
1990 

Human liver/ 
adipose 
tissue 

Extract with 2-propanol/ 
hexane; clean up with 
Lipidex 5000, column 
chromatography/GPC 

GC/MS 
(NCI) 

5 pg/g lipids 83 (54–116) liver; 
71 (51–95) 
adipose 

Meironyté 
Guvenius et 
al. 2001 

Human milk Extract with potassium 
oxalate/ethanol/diethyl 
ether/pentane; GPC; clean 
up on Florisil; elute with 
hexane 

GC/MS 
(NCI/SIM) 

<0.6 ng/g fat No data WHO 1994a 

Human milk Extract by column 
chromatography using 
hexane/dichloromethane/ 
hexane; clean up using 
GPC 

GC/MS 
(SIM) 

5 pg/g lipids 86–102 Meironyté et 
al. 1999 

Human milk Extract with n-hexane; HRGC- No data >80 Ohta et al. 
clean up using multi-layer 
column 

LRMS or 
LRGC

2002 

HRMS (EI
SIM) 

Human 
plasma 

Extract with formic acid, 
2-propanol, and water on a 
SPE column; derivatized 

GC/MS 
(NCI) 

1–10 pg/g 
plasma 

72 Thomsen et 
al. 2001 

using diazomethane 
Human 
serum 

Extraction with hexane/ 
MTBE (1:1); clean up silica 
gel/sulfuric acid column 

GC-ECD; 
GC/MS 
(NCI) 

0.7 ng/g lipid 
weight 

69–104 (low 
spike); 77–104 
(high spike) 

Sjödin et al. 
1999a 
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Table 7-1. Analytical Methods for Determining Polybrominated Diphenyl Ethers 
(PBDEs) in Biological Materials 

Sample 
matrix Preparation method 

Analytical 
method 

Sample 
detection limit Percent recovery Reference 

Human 
serum 

Extraction with ethyl 
acetate, evaporated to 
dryness, and dissolved in 
DMSO 

ELISA 
(specific 
for 
BDE 27) 

0.2 µg/L 83–90 Ahn et al. 
2009 

Human 
serum 

Denaturation with formic 
acid followed by SPE 

GC/MS 140–1,300 pg/g 
(lipid weight) 

40–106 Butt et al. 
2016 

Human hair Physical extraction followed 
by washing with 0.3% 
polyoxyethylene lauryl 
ether and rinse with tap 
and distilled water; 

GC/MS 0.02 ng/g No data Malarvannan 
et al. 2013 

extraction using hexane/ 
dichloromethane 

Human hair Extraction with 4 N HCl and 
hexane (4:1); clean up on 
NaSO4/Florisil SPE 
columns (1:1); elute with 
hexane 

GC/MS 
(SIM) 

0.025 pg/mg hair 
(lower
brominated) 
2.5 pg/mg hair 
(BDE 209) 

70–90 Aleksa et al. 
2012a 

BDE = brominated diphenyl ether; DMSO = dimethyl sulfoxide; ECD = electron capture detection; EI = electron 
impact; EILR = electron impact low-resolution; ELISA = enzyme-linked immunosorbent assay; GC = gas 
chromatography; GPC = gel permeation chromatography; HRGC = high resolution gas chromatography; 
HRMS = high resolution mass spectrometry; LRGC = low resolution gas chromatography; LRMS = low resolution 
mass spectrometry; MS = mass spectrometry; MTBE = methyl-tert-butyl either; NCI = negative chemical ionization; 
SIM = selected ion monitoring; SPE = solid phase extraction 
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Determination of hydroxylated PBDEs metabolites were reported by Malmberg et al. (2005).  The 

methylated derivatives of PBDE-OH metabolites were identified by GC-MS ECNI and EI analysis after 

extraction from the sample matrix, cleanup to remove interfering compounds, and methylation of the 

hydroxyl group.  In plasma samples, the internal standard, BDE 138, had 71 and 98% recovery (relative 

standard deviation, 8 and 2%) on days 1 and 5 after dosing, respectively. 

Residues in biological samples can be extracted using sulfuric acid, 2-propanol/hexane, methylene 

chloride, n-hexane, formic acid/2-propanol/water, or hexane/methyl t-butyl ether (Cramer et al. 1990; 

Meironyté Guvenius et al. 2001; Ohta et al. 2002; Sellström et al. 1993; Sjödin et al. 1999a; Thomsen et 

al. 2001).  Samples are cleaned up to remove interferences using Florisil, silica gel, alumina or activated-

charcoal column chromatography, gel permeation chromatography (GPC), and/or LC (Cramer et al. 1990; 

Meironyté Guvenius et al. 2001; Sellström et al. 1993; Sjödin et al. 1999a).  Most techniques are based on 

analysis by GC coupled with MS (WHO 1994a).  Capillary columns and temperature programming allow 

the separation of the different PBDE congeners.  High recoveries (69–104%) of PBDE residues are 

obtained by the available analytical methods.  Typically, the limit of quantitation for PBDE residues is 

about 0.7 ng/g lipid in blood serum, 5 pg/g lipid in human milk, 0.3 ng/g lipid in adipose tissue, and 

0.025 pg/mg in hair (Aleksa et al. 2012a; Covaci et al. 2002; Meironyté Guvenius et al. 1999; Sjödin et al. 

1999a).  Additionally, a selective competitive enzyme-linked immunosorbent assay (ELISA) has been 

developed to detect BDE 47 (Ahn et al. 2009).  This method also reports high recoveries (83–90%) and a 

limit of quantitation for BDE 47 in blood of 0.2 µg/L. 

7.2  ENVIRONMENTAL SAMPLES 

Most environmental analyses have been performed using multi-residue methods involving solvent 

extraction of the analytes from the sample matrix, cleanup to remove interfering compounds, 

determination by GC with confirmation using MS.  New methods and technologies are evolving, and this 

has resulted in lower detection limits.  Analytical methods for the determination of PBDEs in 

environmental samples are given in Table 7-2. 

Like PCBs, air samples containing PBDEs are usually collected by pumping air through a sampler 

containing a glass-fiber filter and adsorbent trap to separate the particle-bound and vapor-phase fractions, 

respectively (Dodder et al. 2000; Hillery et al. 1997).  The filters and adsorbents are then Soxhlet 

extracted with acetone/hexane, and the extracts are cleaned up and analyzed by high-resolution GC 

techniques.  Beser et al. (2014) discussed a GC/MS method to quantify PBDEs that used microwave
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7. ANALYTICAL METHODS 

Table 7-2. Analytical Methods for Determining Polybrominated Diphenyl Ethers 
(PBDEs) in Environmental Samples 

Sample Analytical Sample Percent 
Matrix Preparation method method detection limit recovery Reference 
Air	 Air pumped through glass 

fiber filter and adsorbent 
trap; filters and adsorbents 
are Soxhlet extracted with 
acetone/hexane; cleaned-up 
by column chromatography 

Air	 Samples collected using a 
large-volume active sampler 
at 30 m3/hour for 24 hours 
onto filters followed by 
microwave assisted 
extraction using 
hexane/acetone. 

Air	 Passive samplers set out 
with PUF disks; PUF disks 
were collected at 10-day 
intervals over 50 days; active 
samplers had low volume 
pump with PUF plugs 
housed in a glass holder; 
solvent extraction (collected 
hexane layer); washed with 
H2SO4 back extraction using 
dimethyl sulfoxide followed 
by column elution containing 
Florisil, hexane, and 
anhydrous Na2SO4 

Dust	 Samples collected from 
vacuum cleaner bags; 
extracted using hexane by 
an accelerated solvent 
extraction system, 
concentrated, treated with 
H2SO4, liquid/liquid back 
extraction using dimethyl 
sulfoxide, column elution 

Dust	 Samples collected from 
vacuum cleaner bags; 
extracted using microwave-
assisted solvent extraction 
(collected hexane layer); 
washed with H2SO4, then 
deionized water, and dried 
with anhydrous Na2SO4 

GC/MS No data No data	 Dodder et al. 
2000 

GC/MS 0.063– 80–120%	 Beser et al. 
0.210 pg/m3	 2014 

GC/MS No data	 41–78% Hazrati and 
(passive Harrad 2007 
samplers) 
42–80% 
(active 
samplers) 

GC/MS 0.03 ng/g No data	 Harrad et al. 
2006 

ELISA 0.2 µg/L 105±22.7 Ahn et al. 2009 
(specific for 
BDE 47) 
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7. ANALYTICAL METHODS 

Table 7-2. Analytical Methods for Determining Polybrominated Diphenyl Ethers 
(PBDEs) in Environmental Samples 

Sample Analytical Sample Percent 
Matrix Preparation method method detection limit recovery Reference 
Water	 Clean up by GFF followed by 

PUF plugs; extraction with 
dichloromethane 

Water	 Clean up by disk-type C18 
solid-phase extraction 

Sewage	 Soxhlet extraction 
acetone:hexane (1:1, v/v), 
clean-up with liquid-liquid 
extraction with fuming 
sulfuric acid, GPC and silica 
gel column, and a basic 
alumina column 

Sewage	 Extract with chloroform; 
evaporate and dissolve 
residue in ethanol 

Sediment	 Extract with hexane and 
dichloromethane (1:1 v/v), 
treat with copper, sulfonate 
with sulfuric acid, clean and 
fraction using neutral, acid, 
and alkaline silica gel 
chromatography 

Sediment	 Clean up by cartridge-type 
Florosil extraction 

Sediment	 Pressurized hot water 
extraction coupled with clean 
up by LC 

Sediment	 Extract with acetone; clean 
up on Florisil 

Fish	 Extract with 
dichloromethane:n-hexane 
(1:1, v/v) column 
chromatography on silica 
and Al2O3 

Fish	 Extract with acetone-hexane 
+ hexane-ethyl ether; 
treatment with sulfuric acid 
or clean up on alumina; 
chromatography on silica gel 

GC/MS 

Capillary 
GC-ECD 

HRGC/MS 

GC/MS 

GC/MS 

Capillary 
GC-ECD 
LC-GC/MS/ 
FID 

NAA; 
GC/EC 
GC/MS 

GC/EC; 
GC/MS 

0.2–1.4 pg/L	 No data Yang et al. 2014 

0.12 pg/L	 103±8.6 (river Yamamoto et al. 
water); 1997 
87±10.7 (sea 
water) 

No data	 No data Zennegg et al. 
2013 

0.06 μg/g	 No data WHO 1994a 

1.93–227 pg/g	 88.8−138 Tang et al. 2014 

9.7 ng/g	 91±6.3 Yamamoto et al. 
1997 

0.71 ng/g	 No data Kuosmanen et 
al. 2002 

<5 ng/g; <5 ng/g No data	 Watanabe et al. 
1987 

No data	 58–106 Yang et al. 2008 

0.1 μg/g fat	 No data Andersson and 
Blomkvist 1981 
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Table 7-2. Analytical Methods for Determining Polybrominated Diphenyl Ethers 
(PBDEs) in Environmental Samples 

Sample 
Matrix Preparation method 

Analytical 
method 

Sample 
detection limit 

Percent 
recovery Reference 

Fish SE, ASE, and MAE 
performed followed by 
evaporation to dryness; 
dissolved in n-hexane; 

HRGC/ 
HRMS 

24.8 pg/g 79–118 (SE) 
50–96 (MAE) 

Wang et al. 
2010 

added silica gel, column 
filtered; concentrated; silica 
gel column followed by a 
basic alumina column eluted 
with n-hexane/ 
dichloromethane (1:1, v/v) 

Fish Extract with dichloromethane GC-HRMS 
on chromatography column; (NCI) 
clean-up using GPC; 
fractionation using silica gel 
column 

5–93 pg/g No data Alaee et al. 
2001 

Fish Extract clean up with GPC 
and mini-column chromato
graphy; concentration 

GC/MS 
(NCI) 

0.01–0.2 ng/g 
lipid 

88–128 Akutsu et al. 
2001 

Animal 
tissues 

Homogenize; extract with GC/MS 
n-hexane-acetone; treatment (NCI) 
with sulfuric acid; GPC; 
chromatography or silica gel 
chromatography or activated 
charcoal 

10 pg/g No data Jansson et al. 
1991 

Vegetables Homogenize; MAE; extract GC/MS 
clean up with Florisil or silica 
cartridge; elute with 
n-hexane:toluene (80:20, 
v/v) 

1-3 ng/g 99–106 Bizkarguenaga 
et al. 2014 

Vegetables Extract with acetone/ 
n-hexane (1:1 v/v) 

GC/MS (ion 1 ng/kg dry 
trap) weight 

82–98 (mean) Parolini et al. 
2012 

ASE = accelerated solvent extraction; BDE = brominated diphenyl ether; EC = electron capture; ECD = electron 
capture detection; ELISA = enzyme-linked immunosorbent assay; GC = gas chromatography; GFF = glass fibre 
filter; GPC = gel permeation chromatography; HRGC = high resolution gas chromatography; HRMS = high resolution 
mass spectrometry; LC = liquid chromatography; MAE = microwave-assisted extraction; MS = mass spectrometry; 
NAA = neutron activation analysis; NCI = negative chemical ionization; PUF = polyurethane foam; SE = soxhlet 
extraction 
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assisted extraction (MAE) rather than the traditional Soxhlet extraction technique in order to shorten the 

extraction time and quantity of solvents used.  For a sampling rate of 30 m3 per hour over a sampling 

duration of 24 hours, they achieved low limits of quantification (0.063 pg/m3for BDE 28, BDE 49, 

BDE 47, BDE 66, and BDE 100; 0.105 pg/m3 for BDE 119 and BDE 99; and 0.210 pg/m3 for BDE 155, 

BDE 154, BDE 153, BDE 139, and BDE 183).  Sampling of PBDEs is also performed using passive or 

diffusive samplers (Covaci et al. 2003).  Hazrati and Harrad (2007) describe passive sampling with 

polyurethane foam disks (PUF) of BDE 28, BDE 47, BDE 99, and BDE 100 with mean recoveries of 

57 and 62% for passive and active samplers, respectively. Harrad and Hunter (2006) performed passive 

air sampling with PUF disks in the United Kingdom.  BDE 28, BDE 47, BDE 99, BDE 100, BDE 153, 

and BDE 154 were detected using GC/MS. The detection limit for individual BDEs were approximately 

0.05 pg/m3. 

Passive air sampling techniques have been developed to monitor both vapor- and particulate-phase 

PBDEs in indoor air through the use of a PUF disk and glass fiber filter (GFF) sampling media (Abdallah 

2010).  The PUF disks and GFFs were evaluated independently by initial soxhlet extraction with 

dichloromethane, concentration of extracts, and purification with SPE cartridge.  Elution with 

hexane:dichloromethane (1:1, v/v), evaporation, reconstitution in methanol, and analysis using 

LC/MS/MS followed.  BDE 47, BDE  85, BDE 99, BDE 100, BDE 153, BDE 154, BDE 183, BDE 196, 

BDE 197, BDE 203, BDE 206, BDE 207, BDE 208, and BDE 209 were evaluated using this technique.  

The octaBDE to decaBDE analytes were detected on the GFF media only, indicating that these congeners 

are expected to primarily be found in the particulate phase. 

Residues in environmental samples can be extracted using chloroform, acetone, acetone-hexane, hexane

acetone, and hexane-ether (Andersson and Blomkvist 1981; Jansson et al. 1991; Watanabe et al. 1987; 

WHO 1994a).  Samples are cleaned up to remove interferences using Florisil, silica gel, alumina or 

activated charcoal column chromatography, GPC, and/or LC (Akutsu et al. 2001; Alaee et al. 2001b; 

Andersson and Blomkvist 1981; Jansson et al. 1991; Watanabe et al. 1987; Yamamoto et al. 1997).  

Vegetable and soil samples have been prepared for analysis using, focused ultrasound solid-liquid 

extraction (Bizkarguenaga et al. 2014). 

As for biological samples, quantitation of environmental samples is also usually done by GC.  Capillary 

columns are required for the separation of the individual congeners in a mixture (WHO 1994a).  High 

recoveries (88–128%) of PBDE residues in environmental samples are obtained by the available 

analytical methods (Akutsu et al. 2001).  Typically, the limit of quantitation for PBDE residues is about 
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0.12 ng/mL in water, 9.7 μg/kg in sediment, and 0.2 μg/kg lipid in fish (Akutsu et al. 2001; Yamamoto et 

al. 1997).  The first inter-laboratory study on PBDEs in environmental samples showed that there is good 

agreement for quantification of BDE 47 and BDE 100 congeners.  Additionally, a selective competitive 

ELISA has been developed to detect BDE 47 in dust (Ahn et al. 2009).  This method also reports high 

recoveries (105%) and a limit of quantitation for BDE 47 in blood of 0.2 µg/L. 

7.3  ADEQUACY OF THE DATABASE 

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the 

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether 

adequate information on the health effects of PBDEs is available.  Where adequate information is not 

available, ATSDR, in conjunction with NTP, is required to assure the initiation of a program of research 

designed to determine the health effects (and techniques for developing methods to determine such health 

effects) of PBDEs. 

The following categories of possible data needs have been identified by a joint team of scientists from 

ATSDR, NTP, and EPA.  They are defined as substance-specific informational needs that if met would 

reduce the uncertainties of human health assessment. This definition should not be interpreted to mean 

that all data needs discussed in this section must be filled.  In the future, the identified data needs will be 

evaluated and prioritized, and a substance-specific research agenda will be proposed. 

7.3.1 Identification of Data Needs 

Methods for Determining Biomarkers of Exposure and Effect. 

Exposure.  Methods used as biomarkers for exposure to PBDEs are available (Ahn et al. 2009; Aleksa et 

al. 2012a; Brilliant et al. 1978; Covaci et al. 2002; Eyster et al. 1983; Landrigan et al. 1979; Meironyté 

Guvenius et al. 1999; Sjödin et al. 1999a; Wolff et al. 1982).  Analytical methods of sufficient precision 

and accuracy are presently available for the determination of PBDEs in adipose tissue, serum, breast milk, 

and hair (Ahn et al. 2009; Aleksa et al. 2012a; Burse et al. 1980; Covaci et al. 2002; Domino et al. 1980; 

Fawkes et al. 1982; Fehringer 1975a; Meironyté Guvenius et al. 1999; Sjödin et al. 1999a; Willet et al. 

1978; Wolff et al. 1979a, 1979b).  Additional congener standards are needed for PBDEs analysis.  Only 

30–40 congener standards are currently available for identification and quantification of PBDEs (Eljarrat 

et al. 2002; Sjödin et al. 1998).  Metabolites are also important biomarkers for exposure to PBDEs.  

Ryden et al. (2012) discussed a GC/MS method for the analysis of hydroxylated PBDE metabolites in 
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7. ANALYTICAL METHODS 

human blood.  GC/MS has been used to identify hydroxylated-BDE metabolites from recombinant 

cytochrome P450 by Simpson et al. (2015), and Gross et al. (2015) used GC/MS and GC/MS/MS. 

Effect. No studies have been conducted to determine if known effects of PBDEs exposure can be 

quantitatively correlated with PBDE exposure. 

Methods for Determining Parent Compounds and Degradation Products in Environmental 
Media. Analytical methods of sufficient sensitivity are presently available for the determination of 

PBDEs in environmental samples (Akutsu et al. 2001; Andersson and Blomkvist 1981; Covaci et al. 

2003; Stapleton 2006; Yamamoto et al. 1997).  

Methods for determining degradation products and metabolites of PBDE are needed. There is no 

information in the literature of detectable biodegradation of PBDEs in the environment under aerobic or 

anaerobic conditions.  The analysis of PBDE pyrolysis degradation products, such as PBDD/PBDF, is 

often disturbed by the presence of PBDEs.  Ebert et al. (1999) demonstrated that by using a Florisil 

column in a sample clean-up process, almost complete separation of PBDEs and PBDDs/PBDFs is 

achieved before analysis by GC/MS. 

7.3.2 Ongoing Studies 

Analysis of PBDEs and other anthropogenic pollutants in marine mammals by a novel application of 

comprehensive two-dimensional gas chromatography with time- of-flight mass spectrometry 

(GCxGC/TOF-MS) is being studied at the University of California, San Diego (RePORTER 2016). 
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MRLs are substance specific estimates, which are intended to serve as screening levels, are used by 

ATSDR health assessors and other responders to identify contaminants and potential health effects that 

may be of concern at hazardous waste sites. 

ATSDR has derived an intermediate-duration inhalation MRL of 0.006 mg/m3 for lower-brominated 

PBDEs based on a NOAEL for changes in thyroid hormones in rats (Great Lakes Chemical Corporation 

2000). 

ATSDR has derived an acute-duration oral MRL of 0.00006 mg/kg/day for lower-brominated PBDEs 

based on a LOAEL for endocrine effects in rat dams and reproductive and neurobehavioral effects in F1 

offspring from a series of reports (Kuriyama et al. 2005, 2007; Talsness et al. 2005).  ATSDR has derived 

an intermediate-duration oral MRL of 0.000003 mg/kg/day for lower-brominated PBDEs based on a 

minimal LOAEL for decreased testosterone in male rats (Zhang et al. 2013b). 

ATSDR has derived an acute-duration oral MRL of 0.01 mg/kg/day for decaBDE based on a NOAEL for 

neurobehavioral effects in mice (Johansson et al. 2008). ATSDR has derived an intermediate-duration 

oral MRL of 0.0002 mg/kg/day for decaBDE based on a minimal LOAEL for increased serum glucose in 

rats (Zhang et al. 2013a). 

IARC has classified PBDE as a Group 3 carcinogen (not classifiable as to its carcinogenicity to humans) 

based on inadequate evidence of carcinogenicity in humans and inadequate or limited evidence in 

experimental animals (IARC 2014).  The EPA assigns the cancer category Group D (not classifiable as to 

human carcinogenicity) to mono-, di-, tri-, tetra-, penta-, hexa-, octa-, and nonaBDEs (IRIS 2003a, 2003b, 

2003c, 2003d, 2003e, 2004, 2005, 2006) and reports “inadequate information” to classify the specific 

congeners 2,2’,4,4’-tetraBDE, 2,2’,4,4’,5-pentaBDE, and 2,2’,4,4’,5,5’-hexaBDE (IRIS 2008b, 2008c, 

2008d). However, EPA assigns a classification of “suggestive evidence of carcinogenic potential” for 

decaBDE (IRIS 2008a).  The Department of Health and Human Services has not classified PBDEs as 

carcinogens (NTP 2011). ACGIH has no data regarding cancer classifications for PBDEs (ACGIH 2014). 

The EPA’s reference doses (RfDs) for penta-, octa-, and decaBDEs are 2x10-3, 3x10-3, and 

7x10-3 mg/kg/day, respectively (IRIS 2003c, 2004, 2008a).  For the specific congeners 

2,2’,4,4’-tetraBDE, 2,2’,4,4’, 5-pentaBDE, and 2,2’,4,4’,5,5’-hexaBDE, the RfDs are 1x10-4, 1x10-4, and 
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8.  REGULATIONS, ADVISORIES, AND GUIDELINES 

2x10-4 mg/kg/day, respectively (IRIS 2008b, 2008c, 2008d).  No reference concentrations (RfCs) were 

derived for PBDEs. 

OSHA has not set PELs to protect workers against adverse health effects resulting from exposure to 

PBDEs (OSHA 2013a, 2013b).  No guidelines for worker exposure limits have been recommended by 

ACGIH (2014) or NIOSH (2014). 

WHO has not established any air quality guidelines for PBDEs (WHO 2010). PBDEs are not designated 

as hazardous air pollutants, and no acute exposure guidelines (AEGLs) have been derived (EPA 2013a, 

2014a).  The Department of Energy (DOE) has established values for responding to potential releases of 

airborne monoBDE for use in community emergency planning.  The values established by the DOE 

(2012) are the Protective Active Criteria (PAC-1, -2, and -3).  The PAC-1, -2, and -3 values are 0.29, 3.2, 

and 19 mg/m3, respectively, and represent increasing severity of effects (mild, irreversible, and life 

threatening, respectively) for a 1-hour exposure (DOE 2012). The American Industrial Hygiene 

Association (AIHA) has no Emergency Response Planning Guidelines (ERPGs-1, -2, -3) for PBDEs 

(AIHA 2014). 

WHO has not established any drinking water guidelines for PBDEs (WHO 2011) and the EPA has not set 

drinking water standards for PBDEs (EPA 2009a, 2009b, 2012, 2013c, 2013d, 2014c).  The FDA has not 

set allowable levels for PBDEs in bottled water (FDA 2013). 

Under the Toxic Substances Control Act (TSCA), mono-, penta-, octa-, and decaBDEs are on the list of 

chemicals that manufacturers and importers must report for each plant site at which they manufactured or 

imported PBDEs during the reporting period specified (EPA 1998a).  MonoBDE (represented by CAS 

Registry Number 101-55-3) has been designated as a hazardous substance pursuant to CERCLA of 1980 

(EPA 2013g).  The owner and operator of any facility that produces, uses, or stores a CERCLA hazardous 

substance is required to immediately report releases to any environmental media, if the amount released is 

equal to or exceeds the specified “reportable quantity” assigned to the substance. The reportable quantity 

for monoBDE is 100 pounds (45 kg) (EPA 2013g).  However, PBDEs are no longer manufactured or 

imported in the United States as of January 2014 (EPA 2013j) 

The Emergency Planning and Community Right-to-Know Act (EPCRA) has identified decaBDE as a 

toxic chemical and monoBDE as hazardous waste, and the Master Testing list includes penta-, octa-, and 

decaBDEs (EPA 2006, 2013e, 2014d).  MonoBDE is on the Resource Conservation and Recovery Act 
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8.  REGULATIONS, ADVISORIES, AND GUIDELINES 

(RCRA) waste minimization persistent, bioaccumulative, and toxic (PBT) priority chemical list and the 

groundwater monitoring list (EPA 1998b, 2013f).  

The international and national regulations, advisories, and guidelines regarding PBDEs in air, water, and 

other media are summarized in Table 8-1.  
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8.  REGULATIONS, ADVISORIES, AND GUIDELINES 

Table 8-1. Regulations, Advisories, and Guidelines Applicable to PBDEs 

Agency Description	 Information Reference 
INTERNATIONAL 
Guidelines: 

IARC Carcinogenicity classification IARC 2014 
DecaBDE Group 3a 

WHO Air quality guidelines No data WHO 2010 
Drinking water quality guidelines No data WHO 2011 

NATIONAL 
Regulations and 
Guidelines: 
a. Air 

ACGIH TLV-TWA No data ACGIH 2014 
AIHA ERPGs No data AIHA 2014 
DOE PACs DOE 2012 

MonoBDE 
PAC-1 0.29 mg/m3 

PAC-2 3.2 mg/m3 

PAC-3 19 mg/m3 

EPA	 AEGLs No data EPA 2013a 
Regulated toxic and flammable No data EPA 2013b 
substances under Section 112(r) of the 40 CFR 68.130 
Clean Air Act 
Hazardous Air Pollutants No data EPA 2014a 
NAAQS No data EPA 2014b 

NIOSH	 REL No data NIOSH 2014 
IDLH No data 

OSHA PEL (8-hour TWA) for general industry No data OSHA 2013a 
29 CFR 1910.1000, 
Table Z-1 

Highly hazardous chemicals No data OSHA 2013b 
29 CFR 1910.119, 
Appendix A 

b. Water 
EPA Designated as hazardous substances No data EPA 2013c 

in accordance with Section 311(b)(2)(A) 40 CFR 116.4 
of the Clean Water Act 
Drinking water contaminant candidate No data EPA 2009a 
list	 74 FR 51850 
Drinking water standards and health No data EPA 2012 
advisories 
National primary drinking water No data EPA 2009b 
regulations 
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8.  REGULATIONS, ADVISORIES, AND GUIDELINES 

Table 8-1. Regulations, Advisories, and Guidelines Applicable to PBDEs 

Agency Description Information Reference 
NATIONAL (cont.) 

National recommended water quality 
criteria 

No data EPA 2014c 

Reportable quantities of hazardous 
substances designated pursuant to 
Section 311 of the Clean Water Act 

No data EPA 2013d 
40 CFR 117.3 

c. Food 
FDA Allowable levels for contaminants in No data FDA 2013 

bottled water 21 CFR 165.110 
EAFUSb No data FDA 2014 

d. Other 
ACGIH Carcinogenicity classification No data ACGIH 2014 
EPA Carcinogenicity classification 

MonoBDE 
DiBDEs 
TriBDEs 
TetraBDEs 
PentaBDEs 
HexaBDEs 
OctaBDEs 
NonaBDEs 
DecaBDE 

2,2’,4,4’-tetraBDE 
2,2’,4,4’,5-pentaBDE 
2,2’,4,4’,5,5’-hexaBDE 

Group Dc 

Group Dc 

Group Dc 

Group Dc 

Group Dc 

Group Dc 

Group Dc 

Group Dc 

Suggestive evidence 
of carcinogenic 
potential 
Inadequate information 
Inadequate information 
Inadequate information 

IRIS 2006 
IRIS 2005 
IRIS 2003e 
IRIS 2003d 
IRIS 2004 
IRIS 2003a 
IRIS 2003c 
IRIS 2003b 
IRIS 2008a 

IRIS 2008b 
IRIS 2008c 
IRIS 2008d 

RfC No data 
RfD 

PentaBDEs 
OctaBDEs 
DecaBDE 
2,2’,4,4’-tetraBDE 
2,2’,4,4’,5-pentaBDE 
2,2’,4,4’,5,5’-hexaBDE 

2x10-3 mg/kg/day 
3x10-3 mg/kg/day 
7x10-3 mg/kg/day 
1x10-4 mg/kg/day 
1x10-4 mg/kg/day 
2x10-4 mg/kg/day 

IRIS 2004 
IRIS 2003a 
IRIS 2008a 
IRIS 2008b 
IRIS 2008c 
IRIS 2008d 

Chemical substances subject to 
proposed or final TSCA rules or orders 

MonoBDE 
PentaBDEs 

TSCA Section 5(a)(2) 
TSCA Section 4 

EPA 1998a 

OctaBDEs TSCA Section 4 
DecaBDE TSCA Section 4 

EPCRA Section 313 Toxic Chemicals EPA 2006 
DecaBDE Yes 
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8.  REGULATIONS, ADVISORIES, AND GUIDELINES 

Table 8-1. Regulations, Advisories, and Guidelines Applicable to PBDEs 

Agency Description Information Reference 
NATIONAL (cont.) 

Identification and listing of hazardous 
waste 

MonoBDE Yes 

EPA 2013e 
40 CFR 261, 
Appendix VIII 

Master Testing List 
PentaBDEs Yes 

EPA 2014d 

OctaBDEs Yes 
DecaBDE Yes 

RCRA waste minimization PBT priority 
chemical list 

EPA 1998b 
63 FR 60332 

MonoBDE Yes 
Standards for owners and operators of 
hazardous waste TSD facilities; 
groundwater monitoring list 

MonoBDE Yes 

EPA 2013f 
40 CFR 264, 
Appendix IX 

Superfund, emergency planning, and 
community right-to-know 

Designated CERCLA hazardous 
substance and reportable quantity 

MonoBDE 

EPA 2013g 
40 CFR 302.4 

Statutory code 
Final RQ pounds 

2,4 
100 

Effective date of toxic chemical EPA 2013h 
release reporting 

DecaBDE 1/1/87 
40 CFR 372.65 

Extremely hazardous substances 
and its threshold planning quantity 

No data EPA 2013i 
40 CFR 355, 
Appendix A 

DHHS Carcinogenicity classification No data NTP 2011 

aGroup 3: Not classifiable as to its carcinogenicity to humans
bThe EAFUS list of substances contains ingredients added directly to food that FDA has either approved as food 
additives or listed or affirmed as GRAS. 
cGroup D: Not classifiable as to human carcinogenicity 

ACGIH = American Conference of Governmental Industrial Hygienists; AEGL = acute exposure guideline levels; 
AIHA = American Industrial Hygiene Association; BDE = brominated diphenyl ether; CERCLA = Comprehensive 
Environmental Response, Compensation, and Liability Act; CFR = Code of Federal Regulations; 
DHHS = Department of Health and Human Services; DOE = Department of Energy; EAFUS = Everything Added to 
Food in the United States; EPA = Environmental Protection Agency; EPCRA = Emergency Planning and Community 
Right-To-Know Act; ERPG = emergency response planning guidelines; FDA = Food and Drug Administration; 
FR = Federal Register; GRAS = generally recognized as safe; IARC = International Agency for Research on Cancer; 
IDLH = immediately dangerous to life or health; IRIS = Integrated Risk Information System; NAAQS = National 
Ambient Air Quality Standards; NIOSH = National Institute for Occupational Safety and Health; NTP = National 
Toxicology Program; OSHA = Occupational Safety and Health Administration; PAC = protective action criteria; 
PBDE = polybrominated diphenyl ether; PBT = persistent, bioaccumulative, and toxic; PEL = permissible exposure 
limit; RCRA = Resource Conservation and Recovery Act; REL = recommended exposure limit; RfC = inhalation 
reference concentration; RfD = oral reference dose; RQ = reportable quantity; TLV = threshold limit values; 
TSCA = Toxic Substances Control Act; TSD = treatment, storage, and disposal; TWA = time-weighted average; 
WHO = World Health Organization 



   
 
 
 
 

 
 
 
 
 

 
 
 

 
 

 
 

   
   

 

   
    

 
 

   
    

 
 

  
  

 
    

  
   

 
   

   
 

  
    

 
    

 
 

  
  

 
   

   
 

 
  

  
 

  

 
 


 

PBDEs 463 

9. REFERENCES
 

Abdallah MA, Harrad S.  2010.  Modification and calibration of a passive air sampler for monitoring 
vapor and particulate phase brominated flame retardants in indoor air:  Application to car interiors.  
Environ Sci Technol 44(8):3059-3065. 

Abdallah MA, Harrad S.  2014.  Polybrominated diphenyl ethers in UK human milk:  Implications for 
infant exposure and relationship to external exposure.  Environ Int 63:130-136. 

Abdallah MA, Harrad S, Covaci A.  2009. Isotope dilution method for determination of polybrominated 
diphenyl ethers using liquid chromatography coupled to negative ionization atmospheric pressure 
photoionization tandem mass spectrometry: Validation and application to house dust.  Anal Chem 
81(17):7460-7467. 

Abdallah MA, Tilston E, Harrad S, et al.  2012.  In vitro assessment of the bioaccessibility of brominated 
flame retardants in indoor dust using a colon extended model of the human gastrointestinal tract.  J 
Environ Monit 14(12):3276-3283.  

Abdelouahab N, Ainmelk Y, Takser L.  2011.  Polybrominated diphenyl ethers and sperm quality.  
Reprod Toxicol 31(4):546-550. 

Abdelouahab N, Langlois MF, Lavoie L, et al.  2013.  Maternal and cord-blood thyroid hormone levels 
and exposure to polybrominated diphenyl ethers and polychlorinated biphenyls during early pregnancy. 
Am J Epidemiol 178(5):701-713. 10.1093/aje/kwt141. 

ACGIH.  2014.  Threshold limit values for chemical substances and physical agents and biological 
exposure indices.  Cincinnati, OH:  American Conference of Governmental Industrial Hygienists. 

Adgent MA, Hoffman K, Goldman BD, et al.  2014.  Brominated flame retardants in breast milk and 
behavioural and cognitive development at 36 months.  Paediatr Perinat Epidemiol 28(1):48-57. 

Adinolfi M.  1985.  The development of the human blood-CSF-brain barrier. Dev Med Child Neurol 
27:532-537. 

Adlercreutz H.  1995. Phytoestrogens:  Epidemiology and a possible role in cancer protection.  Environ 
Health Perspect Suppl 103(7):103-112. 

Agay-Shay K, Martinez D, Valvi D, et al.  2015. Exposure to endocrine-disrupting chemicals during 
pregnancy and weight at 7 years of age:  A multi-pollutant approach.  Environ Health Perspect 
123(10):1030-1037.  10.1289/ehp.1409049.  

Ahn KC, Gee SJ, Tsai HJ, et al.  2009.  Immunoassay for monitoring environmental and human exposure 
to the polybrominated diphenyl ether BDE-47.  Environ Sci Technol 43(20):7784-7790. 

AIHA.  2014. Current ERPG Values (2014).  Fairfax, VA:  American Industrial Hygiene Association.  
https://www.aiha.org/get
involved/AIHAGuidelineFoundation/EmergencyResponsePlanningGuidelines/Documents/2014%20ERP 
G%20Values.pdf.  September 9, 2014. 

https://www.aiha.org/get


   
 

 
 
 

 
 
 
 
 

  
 

 
   

 
  

 
 

 
  

 
 

   
 

 
   

 
 

  
   

 
  

   
 

  
 

 
   

  
 

  
  

 

 
 

 

 
 

   
  

 

   
 

    
   

 
 

PBDEs 464 

9.  REFERENCES 

Airaksinen R, Rantakokko P, Eriksson JG, et al.  2011.  Association between type 2 diabetes and 
exposure to persistent organic pollutants.  Diabetes Care 34(9):1972-1979.  10.2337/dc10-2303.  

Akutsu K, Obana H, Okihashi M, et al.  2001.  GC/MS analysis of polybrominated diphenyl in fish 
collected from the inland sea of Seto, Japan.  Chemosphere 44:1325-1333. 

Akutsu K, Takatori S, Nozawa S, et al.  2008. Polybrominated diphenyl ethers in human serum and 
sperm quality.  Bull Environ Contam Toxicol 80(4):345-350. 

Alaee M, Sergeant DB, Ikonomou MG, et al.  2001.  A gas chromatography/high-resolution mass 
spectrometry (GC/HRMS) method for determination of polybrominated diphenyl ethers in fish.  
Chemosphere 44(6):1489-1895. 

Alaee M, Sergeant DB, Muir DCG, et al.  1999.  Distribution of polybrominated diphenyl ethers in the 
Canadian environment.  Organohalogen Compounds 40:347-350. 

Albina ML, Alonso V, Linares V, et al.  2010. Effects of exposure to BDE-99 on oxidative status of liver 
and kidney in adult rats.  Toxicology 271(1-2):51-56. 

Aleksa K, Carnevale A, Goodyer C, et al.  2012a.  Detection of polybrominated biphenyl ethers (PBDEs) 
in pediatric hair as a tool for determining in utero exposure.  Forensic Sci Int 218(1-3):37-43. 

Aleksa K, Liesivuori J, Koren G.  2012b.  Hair as a biomarker of polybrominated diethyl ethers' exposure 
in infants, children and adults. Toxicol Lett 210(2):198-202. 

Allchin CR, Law RJ, Morris S.  1999.  Polybrominated diphenylethers in sediments and biota 
downstream of potential sources in the UK.  Environ Pollut 105:197-207. 

Allchin CR, Morris S, Law RJ, et al.  2000. Polybrominated diphenyl ether residues in cormorant 
(Phalocrocorax L.) livers from England, UK.  Organohalogen Compounds 47:190-193. 

Allen JG, Sumner AL, Nishioka MG, et al.  2013.  Air concentrations of PBDEs on in-flight airplanes and 
assessment of flight crew inhalation exposure.  J Expo Sci Environ Epidemiol 23(4):337-342. 

Alm H, Kultima K, Scholz B, et al.  2008.  Exposure to brominated flame retardant PBDE-99 affects 
cytoskeletal protein expression in the neonatal mouse cerebral cortex.  Neurotoxicology 29(4):628-637. 

Alm H, Scholz B, Kultima K, et al.  2010.  In vitro neurotoxicity of PBDE-99:  Immediate and 
concentration-dependent effects on protein expression in cerebral cortex cells.  J Proteome Res 9(3):1226
1235. 

Alonso V, Linares V, Belles M, et al.  2010.  Effects of BDE-99 on hormone homeostasis and 
biochemical parameters in adult male rats.  Food Chem Toxicol 48(8-9):2206-2211. 

Altman PL, Dittmer DS.  1974. In:  Biological handbooks:  Biology data book.  Vol.  III.  2nd ed.  
Bethesda, MD:  Federation of American Societies for Experimental Biology, 1987-2008, 2041. 

Andersen ME, Krishnan K.  1994. Relating in vitro to in vivo exposures with physiologically based tissue 
dosimetry and tissue response models.  In:  Salem H, ed.  Animal test alternatives:  Refinement, 
reduction, replacement.  New York:  Marcel Dekker, Inc., 9-25. 



   
 

 
 
 

 
 
 
 
 

    
 

   
  

 
  

 
 

  
  

 
   

  
 

 
   

 
 

   
   

 
 

     
   

 
   

  
  

 
   

    
  

 
 

   
 

 
  

  
 

 
    

 
 

  
 

 
 

  
 

PBDEs 465 

9.  REFERENCES 

Andersen ME, Clewell HJ III, Gargas ML, et al.  1987.  Physiologically based pharmacokinetics and the 
risk assessment process for methylene chloride. Toxicol Appl Pharmacol 87:185-205. 

Anderson HA, Wolff MS, Fischbein A, et al. 1978. Investigation of the health status of Michigan 
Chemical Corporation employees.  Environ Health Perspect 23:187-191. 

Andersson O, Blomkvist G.  1981. Polybrominated aromatic pollutants found in fish in Sweden. 
Chemosphere 10(9):1051-1060. 

Andersson O, Wartanian A.  1992. Levels of polybrominated camphenes (toxaphene), chlordane 
compounds and polybrominated diphenyl ethers in seals from Swedish waters.  Ambio 21(8):550-552. 

Andres J, Lambert I, Robertson L, et al.  1983. The comparative biologic and toxic potencies of 
polychlorinated biphenyls and polybrominated biphenyls.  Toxicol Appl Pharmacol 70:204-215. 

Ankarberg E, Fredriksson A, Jakobsson E, et al.  2001.  Increased susceptibility to adult flame retardants 
exposure (PBDE 99) in mice neonatally exposed to nicotine.  The second international workshop on 
brominated flame retardants.  BFR 2001.  Stockholm, Sweden, 233-235. 

Antignac JP, Cariou R, Maume D, et al.  2008.  Exposure assessment of fetus and newborn to brominated 
flame retardants in France:  Preliminary data.  Mol Nutr Food Res 52(2):258-265. 

Antignac JP, Cariou R, Zalko D, et al.  2009. Exposure assessment of French women and their newborn 
to brominated flame retardants: Determination of tri- to deca- polybromodiphenylethers (PBDE) in 
maternal adipose tissue, serum, breast milk and cord serum.  Environ Pollut 157(1):164-173. 

Argus Research Laboratories.  1985a.  Initial submission:  Embryo/fetal toxicity and teratogenic potential 
study of Saytex 115 administered orally via gavage to Crl:COBS CD(SD)BR presumed pregnant rats. 
Submitted to the U.S. Environmental Protection Agency under TSCA Section 8E.  OTS0000973.  

Argus Research Laboratories.  1985b.  Embryo/fetal toxicity and teratogenic potential study of Saytex 
111 administered orally via gavage to pregnant rats (final report-draft) with cover letter dated 050785.  
Submitted to the U.S. Environmental Protection Agency under TSCA Section 8E.  OTS0509725.  

Aschebrook-Kilfoy B, DellaValle CT, Purdue M, et al.  2015. Polybrominated diphenyl ethers and 
thyroid cancer risk in the Prostate, Colorectal, Lung, and Ovarian Cancer Screening Trial cohort.  Am J 
Epidemiol 181(11):883-888.  10.1093/aje/kwu358.  

Asplund L, Athanasiadou M, Sjodin A, et al.  1999a.  Organohalogen substances in muscle, egg and 
blood from healthy Baltic salmon (Salmo salar) and Baltic salmon that produced offspring with the M74 
syndrome.  Ambio 28(1):67-76. 

Asplund L, Hornung M, Peterson RE, et al. 1999b.  Levels of polybrominated diphenyl ethers (PBDEs) 
in fish from the Great Lakes and Baltic Sea.  Organohalogen Compounds 40:351-354. 

Athanasiadou M, Cuadra SN, Marsh G, et al.  2008.  Polybrominated diphenyl ethers (PBDEs) and 
bioaccumulative hydroxylated PBDE metabolites in young humans from Managua, Nicaragua.  Environ 
Health Perspect 116(3):400-408. 

Atlas E, Giam CS.  1987. Ambient concentration and precipitation scavenging of atmospheric organic 
pollutants.  Water Air Soil Pollut 38:19-36.  



   
 

 
 
 

 
 
 
 
 

 
    

    
 

 
    

 
   

 
   

 
 

    
  

 
    

 
 

   
 

 
   

   
 

 
 

  
 

       
   

 
   

 
 

 
  

 
 

 
 

 
 

 
 

   
   

  
 

     
  

 

PBDEs 466 

9.  REFERENCES 

ATSDR.  1989.  Decision guide for identifying substance-specific data needs related to toxicological 
profiles; Notice.  Agency for Toxic Substances and Disease Registry, Division of Toxicology.  Fed Regist 
54(174):37618-37634.  

ATSDR.  1990.  Biomarkers of organ damage or dysfunction for the renal, hepatobiliary, and immune 
systems.  Subcommittee on Biomarkers of Organ Damage and Dysfunction.  Atlanta, GA:  Agency for 
Toxic Substances and Disease Registry. 

ATSDR.  1994. Toxicological profile for chlorodibenzofurans.  Atlanta, GA:  U.S. Department of Health 
and Human Services. 

ATSDR.  1998. Toxicological profile for chlorinated dibenzo-p-dioxins.  Atlanta, GA:  U.S. Department 
of Health and Human Services. 

ATSDR.  2000. Toxicological profile for polychlorinated biphenyls.  Atlanta, GA:  U.S. Department of 
Health and Human Services. 

ATSDR.  2004. Toxicological profile for polybrominated biphenyls and polybrominated diphenyl ethers.  
Atlanta, GA:  U.S. Department of Health and Human Services. 

ATSDR.  2015.  PBDE’s.  Full SPL data.  Substance priority list (SPL) resource page.  Agency for Toxic 
Substances and Disease Registry, Centers for Disease Control and Prevention. 
http://www.atsdr.cdc.gov/SPL/resources/index.html. July 6, 2016.  

Bahn AK, Mills JL, Snyder PJ, et al.  1980. Hypothyroidism in workers exposed to polybrominated 
biphenyls.  N Engl J Med 302(1):31-33. 

Ballschmiter K, Zell M.  1980.  Baseline studies of the global pollution:  Occurrence of organohalogens 
in pristine European and Antarctic aquatic environments.  Int J Environ Anal Chem 8:15-35. 

Bannister R, Biegel L, Davis D, et al.  1989. 6-Methyl-1,3,8-trichlorodibenzofuran (MCDF) as a 2,3,7,8
tetrachlorodibenzo-p-dioxin antagonist in C57BL/6 mice.  Toxicology 54:139-150. 

Bansal R, Tighe D, Danai A, et al.  2014.  Polybrominated diphenyl ether (DE-71) interferes with thyroid 
hormone action independent of effects on circulating levels of thyroid hormone in male rats.  
Endocrinology 155(10):4104-4112.  10.1210/en.2014-1154.  

Barnes DG, Dourson M.  1988.  Reference dose (RfD):  Description and use in health risk assessments.  
Regul Toxicol Pharmacol 8:471-486. 

Batterman S, Godwin C, Chernyak S, et al.  2010.  Brominated flame retardants in offices in Michigan, 
USA.  Environ Int 36(6):548-556. 

Becker RA, Bergfelt DR, Borghoff S, et al.  2012.  Interlaboratory study comparison of the 15-day intact 
adult male rat screening assay:  Evaluation of an antithyroid chemical and a negative control chemical. 
Birth Defects Res B Dev Reprod Toxicol 95(1):63-78. 

Behnisch PA, Hosoe K, Sakai S.  2003. Brominated dioxin-like compounds: In vitro assessment in 
comparison to classical dioxin-like compounds and other polyaromatic compounds.  Environ Int 
29(6):861-877. 

http://www.atsdr.cdc.gov/SPL/resources/index.html


   
 

 
 
 

 
 
 
 
 

 
    

  
 

   
 

 
 

  
 

  
 

 
    

    
 

 
   

 
   

 
 

 
  

  
 

  
   

 
         

  
 

 
   

   
 

  
   

 
 

  
 

 
  

   
 

 
   

 
 

PBDEs 467 

9.  REFERENCES 

Belles M, Alonso V, Linares V, et al.  2010. Behavioral effects and oxidative status in brain regions of 
adult rats exposed to BDE-99.  Toxicol Lett 194(1-2):1-7. 

Bellinger DC.  2013.  Prenatal exposures to environmental chemicals and children's neurodevelopment: 
An update.  Saf Health Work 4(1):1-11. 

Berger GS, ed.  1994. Epidemiology of endometriosis.  In:  Endometriosis:  Advanced management and 
surgical techniques.  New York, NY:  Springer-Verlag, 3-7.  

Bergman A, Athanasiadou M, Wehler EK, et al.  1999.  Polybrominated environmental pollutants. 
Human and wildlife exposures.  Organohalogen Compounds 43:89-92. 

Beser MI, Beltran J, Yusa V.  2014.  Design of experiment approach for the optimization of 
polybrominated diphenyl ethers determination in fine airborne particulate matter by microwave-assisted 
extraction and gas chromatography coupled to tandem mass spectrometry.  J Chromatogr A 1323:1-10. 

Betts K.  2006.  PBDEs and PCBs in computers, cars, and homes.  Environ Sci Technol 40(24):7452. 

BFRIP.  2002. Decabromodiphenyl ether (a.k.a. decabromodiphenyl oxide, DBDPO).  Voluntary 
children’s chemical evaluation program (VCCEP).  Data Summary.  Arlington, VA:  American Chemistry 
Council’s Brominated Flame Retardant Industry Panel (BFRIP). 

Bidleman TF.  1988.  Atmospheric processes.  Wet and dry deposition of organic compounds are 
controlled by their vapor-particle partitioning.  Environ Sci Technol 22:361-367. 

Bieniek D, Bahadir M, Korte F.  1989.  Formation of heterocyclic hazardous compounds by thermal 
degradation of organic compounds.  Heterocycles 28(2):719-722. 

Biesemeier JA, Ariano JM, Banasik M, et al. 2011.  Sample characterization:  A priori to evaluating 
absorption, distribution, and metabolism.  Toxicology 287(1-3):160-161; author reply 162-163. 

Biesemeier JA, Beck MJ, Silberberg H, et al.  2010.  Effects of dose, administration route, and/or vehicle 
on decabromodiphenyl ether concentrations in plasma of maternal, fetal, and neonatal rats and in milk of 
maternal rats. Drug Metab Dispos 38(10):1648-1654. 

Bizkarguenaga E, Iparragirre A, Zabaleta I, et al.  2014.  Focused ultrasound assisted extraction for the 
determination of PBDEs in vegetables and amended soil.  Talanta 119:53-59. 

Blanco J, Mulero M, Domingo JL, et al.  2012.  Gestational exposure to BDE-99 produces toxicity 
through upregulation of CYP isoforms and ROS production in the fetal rat liver. Toxicol Sci 127(1):296
302. 

Blanco J, Mulero M, Domingo JL, et al.  2014.  Perinatal exposure to BDE-99 causes decreased protein 
levels of cyclin D1 via GSK3β activation and increased ROS production in rat pup livers.  Toxicol Sci 
137(2):491-498. 

Blanco J, Mulero M, Heredia L, et al.  2013.  Perinatal exposure to BDE-99 causes learning disorders and 
decreases serum thyroid hormone levels and BDNF gene expression in hippocampus in rat offspring.  
Toxicology 308:122-128.  



   
 

 
 
 

 
 
 
 
 

 
  

 

    
 

   
 

 
  

 
 

     
  

 
 

   
 

 
   

   
 

 
 

   
 

 
    

 
  

 
 

  
 

  
 

 
  
  

 

    
 

 
   

  
 

 
   

  

PBDEs 468 

9.  REFERENCES 

Blanco J, Mulero M, Lopez M, et al.  2011.  BDE-99 deregulates BDNF, Bcl-2 and the mRNA expression 
of thyroid receptor isoforms in rat cerebellar granular neurons.  Toxicology 290:305-311. 

Blay P, Nilsson C, Owman C, et al.  1993.  Transthyretin expression in the rat brain:  Effect of thyroid 
functional state and role in thyroxine transport.  Brain Res 632(1-2):114-120. 

Bloom M, Spliethoff H, Vena J, et al.  2008.  Environmental exposure to PBDEs and thyroid function 
among New York anglers.  Environ Toxicol Pharmacol 25(3):386-392. 

Bloom MS, Jansing RL, Kannan K, et al.  2014.  Thyroid hormones are associated with exposure to 
persistent organic pollutants in aging residents of upper Hudson River communities.  Int J Hyg Environ 
Health 217(4-5):473-482. 

Bocio A, Llobet JM, Domingo JL, et al.  2003.  Polybrominated diphenyl ethers (PBDEs) in foodstuffs: 
Human exposure through the diet.  J Agric Food Chem 7(51):3191-3195. 

Bondy GS, Gaertner D, Cherry W, et al.  2011.  Brominated diphenyl ether (BDE) levels in liver, adipose, 
and milk from adult and juvenile rats exposed by gavage to the DE-71 technical mixture.  Environ 
Toxicol 26(6):677-690. 

Bondy GS, Lefebvre DE, Aziz S, et al.  2013. Toxicologic and immunologic effects of perinatal exposure 
to the brominated diphenyl ether (BDE) mixture DE-71 in the Sprague-Dawley rat.  Environ Toxicol 
28(4):215-228. 

Booij K, Zegers BN, Boon JP.  2000. Levels of some polybrominated diphenyl ether (PBDE) flame 
retardants along the Dutch coast as derived from their accumulation in SPMDs and blue mussels (Mytilus 
edulis).  Organohalogen Compounds 47:89-92. 

Bowers WJ, Wall PM, Nakai JS, et al.  2015. Behavioral and thyroid effects of in utero and lactational 
exposure of Sprague-Dawley rats to the polybrominated diphenyl ether mixture DE71.  Neurotoxicol 
Teratol 52(Pt B):127-142.  10.1016/j.ntt.2015.08.002.  

Boyages SC.  2000. The neuromuscular system and brain in hypothyroidism.  In:  Braverman LE, Utiger 
RD, eds.  Werner and Ingbar’s the thyroid.  Philadelphia, PA:  Lippincott Williams & Wilkins, 803-810. 

Bradman A, Castorina R, Gaspar F, et al.  2014.  Flame retardant exposures in California early childhood 
education environments.  Chemosphere 116:61-66.  10.1016/j.chemosphere.2014.02.072. 

Bradner JM, Suragh TA, Caudle WM.  2013.  Alterations to the circuitry of the frontal cortex following 
exposure to the polybrominated diphenyl ether mixture, DE-71.  Toxicology 312:48-55. 

Braekevelt E, Tittlemier SA, Tomy GT.  2003. Direct measurement of octanol-water partition 
coefficients of some environmentally relevant brominated diphenyl ether congeners.  Chemosphere 
51(7):563-567. 

Branchi I, Alleva E, Costa LG.  2001. A preliminary characterization of behavioural alterations following 
perinatal exposure to a polybrominated diphenylether (PBDE 99).  The second international workshop on 
brominated flame retardants.  BFR 2001.  Stockholm, Sweden, 75. 

Branchi I, Alleva E, Costa LG.  2002. Effects of perinatal exposure to a polybrominated diphenyl ether 
(PBDE 99) on mouse neurobehavioural development.  Neurotoxicology 23(3):375-384. 



   
 

 
 
 

 
 
 
 
 

 
  

  
 

 
   

   
 

 
  

     
 

   
 

 
 

 
   

   
 

 
 

   
 

      
  

 
  

   
  

 
 

 
 

  
 

 
    

    
 

    
   

 
    

  
 

  
   

 


 

 





 

 


 




 

 




 


 


 

 


 

 


 

 





 

 




 


 

 


 




 

 




 

PBDEs 469 

9.  REFERENCES 

Branchi I, Capone F, Vitalone A, et al. 2005. Early developmental exposure to BDE 99 or Aroclor 1254 
affects neurobehavioural profile:  Interference from the administration route.  Neurotoxicology 26(2):183
192. 

Braun JM, Kalkbrenner AE, Just AC, et al.  2014. Gestational exposure to endocrine-disrupting
 
chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children:  The
 
HOME study.  Environ Health Perspect 122(5):513-520.  10.1289/ehp.1307261.  


Breivik K, Sweetman A, Pacyna JM, et al.  2002.  Towards a global historical emission inventory for
 
selected PCB congeners– a mass balance approach.  2.  Emissions.  Sci Total Environ 290:199-224.
 

Brenner KS, Knies H.  1990.  Formation of polybrominated dibenzofurans (PBDF's) and dioxins
 
(PBDD’s) during extrusion production of a polybutyleneterephthalate (PBTP)/glass fiber resin blended 

with decabromodiphenylether (DBDPE)/Sb2O3:  Product and workplace analysis.
 
Organohaolgen Compounds 2:319-324.
 

Brenner KS, Knies H.  1993.  Workplace of PBDFs and PBDDs during extrusion production and injection 

modeling of a polybutyleneterephthalate (PBTP) glass fiber/tetrabromobisphenol A carbonate oligomer
 
(BC52*)/Sb2O3-resin; part II.  Chemosphere 26(11):1953-1963.
 

Breslin WJ, Kirk HD, Zimmer MA.  1989. Teratogenic evaluation of a polybromodiphenyl oxide mixture
 
in New Zealand white rabbits following oral exposure.  Fundam Appl Toxicol 12(1):151-157.
 

Brilliant LB, Van Amburg G, Isbister J, et al.  1978. Breast-milk monitoring to measure Michigan's
 
contamination with polybrominated biphenyls.  Lancet Sept:643-646.
 

British Industrial Biological Research Association.  1977.  The acute oral toxicity of
 
pentabromodiphenylether to rats.  Submitted to U.S. Environmental Protection Agency under TSCA
 
Section 8D.  OTS0522287. 


Brown GG, Preisman RC, Anderson MD, et al.  1981.  Memory performance of chemical workers
 
exposed to polybrominated biphenyls.  Science 212:1413-1415.
 

Bruchajzer E.  2011.  Porphyrogenic effect of pentabromodiphenyl ether after repeated administration to 

rats.  Arch Toxicol 85(8):965-974.
 

Bruchajzer E, Frydrych B, Sporny S, et al.  2010. Toxicity of penta- and decabromodiphenyl ethers after
 
repeated administration to rats:  A comparative study. Arch Toxicol 84(4):287-299.
 

Bruchajzer E, Frydrych B, Sporny S, et al.  2011. The effect of short-term intoxication of rats with
 
pentabromodiphenyl ether (in mixture mimic commercial products).  Hum Exp Toxicol 30(5):363-378.  


Bruchajzer E, Frydrych B, Szymanska JA.  2012.  Octabromodiphenyl ether - porphyrogenicity after
 
repeated administration to rats.  Int J Occup Med Environ Health 25(4):392-403.
 

Buck Louis GM, Sundaram R, Schisterman EF, et al.  2013. Persistent environmental pollutants and 

couple fecundity: The LIFE study.  Environ Health Perspect 121(2):231-236.
 



   
 

 
 
 

 
 
 
 
 

    
 

 
 

   
      

 
 

 
 

 
 

 
 

    
 

 
   

   
 

   
  

 
   

 
 

 
  

 
 

 
 

  
 

  
     

 
 

  
     

 
 

  
  

 
     

 
 

 

PBDEs 470 

9.  REFERENCES 

Bull K, Basu N, Zhang S, et al.  2007.  Dietary and in utero exposure to a pentabrominated diphenyl ether 
mixture did not affect cholinergic parameters in the cerebral cortex of ranch mink (Mustela vison).  
Toxicol Sci 96(1):115-122. 

Buratovic S, Viberg H, Fredriksson A, et al.  2014. Developmental exposure to the polybrominated 
diphenyl ether PBDE 209: Neurobehavioural and neuroprotein analysis in adult male and female mice.  
Environ Toxicol Pharmacol 38(2):570-585.  10.1016/j.etap.2014.08.010.  

Burreau S, Axelman J, Brogman D, et al.  1997. Dietary uptake in pike (Esox incius) of some 
polychlorinated biphenyls, polychlorinated naphthalenes and polybrominated diphenyl ethers 
administered in natural diet.  Environ Toxicol Chem 16:2508-2513. 

Burreau S, Broman D, Zebuhr Y.  1999.  Biomagnification quantification of PBDEs in fish using stable 
nitrogen isotopes.  Organohalogen Compounds 40:363-366. 

Burreau S, Zeb HR, Ishaq R, et al. 2000.  Comparison of biomagnification of PBDEs in food chains from 
the Baltic Sea and the North Atlantic Sea.  Organohalogen Compounds 47:253-255. 

Burse VW, Needham LL, Liddle JA, et al.  1980.  Interlaboratory comparison for polybrominated 
biphenyls in human serum.  J Anal Toxicol 4:22-26. 

Buser HR.  1986.  Polybrominated dibenzofurans and dibenzo-p-dioxins: Thermal reaction products of 
polybrominated diphenyl ether flame retardants.  Environ Sci Technol 20:404-408. 

Butt CM, Miranda ML, Stapleton HM. 2016. Development of an analytical method to quantify PBDEs, 
OH-BDEs, HBCDs, 2,4,6-TBP, EH-TBB, and BEH-TEBP in human serum.  Anal Bioanal Chem 
408(10):2449-2459.  10.1007/s00216-016-9340-3. 

Byun HM, Benachour N, Zalko D, et al.  2015.  Epigenetic effects of low perinatal doses of flame 
retardant BDE-47 on mitochondrial and nuclear genes in rat offspring.  Toxicology 328:152-159.  
10.1016/j.tox.2014.12.019.  

Cai Y, Zhang W, Hu J, et al.  2011. Characterization of maternal transfer of decabromodiphenyl ether 
(BDE-209) administered to pregnant Sprague-Dawley rats.  Reprod Toxicol 31(1):106-110. 

Canton RF, Letcher R, Sanderson T, et al.  2003.  Effects of brominated flame retardants on activity of the 
steroidogenic enzyme aromatase (CYP19) in H295R human adrenocortical carcinoma cells in culture. 
Organohalogen Compounds 61:104-106. 

Canton RF, Sanderson JT, Letcher RJ, et al. 2005. Inhibition and induction of aromatase (CYP19) 
activity by brominated flame retardants in H295R human adrenocortical carcinoma cells. Toxicol Sci 
88(2):447-455. 

Canton RF, Scholten DE, Marsh G, et al.  2008.  Inhibition of human placental aromatase activity by 
hydroxylated polybrominated diphenyl ethers (OH-PBDEs).  Toxicol Appl Pharmacol 227(1):68-75. 

Capen CC.  1997.  Mechanistic data and risk assessment of selected toxic points of the thyroid gland. 
Toxicol Pathol 25:39-48. 

Caravati EM, Mcguigan MA, Whyte IM, et al.  2004.  Polyhalogenated biphenyls.  In:  Dart RC, ed.  
Medical toxicology.  3rd ed.  Philadelphia, PA:  Lippincott Williams & Wilkins, 1342-1343. 



   
 

 
 
 

 
 
 
 
 

 
 

  
 

 
    

 
   

 
 

   
   

 

  
 

 
 

 
 

 
  

    
 

 
  

 

  
 

     
   

 
 

   
    

 
  

 
 

  

 
 

  
   

 
 

   
 

PBDEs 471 

9.  REFERENCES 

Carlson GP.  1980a.  Induction of xenobiotic metabolism in rats by brominated diphenyl ethers 
administered for 90 days.  Toxicol Lett 6:207-212. 

Carlson GP.  1980b.  Induction of xenobiotic metabolism in rats by short-term administration of 
brominated phenyl ethers.  Toxicol Lett 5(1):19-26. 

Carmichael SL, Herring AH, Sjodin A, et al. 2010. Hypospadias and halogenated organic pollutant 
levels in maternal mid-pregnancy serum samples.  Chemosphere 80(6):641-646. 

Carrizo D, Grimalt JO, Ribas-Fito N, et al.  2007. Influence of breastfeeding in the accumulation of 
polybromodiphenyl ethers during the first years of child growth.  Environ Sci Technol 41(14):4907-4912. 

CDC.  2015. Fourth national report on human exposure to environmental chemical.  Updated tables, 
February 2015.  Atlanta, GA:  Centers for Disease Control and Prevention, U.S. Department of Health 
and Human Services. 
http://www.cdc.gov/biomonitoring/pdf/FourthReport_UpdatedTables_Feb2015.pdf. March 10, 2015 

Ceccatelli R, Faass O, Schlumpf M, et al.  2006.  Gene expression and estrogen sensitivity in rat uterus 
after developmental exposure to the polybrominated diphenylether PBDE 99 and PCB.  Toxicology 
220(2-3):104-116. 

Chanda JJ, Anderson HA, Glamb RW, et al.  1982.  Cutaneous effects of exposure to polybrominated 
biphenyls (PBBs): The Michigan PBB incident.  Environ Res 29:97-108. 

Chao HR, Shy CG, Wang SL, et al.  2010.  Impact of non-occupational exposure to polybrominated 
diphenyl ethers on menstruation characteristics of reproductive-age females.  Environ Int 36(7):728-735. 

Chao HR, Tsou TC, Huang HL, et al.  2011.  Levels of breast milk PBDEs from southern Taiwan and 
their potential impact on neurodevelopment.  Pediatr Res 70(6):596-600. 

Chao HR, Wang SL, Lee WJ, et al.  2007.  Levels of polybrominated diphenyl ethers (PBDEs) in breast 
milk from central Taiwan and their relation to infant birth outcome and maternal menstruation effects.  
Environ Int 33(2):239-245. 

Charles River Laboratories.  1998.  Baseline hematology and clinical chemistry values for Charles River 
Wistar rats- (CLR:(WI)BR) as a function of sex and age.  Wilmington, MA:  Charles River Laboratories. 

Chen G, Bunce NJ.  2001.  PBDE congeners as Ah receptor agonist and antagonists.  Organohalogen 
Compounds 53:353-356. 

Chen A, Chung E, DeFranco EA, et al.  2011.  Serum PBDEs and age at menarche in adolescent girls: 
Analysis of the National Health and Nutrition Examination Survey 2003-2004.  Environ Res 111(6):831
837. 

Chen A, Park JS, Linderholm L, et al.  2013.  Hydroxylated polybrominated diphenyl ethers in paired 
maternal and cord sera.  Environ Sci Technol 47(8):3902-3908. 

Chen A, Yolton K, Rauch SA, et al.  2014.  Prenatal polybrominated diphenyl ether exposures and 
neurodevelopment in U.S. children through 5 years of age:  The HOME study.  Environ Health Perspect 
122(8):856-862.  10.1289/ehp.1307562.  

http://www.cdc.gov/biomonitoring/pdf/FourthReport_UpdatedTables_Feb2015.pdf


   
 

 
 
 

 
 
 
 
 

 

 
 

 
 

  
 

 
 

    
 

  
  

 
 

  
   

 
  

   
 

  
  

 
    

 
 

 
 

 
   

    
 

 
    

 
 

   
 

 
 

 
 

 
 

  
 

 
    

 

PBDEs 472 

9.  REFERENCES 

Chen G, Konstantinov AD, Chittim BG, et al.  2001.  Synthesis of polybrominated diphenyl ethers and 
their capacity to induce CYPIA by the Ah receptor mediated pathway.  Environ Sci Technol 35(18):3749
3756. 

Chen J, Liufu C, Sun W, et al.  2010.  Assessment of the neurotoxic mechanisms of decabrominated 
diphenyl ether (PBDE-209) in primary cultured neonatal rat hippocampal neurons includes alterations in 
second messenger signaling and oxidative stress.  Toxicol Lett 192(3):431-439. 

Chen L, Wang C, Cui C, et al.  2015.  Prenatal exposure to polybrominated diphenyl ethers and birth 
outcomes.  Environ Pollut 206:32-37.  10.1016/j.envpol.2015.06.019. 

Chen LJ, Lebetkin EH, Sanders JM, et al.  2006.  Metabolism and disposition of 2,2',4,4',5
pentabromodiphenyl ether (BDE99) following a single or repeated administration to rats or mice.  
Xenobiotica 36(6):515-534. 

Chen Q, Yu L, Yang L, et al.  2012.  Bioconcentration and metabolism of decabromodiphenyl ether 
(BDE-209) result in thyroid endocrine disruption in zebrafish larvae.  Aquat Toxicol 110-111:141-148. 

Chen SJ, Ma YJ, Wang J, et al.  2009.  Brominated flame retardants in children's toys:  Concentration, 
composition, and children's exposure and risk assessment.  Environ Sci Technol 43(11):4200-4206. 

Cheng J, Gu J, Ma J, et al.  2009. Neurobehavioural effects, redox responses and tissue distribution in rat 
offspring developmental exposure to BDE-99.  Chemosphere 75(7):963-968. 

Cheng SW, Randall K, Kotchevar AT.  2008.  In vitro metabolism studies of polybrominated diphenyl 
ethers using rat and human liver microsomes.  Am J Biochem Biotechnol 4(3):295-303. 

Chessells M, Hawker DW, Connell DW.  1992.  Influence of solubility in lipid on bioconcentration of 
hydrophobic compounds.  Ecotoxicol Environ Saf 23:260-273. 

Chevrier C, Warembourg C, Le Maner-Idrissi G, et al. 2016. Childhood exposure to polybrominated 
diphenyl ethers and neurodevelopment at six years of age.  Neurotoxicology 54:81-88.  
10.1016/j.neuro.2016.03.002.  

Chevrier J, Harley KG, Bradman A, et al. 2010. Polybrominated diphenyl ether (PBDE) flame retardants 
and thyroid hormone during pregnancy.  Environ Health Perspect 118(10):1444-1449.  

Chevrier J, Harley KG, Bradman A, et al.  2011. Prenatal exposure to polybrominated diphenyl ether 
flame retardants and neonatal thyroid-stimulating hormone levels in the CHAMACOS study.  Am J 
Epidemiol 174(10):1166-1174. 

Chi Y, Xia H, Su M, et al.  2011. Metabonomic phenotyping reveals an embryotoxicity of deca
brominated diphenyl ether in mice.  Chem Res Toxicol 24(11):1976-1983. 

Choi J-W, Fujimaki S, Kitamura K, et al.  2003.  Historical trends of PBDD/Fs, PBDEs, PCDD/Fs and 
dioxin-like PCBs in sediment cores from Tokyo Bay.  Organohalogen Compounds 61:119-122. 

Christen V, Crettaz P, Oberli-Schrammli A, et al.  2010.  Some flame retardants and the antimicrobials 
triclosan and triclocarban enhance the androgenic activity in vitro. Chemosphere 81(10):1245-1252. 



   
 

 
 
 

 
 
 
 
 

 
  

 

 
 

  
  

   
 

  
 

 
  

  
 

   
 

 
   

 
 

 
  

  
 

 
  

  
 

 
  

 
 

 
 

 
 

 
  

 
 

   
 

 
 

   
    

 
 

PBDEs 473 

9.  REFERENCES 

Christensen JH, Platz J.  2001.  Screening of polybrominated diphenyl ethers in blue mussels, marine and 
freshwater sediments in Denmark.  J Environ Monit 3(5):543-547. 

Clewell HJ III, Andersen ME.  1985.  Risk assessment extrapolations and physiological modeling.  
Toxicol Ind Health 1(4):111-131. 

Coburn CG, Curras-Collazo MC, Kodavanti PR.  2007. Polybrominated diphenyl ethers and ortho
substituted polychlorinated biphenyls as neuroendocrine disruptors of vasopressin release:  Effects during 
physiological activation in vitro and structure-activity relationships.  Toxicol Sci 98(1):178-186. 

Colborn T, vom Saal F, Soto A.  1993. Developmental effects of endocrine-disrupting chemicals in 
wildlife and humans.  Environ Health Perspect 101(5):378-384. 

Costa LG, Aschner M, Vitalone A, et al.  2004.  Developmental neuropathology of environmental agents. 
Annu Rev Pharmacol Toxicol 44:87-110. 

Costa LG, Pellacani C, Dao K, et al.  2015.  The brominated flame retardant BDE-47 causes oxidative 
stress and apoptotic cell death in vitro and in vivo in mice.  Neurotoxicology 48:68-76.  
10.1016/j.neuro.2015.03.008.  

Costa LG, Tagliaferri S, Roque PJ, et al.  2016.  Role of glutamate receptors in tetrabrominated diphenyl 
ether (BDE-47) neurotoxicity in mouse cerebellar granule neurons.  Toxicol Lett 241:159-166.  
10.1016/j.toxlet.2015.11.026.  

Covaci A, de Boer J, Ryan JJ, et al.  2002.  Determination of polybrominated diphenyl ethers and 
polychlorinated biphenyls in human adipose tissues by large-volume injection-narrow-bore capillary gas 
chromatography/electron impact low-resolution mass spectrometry.  Anal Chem 74(4):790-798. 

Covaci A, Voorspoels S, de Boer J. 2003. Determination of brominated flame retardants with emphasis 
on polybrominated diphenyl ethers (PBDEs) in environmental and human samples- a review.  Environ Int 
29:735-756. 

Cowell WJ, Lederman SA, Sjodin A, et al.  2015.  Prenatal exposure to polybrominated diphenyl ethers 
and child attention problems at 3-7 years.  Neurotoxicol Teratol 52(Pt B):143-150.  
10.1016/j.ntt.2015.08.009.  

Cramer PH, Ayling RE, Thornburg KR, et al.  1990.  Evaluation of an analytical method for the 
determination of polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/PBDF) in human adipose.  
Chemosphere 20(7-9):821-827. 

Crisp TM, Clegg ED, Cooper RL, et al.  1998.  Environmental endocrine disruption:  An effects 
assessment and analysis.  Environ Health Perspect 106(1):11-56. 

Curcic M, Durgo K, Kopjar N, et al.  2014.  Cadmium and decabrominated diphenyl ether mixture: In 
vitro evaluation of cytotoxic, prooxidative and genotoxic effects.  Environ Toxicol Pharmacol 38(2):663
671. 10.1016/j.etap.2014.07.021.  

Dang VH, Choi KC, Jeung EB.  2007. Tetrabromodiphenyl ether (BDE 47) evokes estrogenicity and 
calbindin-D9k expression through an estrogen receptor-mediated pathway in the uterus of immature rats. 
Toxicol Sci 97(2):504-511. 



   
 

 
 
 

 
 
 
 
 

   
 

 

 
 

 
    

       
 

 
 

      
 

 
 

  
 

 
  

 
 

   
  

 
 

   
  

 
 

  
 

    
   

 
     
  

 
   

 
 

  
 

 
  

 
 

   
  

 

PBDEs 474 

9.  REFERENCES 

Daniels JL, Pan IJ, Jones R, et al.  2010.  Individual characteristics associated with PBDE levels in U.S. 
human milk samples.  Environ Health Perspect 118(1):155-160. 

Danish EPA.  1999. Brominated flame retardants.  Danish Environmental Protection Agency.  
http://www.statensnet.dk/pligtarkiv/fremvis.pl?vaerkid=3548&reprid=0&filid=32&iarkiv=1. October 15, 
2014. 

Danon-Schaffer MN, Mahecha-Botero A, Grace JR, et al.  2013.  Mass balance evaluation of 
polybrominated diphenyl ethers in landfill leachate and potential for transfer from e-waste.  Sci Total 
Environ 461-462:290-301. 

Darnerud PO, Sinjari T.  1996.  Effects of polybrominated diphenyl ethers (PBDEs) and polybrominated 
biphenyls (PCBs) on thyroxine and TSH blood levels in rats and mice.  Organohalogen Compounds 
29:316-319. 

Darnerud PO, Thuvander A.  1998. Studies on immunological effects of polybrominated diphenyl ether 
(PBDE) and polychlorinated biphenyl (PCB) exposure in rats and mice.  Organohalogen Compounds 
35:415-418. 

Darnerud PO, Atuma S, Aune M, et al.  1998.  Polybrominated diphenyl ethers (PBDEs) in breast milk 
from primiparous women in Uppsala County, Sweden.  Organohalogen Compounds 35:411-414. 

Darnerud PO, Eriksen GS, Johannesson T, et al.  2001. Polybrominated diphenyl ethers:  Occurrence, 
dietary exposure, and toxicology.  Environ Health Perspect 109:49-64. 

Daso AP, Fatoki OS, Odendaal JP, et al.  2013.  Polybrominated diphenyl ethers (PBDEs) and 
2,2',4,4',5,5'-hexabromobiphenyl (BB-153) in landfill leachate in Cape Town, South Africa.  Environ 
Monit Assess 185(1):431-439. 

Daston GP, Gooch JW, Breslin WJ, et al.  1997. Environmental estrogens and reproductive health:  A 
discussion of the human and environmental data.  Reprod Toxicol 11(4):465-481. 

Daubie S, Bisson JF, Lalonde R, et al. 2011. Neurobehavioral and physiological effects of low doses of 
polybrominated diphenyl ether (PBDE)-99 in male adult rats.  Toxicol Lett 204(1):57-63. 

de Boer J.  1989.  Organochlorine compounds and bromodiphenylethers in livers of Atlantic cod (Gadus 
morhua) from the North Sea, 1977-1987.  Chemosphere 18(11/12):2131-2140. 

de Boer J.  1990.  Brominated diphenyl ethers in Dutch freshwater and marine fish.  Organohalogen 
Compounds 2:315-318. 

de Boer J.  2000.  First worldwide interlaboratory study on polybrominated diphenyl ethers (PBDEs).  
Organohalogen Compounds 45:118-121. 

de Boer J, Cofino WP.  2002.  First world-wide interlaboratory study on polybrominated diphenyl ethers 
(PBDEs).  Chemosphere 46(5):625-633. 

de Boer J, de Boer K, Boon JP.  2000a.  Polybrominated biphenyls and diphenylethers.  In:  Paasivirta J, 
ed.  Handbook of environmental chemistry Vol. 3 part K.  Berlin Heidelberg:  Springer-Verlag, 61-95. 

http://www.statensnet.dk/pligtarkiv/fremvis.pl?vaerkid=3548&reprid=0&filid=32&iarkiv=1


   
 

 
 
 

 
 
 
 
 

   
 

 
 

   
 

 
   

 
 

    
 

 
  

 
 

   
 

 
   

 
 

 
 

 
  

 
 

 
   

 
 

   
 

 
 

 
 

 
 

  
 

 
  

  
 

 

PBDEs 475 

9.  REFERENCES 

de Boer J, van der Horst A, Wester PG.  2000b.  PBDEs and PBBs in suspended particulate matter, 
sediments, sewage treatment plant in- and effluent and biota from The Netherlands.  Organohalogen 
Compounds 47:85-88. 

de Boer J, Wester PG, Klamer HJ, et al.  1998a.  Do flame retardants threaten ocean life?  Nature 
394(6688):28-29. 

de Boer J, Wester PG, Pastor RD, et al. 1998b.  Polybrominated biphenyls and diphenylethers in sperm 
whales and other marine mammals.  A new threat to ocean life?  Organohalogen Compounds 35:383-386. 

de Cock M, Maas YG, van de Bor M.  2012.  Does perinatal exposure to endocrine disruptors induce 
autism spectrum and attention deficit hyperactivity disorders?  Review.  Acta Paediatrica 101(8):811-818. 

de Kok JJ, De Kok A, Brinkman UA, et al.  1977.  Analysis of polybrominated biphenyls.  J Chromatogr 
142:367-383. 

de Wit CA.  2000.  Levels and trends of BFRs in the European environment.  The second international 
workshop on brominated flame retardants.  BFR 2001.  Stockholm, Sweden, 135-138. 

de Wit CA.  2002.  An overview of brominated flame retardants in the environment.  Chemosphere 
46(5):583-624. 

Dickhut RM, Cincinelli A, Cochran M, et al.  2012.  Aerosol-mediated transport and deposition of 
brominated diphenyl ethers to Antarctica.  Environ Sci Technol 46(6):3135-3140. 

Ding G, Yu J, Cui C, et al.  2015. Association between prenatal exposure to polybrominated diphenyl 
ethers and young children's neurodevelopment in China.  Environ Res 142:104-111.  
10.1016/j.envres.2015.06.008.  

Dingemans MM, de Groot A, van Kleef RG, et al.  2008.  Hydroxylation increases the neurotoxic 
potential of BDE-47 to affect exocytosis and calcium homeostasis in PC12 cells.  Environ Health 
Perspect 116(5):637-643. 

Dingemans MM, Heusinkveld HJ, Bergman A, et al.  2010a.  Bromination pattern of hydroxylated 
metabolites of BDE-47 affects their potency to release calcium from intracellular stores in PC12 cells. 
Environ Health Perspect 118(4):519-525. 

Dingemans MM, Ramakers GM, Gardoni F, et al.  2007.  Neonatal exposure to brominated flame 
retardant BDE-47 reduces long-term potentiation and postsynaptic protein levels in mouse hippocampus.  
Environ Health Perspect 115(6):865-870. 

Dingemans MM, van den Berg M, Bergman A, et al.  2010b.  Calcium-related processes involved in the 
inhibition of depolarization-evoked calcium increase by hydroxylated PBDEs in PC12 cells. Toxicol Sci 
114(2):302-309. 

Dingemans MM, van den Berg M, Westerink RH.  2011. Neurotoxicity of brominated flame retardants: 
(In)direct effects of parent and hydroxylated polybrominated diphenyl ethers on the (developing) nervous 
system.  Environ Health Perspect 119(7):900-907. 



   
 

 
 
 

 
 
 
 
 

     
     

 
 

     
 

    
 

 

   

 
 

   
    

 
  

  
 

 
   

  
 

  
 

 
  

  
 

 
  

 
  

 
 

   
 

 
 

  
 

    
   

 
 

  
   

 

PBDEs 476 

9.  REFERENCES 

Dishaw LV, Powers CM, Ryde IT, et al.  2011. Is the pentaBDE replacement, tris (1,3-dichloro-2-propyl) 
phosphate (TDCPP), a developmental neurotoxicant? Studies in PC12 cells.  Toxicol Appl Pharmacol 
256(3):281-289. 

Dodder NG, Strandberg B, Hites RA.  2000. Concentrations and spatial variations of polybrominated 
diphenyl ethers in fish and air from the northeastern United States.  Organohalogen Compounds 47:69-72. 

Dodder NG, Strandberg B, Hites RA.  2002. Concentrations and spatial variations of polybrominated 
diphenyl ethers and several organochlorine compounds in fishes from the northeastern United States. 
Environ Sci Technol 36(2):146-151. 

DOE.  2012. Table 3:  Protective Action Criteria (PAC) Rev 27 based on applicable 60-minute AEGLs, 
ERPGs, or TEELs.  The chemicals are listed by CASRN.  February 2012.  Oak Ridge, TN:  U.S. 
Department of Energy and Subcommittee on Consequence Assessment and Protective Actions (SCAPA).  
http://www.atlintl.com/DOE/teels/teel/Table3.pdf. September 9, 2014. 

Domino EF, Wright DD, Domino SE.  1980. GC-EC analysis of polybrominated biphenyl constituents of 
Firemaster FF-1 using tetrabromobiphenyl as an internal standard. J Anal Toxicol 4:299-304. 

Donauer S, Chen A, Xu Y, et al.  2015.  Prenatal exposure to polybrominated diphenyl ethers and 
polyfluoroalkyl chemicals and infant neurobehavior.  J Pediatr 166(3):736-742.  
10.1016/j.jpeds.2014.11.021.  

Dong Y, Li L, Bie P, et al.  2014. Polybrominated diphenyl ethers in farmland soils:  Source 
characterization, deposition contribution and apportionment.  Sci Total Environ 466-467:524-532. 

Donnelly J, Grange AH, Nunn NJ, et al.  1987.  Analysis of thermoplastic resins for brominated 
dibenzofurans.  Biomed Environ Mass Spectrom 18(10):884-896.  

Dow Chemical Co.  1975.  Results of a reproduction study in rats maintained on diets containing 
decabromodiphenyl oxide. Dow Chemical Company.  Submitted to U.S. Environmental Protection 
Agency under TSCA Section 8D.  OTS0522252.  

Dow Chemical Co.  1985.  Decabromodiphenyloxide: A summary of an oral teratology study in Sprague-
Dawley rats with cover letter dated 030890.  Dow Chemical Company.  Submitted to the U.S. 
Environmental Protection Agency under TSCA Section 8D.  OTS0522284.  

Dreiem A, Okoniewski RJ, Brosch KO, et al.  2010.  Polychlorinated biphenyls and polybrominated 
diphenyl ethers alter striatal dopamine neurochemistry in synaptosomes from developing rats in an 
additive manner.  Toxicol Sci 118(1):150-159. 

Driscoll LL, Gibson AM, Hieb A.  2009.  Chronic postnatal DE-71 exposure:  Effects on learning, 
attention and thyroxine levels.  Neurotoxicol Teratol 31(2):76-84. 

Driscoll LL, Kaplan J, Bucuvalas E, et al.  2012.  Acute postnatal exposure to the pentaBDE commercial 
mixture DE-71 at 5 or 15 mg/kg/day does not produce learning or attention deficits in rats.  Neurotoxicol 
Teratol 34(1):20-26. 

Dufault C, Poles G, Driscoll LL.  2005.  Brief postnatal PBDE exposure alters learning and the 
cholinergic modulation of attention in rats. Toxicol Sci 88(1):172-180. 

http://www.atlintl.com/DOE/teels/teel/Table3.pdf


   
 

 
 
 

 
 
 
 
 

 
      

 
 

  
 

 
  

     
 

 
  

  
 

  
 

 
 

 
 

    
  

 
 

  
 

 
   

   
 

   
 

 
  

  
 

 
     

 
   

  
 

 
   

  
  

 
 

  
  

 

PBDEs 477 

9.  REFERENCES 

Dumler R, Lenoir D, Thoma H, et al.  1990. Thermal formation of polybrominated dibenzofurans and 
dioxins from decabromodiphenyl ether flame retardants influence of antimony-III oxide and the polymer 
matrix.  Chemosphere 20(10-12):1867-1874. 

Dumler R, Thoma H, Lenoir D, et al. 1989. PBDF and PBDD from the combustion of bromine 
containing flame retarded polymers:  A survey.  Chemosphere 19(12):2023-2031. 

Dunnick JK, Brix A, Cunny H, et al.  2012.  Characterization of polybrominated diphenyl ether toxicity in 
Wistar Han rats and use of liver microarray data for predicting disease susceptibilities. Toxicol Pathol 
40(1):93-106. 

Easton MDL, Luszniak D, Von der Geest E.  2002.  Preliminary examination of contaminant loadings in 
farmed salmon, wild salmon and commercial salmon feed.  Chemosphere 46(7):1053-1074. 

Ebert J, Lorenze W, Bahadir M.  1999.  Optimization of the analytical performance of polybrominated 
dibenzo-p-dioxins and dibenzofurans (PBDD-F).  Chemosphere 39(6):977-986. 

EC.  2014.  Report from the commission on the working of committees during 2008.  Brussels:  European 
Commission. 

Eggesbo M, Thomsen C, Jorgensen JV, et al. 2011. Associations between brominated flame retardants in 
human milk and thyroid-stimulating hormone (TSH) in neonates.  Environ Res 111(6):737-743. 

Eguchi A, Nomiyama K, Minh Tue N, et al.  2015. Residue profiles of organohalogen compounds in 
human serum from e-waste recycling sites in North Vietnam:  Association with thyroid hormone levels.  
Environ Res 137:440-449.  10.1016/j.envres.2015.01.007.  

Eisenreich SJ, Looney BB, Thornton JD.  1981.  Airborne organic contaminants in the Great Lakes 
ecosystem.  Environ Sci Technol 15(1):30-38. 

Ek CJ, Dziegielewska KM, Habgood MD, et al.  2012.  Barriers in the developing brain and 
neurotoxicology.  Neurotoxicology 33(3):586-604. 

el Dareer SM, Kalin JR, Tillery KF, et al. 1987. Disposition of decabromobiphenyl ether in rats dosed 
intravenously or by feeding.  J Toxicol Environ Health 22(4):405-415. 

Eljarrat E, Lacorte S, Barcelo D.  2002.  Optimization of congener-specific analysis of 40 polybrominated 
diphenyl ethers by gas chromatography/mass spectrometry. J Mass Spectrom 37(1):76-84. 

Ellis-Hutchings RG, Cherr GN, Hanna LA, et al.  2006.  Polybrominated diphenyl ether (PBDE)-induced 
alterations in vitamin A and thyroid hormone concentrations in the rat during lactation and early postnatal 
development.  Toxicol Appl Pharmacol 215(2):135-145. 

Ellis-Hutchings RG, Cherr GN, Hanna LA, et al.  2009.  The effects of marginal maternal vitamin A 
status on penta-brominated diphenyl ether mixture-induced alterations in maternal and conceptal vitamin 
A and fetal development in the Sprague Dawley rat.  Birth Defects Res B Dev Reprod Toxicol 86(1):48
57. 

Emond C, Raymer JH, Studabaker WB, et al.  2010. A physiologically based pharmacokinetic model for 
developmental exposure to BDE-47 in rats.  Toxicol Appl Pharmacol 242(3):290-298. 



   
 

 
 
 

 
 
 
 
 

    
 

 
 

  
   

  
 

  
  

  
 

   
  

 
 

   
 

 
 

 
 

    
    

 

 
 

  
  

 
 

   
  

  
 

 
     

 

 
 

  

 
 

 
  

 
 

PBDEs 478 

9.  REFERENCES 

Emond C, Sanders JM, Wikoff D, et al.  2013.  Proposed mechanistic description of dose-dependent 
BDE-47 urinary elimination in mice using a physiologically based pharmacokinetic model.  Toxicol Appl 
Pharmacol 273(2):335-344.  

ENVIRON.  2003a.  Voluntary children’s chemical evaluation program pilot.  Tier I assessment of the 
potential health risks to children associated with exposure to the commercial octabromodiphenyl ether 
product.  CAS No. 32536-52-0.  Emeryville, CA:  ENVIRON Int. Corp. 

ENVIRON.  2003b. Voluntary children’s chemical evaluation program pilot.  Tier I assessment of the 
potential health risks to children associated with exposure to the commercial pentabromodiphenyl ether 
product.  CAS No. 32534-81-9.  Emeryville, CA:  ENVIRON Int. Corp. 

EPA.  1990. Interim methods for development of inhalation reference concentrations.  Washington, DC: 
U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Office of 
Research and Development, Environmental Criteria and Assessment Office.  EPA600890066A. 

EPA.  1995. Toxic chemical release inventory.  Reporting form R and instructions.  Washington, DC: 
U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics.  EPA745K95051. 

EPA.  1997. Special report on environmental endocrine disruption:  An effects assessment and analysis.  
Washington, DC:  U.S. Environmental Protection Agency, Risk Assessment Forum.  EPA630R96012. 

EPA.  1998a.  Appendix A.  Chemical substances subject to proposed or final TSCA rules or orders.  In: 
Instructions for reporting for the 1998 partial updating of the TSCA chemical inventory data base.  
Washington, DC:  U.S. Environmental Protection Agency, Office of Prevention Pesticides and Toxic 
Substances, A-1 to A-10.  http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=700004YF.txt. September 24, 
2014. 

EPA.  1998b. Notice of availability of draft RCRA waste minimization PBT chemical list.  U.S. 
Environmental Protection Agency.  Federal Register 63 FR 60332.  http:// www.gpo.gov/fdsys/pkg/FR
1998-11-09/pdf/98-29952.pdf.  September 10, 2014. 

EPA.  2005. Toxic chemical release inventory reporting forms and instructions: Revised 2004 version.  
Section 313 of the Emergency Planning and Community Right-to-Know Act (Title III of the Superfund 
Amendments and Reauthorization Act of 1986).  U.S. Environmental Protection Agency, Office of 
Environmental Information.  EPA260B05001. 

EPA.  2006. List of lists. Consolidated list of chemicals subject to the Emergency Planning and 
Community Right-to-Know Act (EPCRA) and Section 112(r) of the Clean Air Act.  Washington, D.C.:  
U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, 1-38.  
EPA550B01003.  http://www.epa.gov/emergencies/docs/chem/title3_Oct_2006.pdf. September 24, 2014. 

EPA.  2008a.  Toxicological review of 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) (CAS No. 60348
60-9).  In support of summary information on the Integrated Risk Information System (IRIS).  
Washington, DC:  U.S. Environmental Protection Agency.  
http://www.epa.gov/iris/toxreviews/1008tr.pdf. December 19, 2014. 

EPA.  2008b. Toxicological review of decabromodiphenyl ether (BDE-209) (CAS No. 1163-19-5).  In 
support of summary information on the Integrated Risk Information System (IRIS).  Washington, DC: 
U.S. Environmental Protection Agency.  http://www.epa.gov/iris/toxreviews/0035tr.pdf.  December 19, 
2014. 

http://www.epa.gov/iris/toxreviews/0035tr.pdf
http://www.epa.gov/iris/toxreviews/1008tr.pdf
http://www.epa.gov/emergencies/docs/chem/title3_Oct_2006.pdf
www.gpo.gov/fdsys/pkg/FR
http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=700004YF.txt


   
 

 
 
 

 
 
 
 
 

 

 
  

 
 

 
  

 
 

 

 
 

 
 

 
 

   
  

 
  
  

 
  

 
 

 
 

 
 

 
  

   

 
 

  
 

 
 

     
  

 
 

 

PBDEs 479 

9.  REFERENCES 

EPA.  2008c.  Toxicological review of 2,2',4,4',5,5'-hexabromodiphenyl ether (BDE-153) (CAS No. 
68631-49-2).  In support of summary information on the Integrated Risk Information System (IRIS).  
Washington, DC: U.S. Environmental Protection Agency.  
http://www.epa.gov/iris/toxreviews/1009tr.pdf. December 18, 2014 

EPA.  2008d. Toxicological review of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) (CAS No. 5436-43
1).  In support of summary information on the Integrated Risk Information System (IRIS).  Washington, 
DC:  U.S. Environmental Protection Agency.  http://www.epa.gov/iris/toxreviews/1010tr.pdf. December 
19, 2014 

EPA.  2009a.  Drinking water contaminant candidate list 3-final.  U.S. Environmental Protection Agency.  
Federal Register 74 FR 51850:51850-51862.  http:// www.gpo.gov/fdsys/pkg/FR-2009-10-08/pdf/E9
24287.pdf.  September 9, 2014. 

EPA.  2009b. National primary drinking water regulations.  Washington, DC:  U.S. Environmental 
Protection Agency, Office of Ground Water and Drinking Water.  EPA816F090004.  
http://water.epa.gov/drink/contaminants/upload/mcl-2.pdf. September 10, 2014. 

EPA.  2009c.  The national study of chemical residues in lake fish tissue.  Washington, DC:  U.S. 
Environmental Protection Agency, Office of Water.  EPA823R09006. 

EPA.  2010. An exposure assessment of polybrominated diphenyl ethers.  Washington, DC:  U.S. 
Environmental Protection Agency, Office of Research and Development.  EPA600R08086F. 

EPA.  2012. 2012 Edition of the drinking water standards and health advisories.  Washington, DC:  U.S. 
Environmental Protection Agency, Office of Water.  EPA822S12001.  
http://water.epa.gov/action/advisories/drinking/upload/dwstandards2012.pdf. September 9, 2014. 

EPA.  2013a.  AEGL chemical data.  Final AEGLs (131).  Washington, DC:  U.S. Environmental 
Protection Agency, Office of Pollution Prevention and Toxics.  
http://www.epa.gov/oppt/aegl/pubs/compiled_aegls_update_nov2013.pdf. September 9, 2014. 

EPA.  2013b. List of substances.  Table 1 to 68.130-List of regulated toxic substances and threshold 
quantities for accidental release prevention.  U.S. Environmental Protection Agency.  Code of Federal 
Regulations 40 CFR 68.130, Subpart F.  http:// www.gpo.gov/fdsys/pkg/CFR-2013-title40
vol16/pdf/CFR-2013-title40-vol16-sec68-130.pdf.  September 24, 2014. 

EPA.  2013c.  Designation of hazardous substances.  U.S. Environmental Protection Agency.  Code of 
Federal Regulations 40 CFR 116.4, Subpart D.  http:// www.gpo.gov/fdsys/pkg/CFR-2013-title40
vol23/pdf/CFR-2013-title40-vol23-sec116-4.pdf.  September 9, 2014. 

EPA.  2013d. Determination of reportable quantities.  Table 117.3.  Reportable quantities of hazardous 
substances designated pursuant to section 311 of the Clean Water Act.  U.S. Environmental Protection 
Agency.  Code of Federal Regulations 40 CFR 117.3, Subpart A.  http:// www.gpo.gov/fdsys/pkg/CFR
2013-title40-vol23/pdf/CFR-2013-title40-vol23-part117-subpartA.pdf.  September 9, 2014. 

www.gpo.gov/fdsys/pkg/CFR
www.gpo.gov/fdsys/pkg/CFR-2013-title40
www.gpo.gov/fdsys/pkg/CFR-2013-title40
http://www.epa.gov/oppt/aegl/pubs/compiled_aegls_update_nov2013.pdf
http://water.epa.gov/action/advisories/drinking/upload/dwstandards2012.pdf
http://water.epa.gov/drink/contaminants/upload/mcl-2.pdf
www.gpo.gov/fdsys/pkg/FR-2009-10-08/pdf/E9
http://www.epa.gov/iris/toxreviews/1010tr.pdf
http://www.epa.gov/iris/toxreviews/1009tr.pdf


   
 

 
 
 

 
 
 
 
 

   

 
 

 

 
 

   
   

 
 

    
 

 
 

 
 

   

 
 

  
  

 
 

 
 

   
 

 
  

  
 

 
 

 
 

  

 
 

  
  

 
 

  
  

  

PBDEs 480 

9.  REFERENCES 

EPA.  2013e.  Identification and listing of hazardous waste.  Appendix VIII to Part 261-Hazardous 
constituents.  U.S. Environmental Protection Agency.  Code of Federal Regulations 40 CFR 261, 
Appendix VIII to Part 261.  http:// www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol27/pdf/CFR-2013
title40-vol27-part261-appVIII.pdf.  September 10, 2014. 

EPA.  2013f.  Groundwater monitoring list.  U.S. Environmental Protection Agency.  Code of Federal 
Regulations 40 CFR 264, Appendix IX to Part 264.  http:// www.gpo.gov/fdsys/pkg/CFR-2013-title40
vol27/pdf/CFR-2013-title40-vol27-part264-appIX.pdf.  September 10, 2014. 

EPA.  2013g.  Designation of hazardous substances.  Table 302.4-List of hazardous substances and 
reportable quantities.  U.S. Environmental Protection Agency.  Code of Federal Regulations 40 CFR 
302.4.  http:// www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol29/pdf/CFR-2013-title40-vol29-sec302
4.pdf.  September 10, 2014. 

EPA.  2013h. Chemicals and chemical categories to which this part applies.  U.S. Environmental 
Protection Agency.  Code of Federal Regulations 40 CFR 372.65, Subpart D.  http:// 
www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol29/pdf/CFR-2013-title40-vol29-part372.pdf.  September 
10, 2014. 

EPA.  2013i.  The list of extremely hazardous substances and their threshold planning quantities.  U.S. 
Environmental Protection Agency.  Code of Federal Regulations 40 CFR 355, Appendix A to Part 355. 
http:// www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol29/pdf/CFR-2013-title40-vol29-part355-appA.pdf.  
September 10, 2014. 

EPA.  2013j.  Semiannual regulatory flexibility agenda and semiannual regulatory agenda.  U.S. 
Environmental Protection Agency.  http://www.reginfo.gov. August 12, 2014. 

EPA.  2013k.  Contaminants of Emerging Concern (CECs) in fish:  Polybrominated diphenyl ethers 
(PBDEs).  Washington, DC:  U.S. Environmental Protection Agency, Office of Water.  EPA820F13003. 

EPA.  2014a.  The Clean Air Act amendments of 1990 list of hazardous air pollutants.  Washington, DC: 
U.S. Environmental Protection Agency.  http://www.epa.gov/ttn/atw/orig189.html. September 9, 2014. 

EPA.  2014b. National ambient air quality standards (NAAQS).  Washington, DC:  U.S. Environmental 
Protection Agency, Office of Air and Radiation.  http://www.epa.gov/air/criteria.html. January 08, 2014. 

EPA.  2014c.  National recommended water quality criteria.  Washington, DC:  U.S. Environmental 
Protection Agency, Office of Water, Office of Science and Technology.  
http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm. January 08, 2014. 

EPA.  2014d. Master testing list.  Washington, DC:  U.S. Environmental Protection Agency, Office of 
Pollution Prevention and Toxics.  http://www.epa.gov/opptintr/chemtest/pubs/index1.pdf. September 10, 
2014. 

EPA.  2014e.  Estimation Program Interface Suite™ for Microsoft Windows®, v4.10.  U.S. 
Environmental Protection Agency.  http://www.epa.gov/opptintr/exposure/pubs/episuitedl.htm. October 
1, 2014. 

Eriksson P, Fischer C, Fredriksson A.  2006.  Polybrominated diphenyl ethers, a group of brominated 
flame retardants, can interact with polychlorinated biphenyls in enhancing developmental 
neurobehavioral defects.  Toxicol Sci 94(2):302-309. 

http://www.epa.gov/opptintr/exposure/pubs/episuitedl.htm
http://www.epa.gov/opptintr/chemtest/pubs/index1.pdf
http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm
http://www.epa.gov/air/criteria.html
http://www.epa.gov/ttn/atw/orig189.html
http:http://www.reginfo.gov
www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol29/pdf/CFR-2013-title40-vol29-part355-appA.pdf
www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol29/pdf/CFR-2013-title40-vol29-part372.pdf
www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol29/pdf/CFR-2013-title40-vol29-sec302
www.gpo.gov/fdsys/pkg/CFR-2013-title40
www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol27/pdf/CFR-2013


   
 

 
 
 

 
 
 
 
 

 

   
 

 
  

   
 

 
 

 
 

  
 

 
 

  
  

 
 

  
   

 
 

   
 

 
 

 
 

  
   

 
 

  
 

 
      

  
 

 
 

    
 

   
  

 
 

  
 

PBDEs 481 

9.  REFERENCES 

Eriksson P, Jakobsson E, Fredriksson A.  1998.  Developmental neurotoxicity of brominated flame-
retardants, polybrominated diphenyl ethers, and tetrabromo-bis-phenol A.  Organohalogen Compounds 
35:375-377. 

Eriksson P, Jakobsson E, Fredriksson A.  2001.  Brominated flame retardants:  A novel class of 
developmental neurotoxicants in our environment.  Environ Health Perspect 109(9):903-908. 

Eriksson P, Viberg H, Fischer C, et al.  2002a.  A comparison on developmental neurotoxic effects of 
hexabromocyclododecane, 2,2',4,4',5,5'-hexabromodiphenyl ether (PBDE 153) and 2,2',4,4',5,5'
hexachlorobiphenyl (PCB 153).  Organohalogen Compounds 57:389-390. 

Eriksson P, Viberg H, Jakobsson E, et al.  1999. PBDE 2,2', 4,4', 5-pentabromodiphenyl ether, causes 
permanent neurotoxic effects during a defined period of neonatal brain development.  Organohalogen 
Compounds 40:333-336. 

Eriksson P, Viberg H, Jakobsson E, et al.  2002b. A brominated retardant, 2,2'4,4',5-pentabromodiphenyl 
ether:  Uptake, retention, and induction of neurobehavioral alterations in mice during a critical phase of 
neonatal brain development.  Toxicol Sci 67:98-103. 

Erkin-Cakmak A, Harley KG, Chevrier J, et al.  2015.  In utero and childhood polybrominated diphenyl 
ether exposures and body mass at age 7 years: The CHAMACOS study.  Environ Health Perspect 
123(6):636-642.  10.1289/ehp.1408417.  

Ernest SR, Wade MG, Lalancette C, et al.  2012.  Effects of chronic exposure to an environmentally 
relevant mixture of brominated flame retardants on the reproductive and thyroid system in adult male rats.  
Toxicol Sci 127(2):496-507. 

Erratico CA, Moffatt SC, Bandiera SM.  2011.  Comparative oxidative metabolism of BDE-47 and BDE
99 by rat hepatic microsomes.  Toxicol Sci 123(1):37-47.  

Erratico CA, Szeitz A, Bandiera SM.  2012.  Oxidative metabolism of BDE-99 by human liver 
microsomes:  Predominant role of CYP2B6.  Toxicol Sci 129(2):280-292. 

Erratico CA, Szeitz A, Bandiera SM.  2013.  Biotransformation of 2,2',4,4'-tetrabromodiphenyl ether 
(BDE-47) by human liver microsomes:  Identification of cytochrome P450 2B6 as the major enzyme 
involved.  Chem Res Toxicol 26(5):721-731. 

Eskenazi B, Chevrier J, Rauch SA, et al.  2013. In utero and childhood polybrominated diphenyl ether 
(PBDE) exposures and neurodevelopment in the CHAMACOS study.  Environ Health Perspect 
121(2):257-262.  10.1289/ehp.1205597.  

EU.  2001. Diphenyl ether, pentabromo derivative (pentabromodiphenyl ether).  European Union Risk 
Assessment Report.  Luxembourg:  Office for Official Publications of the European Committees, 1-124. 

EU.  2002. Bis(pentabromophenyl) ether.  European Union Risk Assessment Report.  Luxembourg: 
Office for Official Publications of the European Committees.  EINECS No.  214-604-9, 1-279. 

EU.  2003a.  Diphenyl ether, octabromo derivative.  European Union Risk Assessment Report. 
Luxembourg:  Office for Official Publications of the European Committees, 1-279. 



   
 

 
 
 

 
 
 
 
 

 

 
 

     
 

 
 

 
 

 
 

  
 

 
 

   
   

 
 

  
 

 
 

 
 

  
 

 
     

 
 

   
 

 
 

 
  

 
 

 
 

    
 

    
    

 
  

    
 

PBDEs 482 

9.  REFERENCES 

EU.  2003b. Consolidated TEXT.  CONSLEG system.  Office for Official Publications of the European 
Communities.  European Union.  http://europa.eu.int/eru
lex/en/consleg/pdf/2003/en_2003L0011_do_001.pdf.  September 01, 2004. 

Evandri MG, Mastrangelo S, Costa LG, et al. 2003. In vitro assessment of mutagenicity and 
clastogenicity of BDE-99, a pentabrominated diphenyl ether flame retardant.  Environ Mol Mutagen 
42(2):85-90. 

Eyster JT, Humphrey HEB, Kimbrough RD.  1983. Partitioning of polybrominated biphenyls (PBBs) in 
serum, adipose tissue, breast milk, placenta, cord blood, and biliary fluid, and feces.  Arch Environ Health 
38:47-53. 

Fan CY, Besas J, Kodavanti PR.  2010.  Changes in mitogen-activated protein kinase in cerebellar granule 
neurons by polybrominated diphenyl ethers and polychlorinated biphenyls.  Toxicol Appl Pharmacol 
245(1):1-8. 

Fattore E, Filipsson AF, Hanberg A, et al.  2001.  Toxicity of a technical mixture of polybrominated 
diphenyl ethers following 28 days of oral exposure in male and female rats.  Organohalogen Compounds 
53:357-361 

Fawkes J, Albro PW, Walters DB, et al.  1982.  Comparison of extraction methods for determination of 
polybrominated biphenyl residues in animal tissue.  Anal Chem 54:1866-1871. 

FDA.  2013. Bottled water.  U.S. Food and Drug Administration.  Code of Federal Regulations 21 CFR 
165.110, Subpart B.  

FDA.  2014. Everything added to food in the United States (EAFUS).  Washington, DC:  U.S. Food and 
Drug Administration.  http://www.accessdata.fda.gov/scripts/fcn/fcnnavigation.cfm?rpt=eafuslisting. 
January 08, 2014. 

Fehringer NV. 1975. Determination of polybrominated biphenyl residues in dairy products. J Assoc Off 
Anal Chem 58(5):978-982. 

Feng C, Xu Q, Jin Y, et al.  2016a. Determination of urinary bromophenols (BrPs) as potential 
biomarkers for human exposure to polybrominated diphenyl ethers (PBDEs) using gas chromatography-
tandem mass spectrometry (GC-MS/MS).  J Chromatogr B Analyt Technol Biomed Life Sci 1022:70-74.  
10.1016/j.jchromb.2016.03.041.  

Feng Y, Hu Q, Meng G, et al.  2015.  Simulating long-term occupational exposure to decabrominated 
diphenyl ether using C57BL/6 mice:  Biodistribution and pathology.  Chemosphere 128:118-124.  
10.1016/j.chemosphere.2015.01.012.  

Feng Y, Zeng W, Wang Y, et al.  2016b.  Long-term exposure to high levels of decabrominated diphenyl 
ether inhibits CD4 T-cell functions in C57Bl/6 mice.  J Appl Toxicol 36(9):1112-1119.  10.1002/jat.3270.  

Feo ML, Gross MS, McGarrigle BP, et al. 2013.  Biotransformation of BDE-47 to potentially toxic 
metabolites is predominantly mediated by human CYP2B6.  Environ Health Perspect 121(4):440-446. 

Fernlof G, Gadhasson I, Podra K, et al.  1997.  Lack of effects of some individual polybrominated 
diphenyl ether (PBDE) and polychlorinated biphenyl congeners on human lymphocyte functions in vitro. 
Toxicol Lett 90(2-3):189-197. 

http://www.accessdata.fda.gov/scripts/fcn/fcnnavigation.cfm?rpt=eafuslisting
http://europa.eu.int/eru


   
 

 
 
 

 
 
 
 
 

 
 

  
 

 
   

     
 

 

     
 

 
  

   
 

     
  

 
 

 
 

   
  

 
    

 
 

   
  

 
     

 
 

  
 

 

 
 

 
  

 
  

 
   

    
 

PBDEs 483 

9.  REFERENCES 

Fischer C, Fredriksson A, Eriksson P.  2008. Coexposure of neonatal mice to a flame retardant PBDE 99 
(2,2',4,4',5-pentabromodiphenyl ether) and methyl mercury enhances developmental neurotoxic defects. 
Toxicol Sci 101(2):275-285. 

Fisher DA, Brown RS.  2000.  Thyroid physiology in the prenatal period and during childhood.  In: 
Braverman LE, Utiger RD, eds. Werner and Ingbar’s the thyroid.  Philadelphia, PA:  Lippincott Williams 
& Wilkins, 959-972. 

Fitzgerald EF, Shrestha S, Gomez MI, et al.  2012. Polybrominated diphenyl ethers (PBDEs), 
polychlorinated biphenyls (PCBs) and neuropsychological status among older adults in New York. 
Neurotoxicology 33(1):8-15. 

Fomon SJ.  1966.  Body composition of the infant:  Part I:  The male "reference infant".  In:  Falkner F, 
ed.  Human development.  Philadelphia, PA: WB Saunders, 239-246. 

Fomon SJ, Haschke F, Ziegler EE, et al.  1982. Body composition of reference children from birth to age 
10 years.  Am J Clin Nutr 35(Suppl 5):1169-1175. 

Foster WG, Gregorovich S, Morrison KM, et al.  2011.  Human maternal and umbilical cord blood 
concentrations of polybrominated diphenyl ethers.  Chemosphere 84(10):1301-1309.  
10.1016/j.chemosphere.2011.05.028.  

Fowles JR, Fairbrother A, Baecher-Steppan L, et al.  1994.  Immunologic and endocrine effects of the 
flame-retardant pentabromodiphenyl ether (DE-71) in C57BL/6J mice.  Toxicology 86(1-2):49-61. 

Frederiksen M, Vorkamp K, Mathiesen L, et al. 2010.  Placental transfer of the polybrominated diphenyl 
ethers BDE-47, BDE-99 and BDE-209 in a human placenta perfusion system:  An experimental study.  
Environ Health 9:32. 

Frederiksen M, Vorkamp K, Thomsen M, et al.  2009. Human internal and external exposure to PBDEs– 
a review of levels and sources.  Int J Hyg Environ Health 212(2):109-134.  

Fries GF.  1985.  The PBB episode in Michigan:  An overall appraisal.  CRC Crit Rev Toxicol 16:105
156. 

Frouin H, Lebeof M, Hammill M, et al.  2011.  PBDEs in serum and blubber of harbor, grey and harp seal 
pups from Eastern Canada.  Chemosphere 82(5):663-669. 

Fujii Y, Nishimura E, Kato Y, et al.  2014.  Dietary exposure to phenolic and methoxylated 
organohalogen contaminants in relation to their concentrations in breast milk and serum in Japan.  
Environ Int 63:19-25 

Fujimoto H, Woo GH, Inoue K, et al.  2011. Impaired oligodendroglial development by 
decabromodiphenyl ether in rat offspring after maternal exposure from mid-gestation through lactation.  
Reprod Toxicol 31(1):86-94.  

Furl C, Meredith C.  2010.  PBT monitoring:  PBDE flame retardants in Spokane River fish, 2009.  
Olympia, Washington: Washington State Department of Ecology, Toxics Studies Unit. 



   
 

 
 
 

 
 
 
 
 

    
   

 
 

   
 

 
 

 
   

    
 

 
  

   
 

 
  

 
  

 
 

  

   
 

     
   

 
    

   
 

 
 

 
 

  
   

 
  

 
 

   
  

  
 

 
   

 
 

PBDEs 484 

9.  REFERENCES 

Gallego E, Grimalt JO, Bartrons M, et al.  2007. Altitudinal gradients of PBDEs and PCBs in fish from 
European high mountain lakes.  Environ Sci Technol 41(7):2196-2202. 

Garcia-Reyero N, Escalon BL, Prats E, et al.  2014.  Effects of BDE-209 contaminated sediments on 
zebrafish development and potential implications to human health.  Environ Int 63:216-223. 

Gascon M, Fort M, Martinez D, et al.  2012. Polybrominated diphenyl ethers (PBDEs) in breast milk and 
neuropsychological development in infants.  Environ Health Perspect 120(12):1760-1765. 

Gascon M, Vrijheid M, Martinez D, et al.  2011. Effects of pre and postnatal exposure to low levels of 
polybromodiphenyl ethers on neurodevelopment and thyroid hormone levels at 4 years of age.  Environ 
Int 37(3):605-611. 

Gassmann K, Schreiber T, Dingemans MM, et al.  2014.  BDE-47 and 6-OH-BDE-47 modulate calcium 
homeostasis in primary fetal human neural progenitor cells via ryanodine receptor-independent 
mechanisms.  Arch Toxicol 88(8):1537-1548.  10.1007/s00204-014-1217-7.  

Gauthier MS, Rabasa-Lhoret R, Prud'homme D, et al.  2014. The metabolically healthy but obese 
phenotype is associated with lower plasma levels of persistent organic pollutants as compared to the 
metabolically abnormal obese phenotype.  J Clin Endocrinol Metab 99(6):E1061-1066.  10.1210/jc.2013
3935. 

Gaylor MO, Harvey E, Hale RC.  2013. Polybrominated diphenyl ether (PBDE) accumulation by 
earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and penta-BDE
amended soils.  Environ Sci Technol 47(23):13831-13839.  10.1021/es403750a.  

Gee JR, Moser VC. 2008. Acute postnatal exposure to brominated diphenylether 47 delays neuromotor 
ontogeny and alters motor activity in mice.  Neurotoxicol Teratol 30(2):79-87. 

Gee JR, Hedge JM, Moser VC.  2008.  Lack of alterations in thyroid hormones following exposure to 
polybrominated diphenyl ether 47 during a period of rapid brain development in mice.  Drug Chem 
Toxicol 31(2):245-254. 

Gill U, Chu I, Ryan JJ, et al.  2004. Polybrominated diphenyl ethers:  Human tissue levels and 
toxicology.  Rev Environ Contam Toxicol 183:55-97. 

Giwercman A, Carlsen E, Keiding N, et al.  1993.  Evidence for increasing incidence of abnormalities of 
the human testis:  A review.  Environ Health Perspect Suppl 101(2):65-71. 

Glinoer D, De Nayer P, Bourdoux P, et al. 1990. Regulation of maternal thyroid during pregnancy.  J 
Clin Endocrinol Metab 71:276-287. 

Great Lakes Chemical Corporation.  1978.  Octabromodiphenyl ether.  Subacute inhalation toxicity study 
in rats.  International Research and Development Corporation.  Submitted to the U.S. Environmental 
Protection Agency under TSCA Section 8D.  OTS0522293.  

Great Lakes Chemical Corporation.  2000.  A 90-day inhalation toxicity study of octabromodiphenyl 
oxide in albino rats, dated 04/04/02.  Submitted to the U.S. Environmental Protection Agency under 
TCSA Section 8E.  OTS0574171-1. 



   
 

 
 
 

 
 
 
 
 

 
  

 

 
 

    
  

 
 

 
  

  
  

 
    

  
 

 

  
 

  
   

 
 

  
  
 

 
   

 
 

  
    

 
 

  
  

 

    
 

  
  

 
  

  
 

 
 

PBDEs 485 

9.  REFERENCES 

Gregoraszczuk EL, Dobrzanska G, Karpeta A.  2015.  Effects of 2,2',4,4'-tetrabromodiphenyl ether 
(BDE47) on the enzymes of phase I (CYP2B1/2) and phase II (SULT1A and COMT) metabolism, and 
differences in the action of parent BDE-47 and its hydroxylated metabolites, 5-OH-BDE-47 and 6-OH
BDE47, on steroid secretion by luteal cells.  Environ Toxicol Pharmacol 40(2):498-507.  
10.1016/j.etap.2015.07.011.  

Gregoraszczuk EL, Siembida M, Grzyb D, et al.  2012.  Polybrominated diphenylethers (PBDEs) act as 
apoptotic factors in the corpus luteum in addition to having a short-term stimulatory effect on 
progesterone secretion by luteal cells.  Toxicol Mech Methods 22(2):131-138.  
10.3109/15376516.2011.606433.  

Gross MS, Butryn DM, McCarrigle BP, et al.  2015.  Primary role of cytochrome P450 2B6 in the 
oxidative metabolism of 2,2',4,4',6-pentabromodiphenyl ether (BDE-100) to hydroxylated BDEs.  Chem 
Res Toxicol [epub ahead of print]. 

Gump BB, Yun S, Kannan K.  2014.  Polybrominated diphenyl ether (PBDE) exposure in children: 
Possible associations with cardiovascular and psychological functions.  Environ Res 132:244-250.  
10.1016/j.envres.2014.04.009.  

Guo W, Holden A, Smith SC, et al.  2016.  PBDE levels in breast milk are decreasing in California.  
Chemosphere 150:505-513.  10.1016/j.chemosphere.2015.11.032. 

Gustafsson K, Bjork M, Burreau S, et al.  1999.  Bioaccumulation kinetic of brominated flame retardants 
(polybrominated diphenyl ethers) in blue mussels (Mytilus edulis).  Environ Toxicol Chem 18(6):1218
1224. 

Guyot R, Chatonnet F, Gillet B, et al.  2014.  Toxicogenomic analysis of the ability of brominated flame 
retardants TBBPA and BDE-209 to disrupt thyroid hormone signaling in neural cells.  Toxicology 
325:125-132.  10.1016/j.tox.2014.08.007.  

Guzelian PS, Henry CJ, Olin SS, eds.  1992. Similarities and differences between children and adults: 
Implications for risk assessment.  Washington, DC:  International Life Sciences Institute Press. 

Haddad S, Poulin P, Krishnan K.  2000. Relative lipid content as the sole mechanistic determinant of the 
adipose tissue:blood partition coefficients of highly lipophilic organic chemicals.  Chemosphere 
40(8):839-843. 

Hagenmaier H, She J, Benz T, et al.  1992.  Analysis of sewage sludge for polyhalogenated dibenzo-p
dioxins, dibenzofurans, and diphenylethers.  Chemosphere 25(1-10):1457-1462. 

Haglund PS, Zook DR, Buser H-R, et al.  1997.  Identification and quantification of polybrominated 
ethers and methoxy-polybrominated diphenyl ethers in Baltic biota.  Environ Sci Technol 31:3281-3287. 

Hagmar L, Bjork J, Sjodin A, et al.  2001.  Plasma levels of persistent organohalogens and hormone 
levels in adult male humans.  Arch Environ Health 56(2):138-143. 

Hagmar L, Jakobsson K, Thuresson K, et al.  2000.  Computer technicians are occupationally exposed to 
polybrominated diphenyl ethers and tetrabromobisphenol A.  Organohalogen Compounds 47:202-205. 

Hakk H, Huwe J, Lorentzsen M.  2001.  A mass balance study of a commercial pentabromodiphenyl ether 
mixture in male Sprague-Dawley rats.  Organohalogen Compounds 52:5-8. 



   
 

 
 
 

 
 
 
 
 

 
   

   
 

  
   

 
 

   
 

 
   

  
 

  
 

 
   

  
 

 
 

  
 

   
 

 
     

   
 

  
  

  
 

  
 

 
   

 
 

 
    

  
 

 
   

 
 

PBDEs 486 

9.  REFERENCES 

Hakk H, Huwe J, Low M, et al.  2006. Tissue disposition, excretion and metabolism of 2,2',4,4',6
pentabromodiphenyl ether (BDE-100) in male Sprague-Dawley rats.  Xenobiotica 36(1):79-94. 

Hakk H, Huwe JK, Larsen GL.  2009. Absorption, distribution, metabolism and excretion (ADME) study 
with 2,2',4,4',5,6'-hexabromodiphenyl ether (BDE-154) in male Sprague-Dawley rats. Xenobiotica 
39(1):46-56. 

Hakk H, Larsen G, Bergman A, et al.  2002b.  Binding of brominated diphenyl ethers to male rat carrier 
proteins.  Xenobiotica 32(12):1079-1091. 

Hakk H, Larsen G, Klasson-Wehler E.  2002a.  Tissue disposition, excretion and metabolism of 2,2',4,4'5
pentabromodiphenyl ether (BDE-99) in the male Sprague-Dawley rat.  Xenobiotica 32(5):369-382. 

Hale RC, Alaee M, Manchester-Neesvig JB, et al.  2003.  Polybrominated diphenyl ether flame retardants 
in the North American environment.  Environ Int 29:771-779. 

Hale RC, La Guardia MJ, Harvey EP, et al.  2000. Comparison of brominated diphenyl ether fire 
retardant and organochlorine burdens in fish from Virginia (USA).  Organohalogen Compounds 47:65
68. 

Hale RC, La Guardia MJ, Harvey EP, et al.  2001b.  Polybrominated diphenyl ether flame retardants in 
Virginia freshwater fishes (USA).  Environ Sci Technol 35(23):4585-4591. 

Hale RC, La Guardia MJ, Harvey EP, et al.  2001a. Persistent pollutants in land-applied sludges.  Nature 
412(6843):140-141. 

Hale RC, La Guardia MJ, Harvey EP, et al. 2002.  Potential role of fire retardant-treated polyurethane 
foam as a source of brominated diphenyl ethers to the US environment.  Chemosphere 46(5):729-735. 

Hale RC, La Guardia MJ, Harvey E, et al.  2012. Polybrominated diphenyl ethers in U.S. sewage sludges 
and biosolids: Temporal and geographical trends and uptake by corn following land application.  Environ 
Sci Technol 46(4):2055-2063. 

Hallgren S, Darnerud P.  1998.  Effects of polybrominated diphenyl ethers (PBDEs), polychlorinated 
biphenyls (PCBs) and chlorinated paraffins (CPs) on thyroid hormone levels and enzyme activities in rats. 
Organohalogen Compounds 35:391-394. 

Hallgren S, Darnerud PO. 2002. Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls 
(PCBs) and chlorinated paraffins (CPs) in rats-testing interactions and mechanisms for thyroid hormone 
effects.  Toxicology 177(2-3):227-243. 

Hallgren S, Viberg H. 2016.  Postnatal exposure to PFOS, but not PBDE 99, disturb dopaminergic gene 
transcription in the mouse CNS.  Environ Toxicol Pharmacol 41:121-126.  10.1016/j.etap.2015.11.016. 

Hallgren S, Fredriksson A, Viberg H.  2015. More signs of neurotoxicity of surfactants and flame 
retardants - Neonatal PFOS and PBDE 99 cause transcriptional alterations in cholinergic genes in the 
mouse CNS.  Environ Toxicol Pharmacol 40(2):409-416.  10.1016/j.etap.2015.06.014.  



   
 

 
 
 

 
 
 
 
 

  
 

 
 

    
    

 
 

  
  

 
   
   

 
  

  
 

  
   

  
 

 
 

 
 

  
 

 
    

 
 

 
 

 
 

   
   

 
    

 
 

    
 

 
 

  
  

 
  

   
 

PBDEs 487 

9.  REFERENCES 

Hallgren S, Sinjari T, Hakansson H, et al.  2001.  Effects of polybrominated diphenyl ethers (PBDEs) and 
polychlorinated biphenyls (PCBs) on thyroid hormone and vitamin A levels in rats and mice.  Arch 
Toxicol 75(4):200-208. 

Hamers T, Kamstra JH, Sonneveld E, et al.  2006.  In vitro profiling of the endocrine-disrupting potency 
of brominated flame retardants.  Toxicol Sci 92(1):157-173.  

Hamm S, Strikkeling M, Ranken PF, et al.  2001. Determination of polybrominated diphenyl ethers and 
PBDD/Fs during the recycling of high impact polystyrene containing decabromodiphenyl ether and 
antimony oxide.  Chemosphere 44(6):1353-1360. 

Han G, Ding G, Lou X, et al.  2011.  Correlations of PCBs, dioxin, and PBDE with TSH in children's 
blood in areas of computer E-waste recycling.  Biomed Environ Sci 24(2):112-116. 

Hardell L, Bavel B, Lindstrom G, et al.  2006.  In utero exposure to persistent organic pollutants in 
relation to testicular cancer risk.  Int J Androl 29(1):228-234. 

Hardell L, Lindstom G, van Bavel B, et al.  1998. Concentrations of the flame retardant 2,2',4,4'
tetrabrominated diphenyl ether in human adipose tissue in Swedish persons and the risk for non
Hodgkin's lymphoma.  Oncol Res 10(8):429-432. 

Hardy ML.  1999.  Regulatory status and environmental properties of brominated flame retardants 
undergoing risk assessment in the EU:  DBDPO, OBDPO, PEBDPO and HBCD.  Polym Degrad Stab 
64(3):545-556. 

Hardy ML.  2000a.  Properties of the major commercial PBDPO flame retardant, DBDPO, in comparison 
to PBB and PCB.  Organohalogen Compounds 47:233-236. 

Hardy ML.  2000b.  The toxicity of the commercial polybrominated diphenyl oxide flame retardants: 
DBDPO, OBDPO, PeBDPO.  Organohalogen Compounds 47:41-44. 

Hardy ML.  2001.  Assessment of reported decabromodiphenyl oxide blood and air levels in Swedish 
workers and their workplace.  The second international workshop on brominated flame retardants.  BFR 
2001. Stockholm, Sweden, 121-124. 

Hardy ML.  2002a.  A comparison of the properties of the major commercial PBDPO/PBDE product to 
those of major PBB and PCB products.  Chemosphere 45(5):717-728. 

Hardy ML.  2002b.  The toxicology of the three commercial polybrominated diphenyl oxide (ether) flame 
retardants.  Chemosphere 46(5):757-777. 

Hardy M, Biesemeier J, Manor O.  2001.  Results of a prenatal developmental toxicity study of 
decabromodiphenyl oxide in rats.  The second international workshop on brominated flame retardants.  
BFR 2001.  Stockholm, Sweden, 253-257. 

Hardy ML, Banasik M, Stedeford T.  2009.  Toxicology and human health assessment of 
decabromodiphenyl ether.  Crit Rev Toxicol 39 Suppl 3:1-44. 

Hardy ML, Schroeder R, Biesemeier J, et al.  2002.  Prenatal oral (gavage) developmental toxicity study 
of decabromodiphenyl oxide in rats.  Int J Toxicol 21:83-91. 



   
 

 
 
 

 
 
 
 
 

 
   

 
  

 
 

   
   

 
 

  
     

 
 

      
  

 
   

 
 

 
  

 
  

   
 

   
  

 
 

  
 

 
 

  
 

 
     

    
 

 
  

 
 

   
   

 
 

   
 

PBDEs 488 

9.  REFERENCES 

Harley KG, Chevrier J, Aguilar Schall R, et al.  2011.  Association of prenatal exposure to 
polybrominated diphenyl ethers and infant birth weight.  Am J Epidemiol 174(8):885-892. 

Harley KG, Marks AR, Chevrier J, et al.  2010.  PBDE concentrations in women's serum and 
fecundability.  Environ Health Perspect 118(5):699-704.  10.1093/aje/kwr212.  

Harner T.  2001.  Measurements of octanol-air partition coefficients (KOA) for polybrominated diphenyl 
ethers (PBDEs):  Predicting partitioning in the environment.  The second international workshop on 
brominated flame retardants.  BFR 2001.  Stockholm, Sweden, 55-58. 

Harrad S, Hunter S. 2006.  Concentrations of polybrominated diphenyl ethers in air and soil on a rural-
urban transect across a major UK conurbation. Environ Sci Technol 40(15):4548-4553. 

Harrad S, Hazrati S, Ibarra C.  2006. Concentrations of polychlorinated biphenyls in indoor air and 
polybrominated diphenyl ethers in indoor air and dust in Birmingham, United Kingdom: Implications for 
human exposure.  Environ Sci Technol 40(15):4633-4638. 

Harrad S, Ibarra C, Diamond M, et al.  2008.  Polybrominated diphenyl ethers in domestic indoor dust 
from Canada, New Zealand, United Kingdom and United States.  Environ Int 34(2):232-238. 

Harrad S, Wijesekera R, Hunter S, et al.  2004.  Preliminary assessment of U.K. human dietary and 
inhalation exposure to polybrominated diphenyl ethers.  Environ Sci Technol 38:2345-2350. 

Hazrati S, Harrad S.  2006.  Causes of variability in concentrations of polychlorinated biphenyls and 
polybrominated diphenyl ethers in indoor air.  Environ Sci Technol 40(24):7584-7589. 

Hazrati S, Harrad S.  2007.  Calibration of polyurethane foam (PUF) disk passive air samplers for 
quantitative measurement of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers 
(PBDEs):  Factors influencing sampling rates.  Chemosphere 67:448-455. 

He P, He W, Wang A, et al.  2008b. PBDE-47-induced oxidative stress, DNA damage and apoptosis in 
primary cultured rat hippocampal neurons.  Neurotoxicology 29(1):124-129. 

He P, Wang A, Niu Q, et al.  2011. Toxic effect of PBDE-47 on thyroid development, learning, and 
memory, and the interaction between PBDE-47 and PCB153 that enhances toxicity in rats.  Toxicol Ind 
Health 27(3):279-288.  

He P, Wang AG, Xia T, et al.  2009.  Mechanisms underlying the developmental neurotoxic effect of 
PBDE-47 and the enhanced toxicity associated with its combination with PCB153 in rats. 
Neurotoxicology 30(6):1088-1095. 

He W, He P, Wang A, et al.  2008a.  Effects of PBDE-47 on cytotoxicity and genotoxicity in human 
neuroblastoma cells in vitro. Mutat Res 649(1-2):62-70. 

He Y, Murphy MB, Yu RM, et al.  2008c.  Effects of 20 PBDE metabolites on steroidogenesis in the 
H295R cell line.  Toxicol Lett 176(3):230-238. 

Hearn LK, Hawker DW, Toms LM, et al.  2013.  Assessing exposure to polybrominated diphenyl ethers 
(PBDEs) for workers in the vicinity of a large recycling facility.  Ecotoxicol Environ Saf 92:222-228. 



   
 

 
 
 

 
 
 
 
 

  
 

  
 

 
  

   
 

 
    

  
 

 
 

  
   

 

   
 

  
  

 
   
    

 
   

  
 

     
 

 
 

 
 

 
   

  
 

 
  

  
 

     
 

 

PBDEs 489 

9.  REFERENCES 

Helleday T, Tuominen KL, Bergman A, et al.  1999.  Brominated flame retardants induce intragenic 
recombination in mammalian cells.  Mutat Res 439(2):137-147. 

Hendriks HS, Antunes Fernandes EC, Bergman A, et al.  2010. PCB-47, PBDE-47, and 6-OH-PBDE-47 
differentially modulate human GABAA and α4β2 nicotinic acetylcholine receptors.  Toxicol Sci 
118(2):635-642. 

Hendriks HS, Meijer M, Muilwijk M, et al.  2014.  A comparison of the in vitro cyto- and neurotoxicity 
of brominated and halogen-free flame retardants:  Prioritization in search for safe(r) alternatives.  Arch 
Toxicol 88(4):857-869.  10.1007/s00204-013-1187-1.  

Herbstman JB, Sjodin A, Apelberg BJ, et al. 2008. Birth delivery mode modifies the associations 
between prenatal polychlorinated biphenyl (PCB) and polybrominated diphenyl ether (PBDE) and 
neonatal thyroid hormone levels.  Environ Health Perspect 116(10):1376-1382. 

Herbstman JB, Sjodin A, Kurzon M, et al.  2010.  Prenatal exposure to PBDEs and neurodevelopment.  
Environ Health Perspect 118(5):712-719. 

Heredia L, Torrente M, Colomina MT, et al.  2012. Behavioral effects of oral subacute exposure to BDE
209 in young adult mice: A preliminary study.  Food Chem Toxicol 50(3-4):707-712. 

Hertz-Picciotto I, Bergman A, Fangstrom B, et al.  2011.  Polybrominated diphenyl ethers in relation to 
autism and developmental delay:  A case-control study.  Environ Health 10(1):1. 

Hesse JL, Powers RA.  1978.  Polybrominated biphenyl (PBB) contamination of the Pine River, Gratiot, 
and Midland counties, Michigan.  Environ Health Perspect 23:19-25. 

Hillery BR, Basu I, Sweet CW, et al.  1997. Temporal and spatial trends in a long-term study of gas-
phase PCB concentrations near the Great Lakes.  Environ Sci Technol 31:1811-1816. 

Hites RA.  2004. Polybrominated diphenyl ethers in the environment and in people:  A meta-analysis of 
concentrations.  Environ Sci Technol 38(4):945-956. 

Ho KL, Yau MS, Murphy MB, et al. 2015. Urinary bromophenol glucuronide and sulfate conjugates: 
Potential human exposure molecular markers for polybrominated diphenyl ethers.  Chemosphere 133:6
12. 10.1016/j.chemosphere.2015.03.003.  

Hoel DG, Davis DL, Miller AB, et al.  1992.  Trends in cancer mortality in 15 industrialized countries, 
1969-1986.  J Natl Cancer Inst 84(5):313-320. 

Hoffman K, Adgent M, Goldman BD, et al.  2012.  Lactational exposure to polybrominated diphenyl 
ethers and its relation to social and emotional development among toddlers.  Environ Health Perspect 
120(10):1438-1442. 

Hoffman K, Webster TF, Sjodin A, et al.  2016.  Toddler's behavior and its impacts on exposure to 
polybrominated diphenyl ethers. J Expo Sci Environ Epidemiol:1-5.  10.1038/jes.2016.11. 

Hoh E, Hites RA.  2005.  Brominated flame retardants in the atmosphere of the east-central United States. 
Environ Sci Technol 39(20):7794-7802. 

http:10.1038/jes.2016.11


   
 

 
 
 

 
 
 
 
 

      
    

 
 

   

 
 

  
 

 
 

 
  

 
     

   
 

 
  

 
 

    
 

 
  

  
 

 

   
 

 
 

 
 

 
 

 
  

 
 

 
 

  
  

 
 

    
 

 

PBDEs 490 

9.  REFERENCES 

Hollowell G, Norman W, Staehling W, et al.  1998. Iodine nutrition in the United States. Trends and 
public health implications: Iodine excretion data from national health and nutrition examination surveys I 
and III (1971-1974 and 1988-1994).  J Clin Endocrinol Metab 83(10):3401-3408. 

Holmes AK, Koller KR, Kieszak SM, et al.  2014.  Case-control study of breast cancer and exposure to 
synthetic environmental chemicals among Alaska Native women.  Int J Circumpolar Health 73:25760.  
10.3402/ijch.v73.25760.  

Hong SK, Sohn KH, Kim IY, et al.  2010.  Polybrominated diphenyl ethers orally administration to mice 
were transferred to offspring during gestation and lactation with disruptions on the immune system.  
Immune Network 10(2):64-74. 

Hooper H, McDonald TA.  2000. The PBDEs:  An emerging environmental challenge and another reason 
for breast-milk monitoring programs.  Environ Health Perspect 108(5):387-392. 

Hooper K, She J, Sharp M, et al.  2007.  Depuration of polybrominated diphenyl ethers (PBDEs) and 
polychlorinated biphenyls (PCBs) in breast milk from California first-time mothers (primiparae).  Environ 
Health Perspect 115(9):1271-1275. 

Hoppe AA, Carey GB.  2007.  Polybrominated diphenyl ethers as endocrine disruptors of adipocyte 
metabolism.  Obesity 15(12):2942-2950. 

Hori S, Akutsu K, Kitagawa M, et al.  2000.  Development of analysis for polybrominated diphenyl ether 
in seafood and actual contamination of seafood.  Organohalogen Compounds 47:214-217. 

Hovander L, Malmberg T, Athanasiadou M, et al.  2002.  Identification of hydroxylated PCB metabolites 
and other phenolic halogenated pollutants in human blood plasma.  Arch Environ Contam Toxicol 
42:105-117. 

Howie L, Dickerson R, Davis D, et al.  1990.  Immunosuppressive and monooxygenase induction 
activities of polychlorinated diphenyl ether congeners in C57BL/6N mice:  Quantitative structure-activity 
relationships.  Toxicol Appl Pharmacol 105:254-263. 

HSDB.  2012. Polybrominated diphenyl ethers.  Hazardous Substances Data Bank.  National Library of 
Medicine.  http://toxnet.nlm.nih.gov. October 9, 2014. 

Hua I, Kang N, Jafvert CT, et al.  2003.  Heterogeneous photochemical reactions of decabromodiphenyl 
ether.  Environ Toxicol Chem 22:798-804. 

Huang F, Wen S, Li J, et al.  2014. The human body burden of polybrominated diphenyl ethers and their 
relationships with thyroid hormones in the general population in Northern China.  Sci Total Environ 466
467:609-615. 

Huang S, Cui Y, Guo X, et al.  2015.  2,2',4,4'-Tetrabromodiphenyl ether disrupts spermatogenesis, 
impairs mitochondrial function and induces apoptosis of early leptotene spermatocytes in rats.  Reprod 
Toxicol 51:114-124.  10.1016/j.reprotox.2015.01.009. 

Huang SC, Giordano G, Costa LG.  2010.  Comparative cytotoxicity and intracellular accumulation of 
five polybrominated diphenyl ether congeners in mouse cerebellar granule neurons. Toxicol Sci 
114(1):124-132. 

http:http://toxnet.nlm.nih.gov


   
 

 
 
 

 
 
 
 
 

   
 

 
   

  
 

 
 

   
 

  
    

 
 

   
 

  
    

 
  

  
 

 
   

  
 

 
  

   
 

 
   

 
 

   
    

 
 

   
    

 
 

 
 

   
 

 
 

PBDEs 491 

9.  REFERENCES 

Hughes MF, Edwards BC, Mitchell CT, et al. 2001. In vitro dermal absorption of flame retardant 
chemicals.  Food Chem Toxicol 39(12):1263-1270. 

Hung H, Kallenborn R, Breivik K, et al.  2010. Atmospheric monitoring of organic pollutants in the 
Arctic under the Arctic Monitoring and Assessment Programme (AMAP), 1993-2006.  Sci Total Environ 
408(15):2854-2873. 

Hurley S, Reynolds P, Goldberg D, et al.  2011.  Adipose levels of polybrominated diphenyl ethers and 
risk of breast cancer.  Breast Cancer Res Treat 129(2):505-511. 

Huwe JK, Hakk H, Birnbaum LS.  2008. Tissue distribution of polybrominated diphenyl ethers in male 
rats and implications for biomonitoring.  Environ Sci Technol 42(18):7018-7024. 

Huwe JK, Hakk H, Lorentzsen M.  2002b.  A mass balance feeding study of a commercial 
octabromodiphenyl ether mixture in rats.  Organohalogen Compounds 58:229-223. 

Huwe JK, Lorentzsen M, Thuresson K, et al.  2002a.  Analysis of mono- to deca-brominated diphenyl 
ethers in chickens at the part per billion level.  Chemosphere 46:635-640. 

IARC.  2014. Agents classified by the IARC monographs.  Volumes 1-110.  Lyon, France:  International 
Agency for Research on Cancer. 
http://monographs.iarc.fr/ENG/Classification/ClassificationsCASOrder.pdf. September 9, 2014. 

Ibhazehiebo K, Iwasaki T, Kimura-Kuroda J, et al.  2011.  Disruption of thyroid hormone receptor-
mediated transcription and thyroid hormone-induced Purkinje cell dendrite arborization by 
polybrominated diphenyl ethers.  Environ Health Perspect 119(2):168-175. 

Ikonomou MG, Rayne S.  2002. Chromatographic and ionization properties of polybrominated diphenyl 
ethers using GC/high-resolution MS with metastable atom bombardment and electron impact ionization. 
Anal Chem 74:5263-5272. 

Ikonomou MG, Crewe N, He T, et al.  1999. Polybrominated-diphenyl-ether in biota samples from 
coastal British Columbia, Canada.  Organohalogen Compounds 40:341-345. 

Ikonomou MG, Fisher M, He T, et al.  2000. Congener patterns, spatial and temporal trends of 
polybrominated diphenyl ethers in biota samples from the Canadian west coast and the northwest 
territories.  Organohalogen Compounds 47:77-80. 

Ikonomou MG, Rayne S, Fischer M, et al.  2002.  Occurrence and congener profiles of polybrominated 
diphenyl ethers (PBDEs) in environmental samples from coastal British Columbia, Canada. 
Chemosphere 46(5):649-663. 

Imamura, M, Tung, TC.  1984.  A trial of fasting cure for PCB-poisoned patients in Taiwan.  Am J Ind 
Med 5:147-153. 

IRDC.  1974. Acute toxicity studies in rats and rabbits with test data and cover letter.  International 
Research and Development Corporation.  Submitted to U.S. EPA under TSCA Section 8D.  
OTS0523319. 

http://monographs.iarc.fr/ENG/Classification/ClassificationsCASOrder.pdf


   
 

 
 
 

 
 
 
 
 

    

  
 

  
  

  
 

 
 

 
  

 
   

  
 

 
 

 

 
 

  

 
 

  

 
 

 

 
 

   

 
 

  

 
 

  

 
 

  

  
 

PBDEs 492 

9.  REFERENCES 

IRDC.  1975a.  Octabromodiphenyl ether.  Acute toxicity studies in rats and rabbits with cover sheet and 
letter dated 030890.  International Research and Development Corporation.  Submitted to the U.S. 
Environmental Protection Agency under TSCA Section 8D.  OTS052222968.  

IRDC.  1975b. Pentabromodiphenyl ether.  Acute toxicity studies in rats and rabbits.  In:  The acute oral 
toxicity of pentabromodiphenyl ether to rats with cover sheets and letter dated 030890.  International 
Research and Development Corporation.  Submitted to the U.S. Environmental Protection Agency under 
TSCA Section 8D.  OTS0522286.  

IRDC.  1976. Decabromodiphenyl ether and octabromodiphenyl ether.  In:  A twenty-eight day toxicity 
study in rats with test data and cover sheet.  International Research and Development Corporation.  
Submitted to the U.S. Environmental Protection Agency under TSCA Section 8D.  OTS0523322.  

IRDC.  1977. Octabromodiphenyl ether.  Thirteen week feeding study in rats.  In: Thirteen week feeding 
study in rats with attachments, cover sheet and letter dated 030890.  International Research and 
Development Corporation.  Submitted to the U.S. Environmental Protection Agency under TSCA Section 
8D.  OTS0522297.  

IRIS.  2003a.  Hexabromodiphenyl ether (CASRN 36483-60-0).  Integrated Risk Information System.  
Washington, DC:  U.S. Environmental Protection Agency.  http://www.epa.gov/iris/subst/0494.htm. 
September 10, 2014. 

IRIS.  2003b. Nonabromodiphenyl ether (CASRN 63936-56-1).  Integrated Risk Information System.  
Washington, DC:  U.S. Environmental Protection Agency.  http://www.epa.gov/iris/subst/0495.htm. 
September 10, 2014. 

IRIS.  2003c.  Octabromodiphenyl ether (CASRN 32536-52-0).  Integrated Risk Information System.  
Washington, DC:  U.S. Environmental Protection Agency.  http://www.epa.gov/iris/subst/0180.htm. 
September 10, 2014. 

IRIS.  2003d. Tetrabromodiphenyl ether (CASRN 40088-47-9).  Integrated Risk Information System.  
Washington, DC:  U.S. Environmental Protection Agency.  http://www.epa.gov/iris/subst/0493.htm. 
September 10, 2014. 

IRIS.  2003e.  Tribromodiphenyl ether (CASRN 49690-94-0).  Integrated Risk Information System. 
Washington, DC:  U.S. Environmental Protection Agency.  http://www.epa.gov/iris/subst/0492.htm. 
September 10, 2014. 

IRIS.  2004. Pentabromodiphenyl ether (CASRN 32534-81-9).  Integrated Risk Information System.  
Washington, DC:  U.S. Environmental Protection Agency.  http://www.epa.gov/iris/subst/0184.htm. 
September 10, 2014. 

IRIS.  2005. p,p'-Dibromodiphenyl ether (CASRN 2050-47-7).  Integrated Risk Information System.  
Washington, DC:  U.S. Environmental Protection Agency.  http://www.epa.gov/iris/subst/0491.htm. 
September 10, 2014. 

IRIS.  2006. p-Bromodiphenyl ether (CASRN 101-55-3).  Integrated Risk Information System.  
Washington, DC:  U.S. Environmental Protection Agency.  http://www.epa.gov/iris/subst/0490.htm. 
September 9, 2014. 

http://www.epa.gov/iris/subst/0490.htm
http://www.epa.gov/iris/subst/0491.htm
http://www.epa.gov/iris/subst/0184.htm
http://www.epa.gov/iris/subst/0492.htm
http://www.epa.gov/iris/subst/0493.htm
http://www.epa.gov/iris/subst/0180.htm
http://www.epa.gov/iris/subst/0495.htm
http://www.epa.gov/iris/subst/0494.htm


   
 

 
 
 

 
 
 
 
 

  
 

 
 

 

 
 

 

 
 

 

 
 

   
 

 
   
    

 
 

   
    

 
 

 
 

 
   

 
 

  
 

   
 

   
    

 
  

 
 

    
   

 
 

  
   

PBDEs 493 

9.  REFERENCES 

IRIS. 2008a.  2,2',3,3',4,4',5,5',6,6'-Decabromodiphenyl ether (BDE-209) (CASRN 1163-19-5).  
Integrated Risk Information System.  Washington, DC:  U.S. Environmental Protection Agency.  
http://www.epa.gov/iris/subst/0035.htm. September 10, 2014. 

IRIS.  2008b. 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) (CASRN 5436-43-1).  Integrated Risk 
Information System.  Washington, DC:  U.S. Environmental Protection Agency.  
http://www.epa.gov/iris/subst/1010.htm. September 10, 2014. 

IRIS.  2008c.  2,2',4,4',5-Pentabromodiphenyl ether (BDE-99) (CASRN 60348-60-9).  Integrated Risk 
Information System.  Washington, DC:  U.S. Environmental Protection Agency.  
http://www.epa.gov/iris/subst/1008.htm. September 10, 2014. 

IRIS.  2008d. 2,2',4,4',5,5'-Hexabromodiphenyl ether (BDE-153) (CASRN 68631-49-2).  Integrated Risk 
Information System.  Washington, DC:  U.S. Environmental Protection Agency.  
http://www.epa.gov/iris/subst/1009.htm. September 10, 2014. 

Ismail N, Gewurtz SB, Pleskach K, et al.  2009.  Brominated and chlorinated flame retardants in Lake 
Ontario, Canada, lake trout (Salvelinus namaycush) between 1979 and 2004 and possible influences of 
food-web changes.  Environ Toxicol Chem 28(5):910-920. 

Jakobsson K, Fang J, Athanasiadou M, et al.  2012.  Polybrominated diphenyl ethers in maternal serum, 
umbilical cord serum, colostrum and mature breast milk.  Insights from a pilot study and the literature. 
Environ Int 47:121-130. 

Jandacek RJ, Heubi JE, Buckley DD, et al.  2014.  Reduction of the body burden of PCBs and DDE by 
dietary intervention in a randomized trial. J Nutr Biochem 25:483-488. 

Jansson B, Asplund L.  1987.  Brominated flame retardants-ubiquitous environmental pollutants? 
Chemosphere 16(10-12):2343-2349. 

Jansson B, Andersson R, Asplund L, et al.  1991.  Multiresidue method for the gas-chromatographic 
analysis of some polychlorinated and polybrominated pollutants in biological samples.  Fresenius Z Anal 
Chem 340:439-445. 

Jansson B, Andersson R, Asplund L, et al.  1993.  Chlorinated and brominated persistent organic 
compounds in biological samples from the environment.  Environ Toxicol Chem 12(7):1163-1174. 

Jaret P.  2000.  Health concerns:  Defense systems under fire.  Natl Wildl 38(6):36-41. 

Ji K, Choi K, Giesy JP, et al.  2011.  Genotoxicity of several polybrominated diphenyl ethers (PBDEs) 
and hydroxylated PBDEs, and their mechanisms of toxicity.  Environ Sci Technol 45(11):5003-5008. 

Johanson CE.  1980.  Permeability and vascularity of the developing brain:  Cerebellum vs cerebral 
cortex.  Brain Res 190(1):3-16. 

Johansson N, Viberg H, Fredriksson A, et al.  2008. Neonatal exposure to deca-brominated diphenyl 
ether (PBDE 209) causes dose-response changes in spontaneous behaviour and cholinergic susceptibility 
in adult mice.  Neurotoxicology 29(6):911-919.  10.1016/j.neuro.2008.09.008.  

Johnson A, Olson N.  2001.  Analysis and occurrence of polybrominated diphenyl ethers in Washington 
state freshwater fish. Arch Environ Contam Toxicol 41(3):339-344. 

http://www.epa.gov/iris/subst/1009.htm
http://www.epa.gov/iris/subst/1008.htm
http://www.epa.gov/iris/subst/1010.htm
http://www.epa.gov/iris/subst/0035.htm


   
 

 
 
 

 
 
 
 
 

 
 

   
 

 
    

 
 

 
 

 
   

  
 

 
    

 
 

  

  
 

 
  

   
 

   
  

 
 

   
 

  
 

 
 

  
   

 
 

   

 
 

  
  

 
    

  
 

PBDEs 494 

9.  REFERENCES 

Johnson PI, Altshul L, Cramer DW, et al.  2012.  Serum and follicular fluid concentrations of 
polybrominated diphenyl ethers and in vitro fertilization outcome.  Environ Int 45:9-14. 

Johnson PI, Stapleton HM, Mukherjee B, et al.  2013.  Associations between brominated flame retardants 
in house dust and hormone levels in men.  Sci Total Environ 445-446:177-184. 

Julander A, Karlsson M, Hagstrom K, et al.  2005.  Polybrominated diphenyl ethers--plasma levels and 
thyroid status of workers at an electronic recycling facility.  Int Arch Occup Environ Health 78(7):584
592. 

Karmaus W, Osuch JR, Landgraf J, et al.  2011.  Prenatal and concurrent exposure to halogenated organic 
compounds and gene expression of CYP17A1, CYP19A1, and oestrogen receptor α and β genes.  Occup 
Environ Med 68(6):430-437. 

Karpeta A, Barc J, Ptak A, et al.  2013.  The 2,2',4,4'-tetrabromodiphenyl ether hydroxylated metabolites 
5-OH-BDE-47 and 6-OH-BDE-47 stimulate estradiol secretion in the ovary by activating aromatase 
expression.  Toxicology 305:65-70. 

Karpeta A, Rak-Mardyla A, Jerzak J, et al.  2011.  Congener-specific action of PBDEs on steroid 
secretion, CYP17, 17β-HSD and CYP19 activity and protein expression in porcine ovarian follicles.  
Toxicol Lett 206(3):258-263. 

Karpeta A, Ptak A, Gregoraszczuk EL.  2014. Different action of 2,2',4,4'-tetrabromodiphenyl ether 
(BDE-47) and its hydroxylated metabolites on ERalpha and ERbeta gene and protein expression.  Toxicol 
Lett 229(1):250-256.  10.1016/j.toxlet.2014.05.022. 

Kawashiro Y, Fukata H, Omori-Inoue M, et al.  2008.  Perinatal exposure to brominated flame retardants 
and polychlorinated biphenyls in Japan.  Endocr J 55(6):1071-1084. 

Kearns GL, Abdel-Rahman SM, Alander SW, et al.  2003.  Developmental pharmacology–drug 
disposition, action, and therapy in infants and children.  N Engl J Med 349(12):1157-1167. 

Kicinski M, Viaene MK, Den Hond E, et al.  2012.  Neurobehavioral function and low-level exposure to 
brominated flame retardants in adolescents:  A cross-sectional study.  Environ Health 11:86.  
http://www.ehjournal.net/content/11/1/86. October 9, 2014. 

Kierkegaard A, Bignert A, Sellstrom, et al.  2004.  Polybrominated diphenyl ethers (PBDEs) and their 
methoxylated derivatives in pike from Swedish waters with emphasis on temporal trends, 1967-2000.  
Environ Pollut 130(2):187-198. 

Kim KH, Bose DD, Ghogha A, et al.  2011c.  Para- and ortho-substitutions are key determinants of 
polybrominated diphenyl ether activity toward ryanodine receptors and neurotoxicity.  Environ Health 
Perspect 119(4):519-526. 

Kim M, Guerra P, Theocharides M, et al. 2013b.  Polybrominated diphenyl ethers in sewage sludge and 
treated biosolids:  Effect factors and mass balance.  Water Res 47:6496-6505. 

Kim S, Park J, Kim HJ, et al.  2013a.  Association between several persistent organic pollutants and 
thyroid hormone levels in serum among the pregnant women of Korea.  Environ Int 59:442-448. 

http://www.ehjournal.net/content/11/1/86


   
 

 
 
 

 
 
 
 
 

 
    

 
 

    
  

 
 

     
  

 
  

 
 

 
    

 
 

 
 

 
 

  
   

 

 
 

 
   

 
 

   
 

 
   

   
 

 
  

 

   
 

 

    
 

 

PBDEs 495 

9.  REFERENCES 

Kim S, Park J, Kim HJ, et al.  2015.  Association between several persistent organic pollutants and 
thyroid hormone levels in cord blood serum and bloodspot of the newborn infants of Korea.  PLoS ONE 
10(5):e0125213.  10.1371/journal.pone.0125213.  

Kim TH, Bang du Y, Lim HJ, et al.  2012a.  Comparisons of polybrominated diphenyl ethers levels in 
paired South Korean cord blood, maternal blood, and breast milk samples.  Chemosphere 87(1):97-104. 

Kim TS, Kim CY, Lee HK, et al.  2011b.  Estrogenic activity of persistent organic pollutants and 
parabens based on the stably transfected human estrogen receptor-α transcriptional activation assay 
(OECD TG 455).  Toxicol Res 27(3):181-184. 

Kim UJ, Kim MY, Hong YH, et al.  2012b.  Assessment of impact of internal exposure to PBDEs on 
human thyroid function-comparison between congenital hypothyroidism and normal paired blood.  
Environ Sci Technol 46(11):6261-6268. 

Kim UJ, Lee IS, Kim HS, et al.  2011a.  Monitoring of PBDEs concentration in umbilical cord blood and 
breast milk from Korean population and estimating the effects of various parameters on accumulation in 
humans.  Chemosphere 85(3):487-493. 

Kim UJ, Sim WJ, Hong Y-H, et al.  2011d.  Monitoring of brominated flame retardants in blood pair 
serum, Korea - focused to compare between normal and metabolic diseased group.  Organohalogen 
Compounds 73:587-590.  

Kimbrough RD, Korver MP, Burse VW, et al.  1980.  The effect of different diets or mineral oil on liver 
pathology and polybrominated biphenyl concentration in tissues. Toxicol Appl Pharmacol 52:442-453. 

Klasson-Wehler EK, Hovander L, Bergman A.  1997. New organohalogen in human plasma-
Identification and quantification.  Organohalogen Compounds 33:420-425. 

Klasson Wehler E, Morck A, Hakk H.  2001. Metabolism of polybrominated diphenyl ethers in the rat.  
The second international workshop on brominated flame retardants.  BFR 2001. Stockholm, Sweden, 
93-97. 

Klosterhaus SL, Stapleton HM, La Guardia MJ, et al. 2012. Brominated and chlorinated flame retardants 
in San Francisco Bay sediments and wildlife.  Environ Int 47:56-65. 

Kociba RJ, Frauson LO, Humiston CG, et al.  1975. Results of a two-year dietary feeding study with 
decabromodiphenyl oxide (DBDPO) in rats.  J Combust Toxicol 2(4):267-285. 

Kodavanti PRS.  2003. Differential effects of polybrominated diphenyl ethers and polychlorinated 
biphenyls on intracellular signaling in rat neuronal cultures.  Organohalogen Compounds 65:1-4. 

Kodavanti PRS, Derr-Yellin E.  2001. Differential effects of polybrominated diphenyl ethers and 
polychlorinated biphenyls on [3H]arachidonic acid release in rat neural cells.  Organohalogen 
Compounds 53:185-189. 

Kodavanti PRS, Derr-Yellin EC.  2002. Differential effects of polybrominated diphenyl ethers and 
polychlorinated biphenyls on [3H]arachidonic acid release in rat cerebellar granule neurons.  Toxicol Sci 
68:452-457. 



   
 

 
 
 

 
 
 
 
 

     
 

 
  

   
  

 
 

  
 

 
  

 
 

 
   

    
 

 
 

  
    

 
 

  
   

 
 

 
   

 
 

    
    

 
 

  
  

  
 

    

 
 

  

 
 

PBDEs 496 

9.  REFERENCES 

Kodavanti PR, Coburn CG, Moser VC, et al.  2010.  Developmental exposure to a commercial PBDE 
mixture, DE-71:  Neurobehavioral, hormonal, and reproductive effects.  Toxicol Sci 116(1):297-312. 

Kodavanti PR, Royland JE, Osorio C, et al.  2015.  Developmental exposure to a commercial PBDE 
mixture:  Effects on protein networks in the cerebellum and hippocampus of rats. Environ Health 
Perspect 123(5):428-436.  10.1289/ehp.1408504. 

Koenig CM, Lango J, Pessah IN, et al.  2012.  Maternal transfer of BDE-47 to offspring and 
neurobehavioral development in C57BL/6J mice.  Neurotoxicol Teratol 34(6):571-580.  
10.1016/j.ntt.2012.09.005.  

Kohler M, Zennegg M, Gerecke AC, et al.  2003.  Increasing concentrations of decabromodiphenyl ether 
(decaBDE) in Swiss sewage sludge since 1993.  Organohalogen Compounds 61:123-126. 

Kojima H, Takeuchi S, Uramaru N, et al.  2009.  Nuclear hormone receptor activity of polybrominated 
diphenyl ethers and their hydroxylated and methoxylated metabolites in transactivation assays using 
Chinese hamster ovary cells. Environ Health Perspect 117(8):1210-1218. 

Komori M, Nishio K, Kitada M, et al.  1990.  Fetus-specific expression of a form of cytochrome P-450 in 
human livers.  Biochemistry 29(18):4430-4433. 

Koskenniemi JJ, Virtanen HE, Kiviranta H, et al.  2015.  Association between levels of persistent organic 
pollutants in adipose tissue and cryptorchidism in early childhood:  A case-control study.  Environ Health 
14:78.  10.1186/s12940-015-0065-0.  

Krishnan K, Andersen ME.  1994. Physiologically based pharmacokinetic modeling in toxicology.  In: 
Hayes AW, ed.  Principles and methods of toxicology.  3rd ed.  New York, NY: Raven Press, Ltd., 149
188. 

Krishnan K, Andersen ME, Clewell HJ III, et al.  1994.  Physiologically based pharmacokinetic modeling 
of chemical mixtures.  In: Yang RSH, ed.  Toxicology of chemical mixtures:  Case studies, mechanisms, 
and novel approaches.  San Diego, CA:  Academic Press, 399-437. 

Kucharska A, Covaci A, Vanermen G, et al.  2015. Non-invasive biomonitoring for PFRs and PBDEs: 
New insights in analysis of human hair externally exposed to selected flame retardants.  Sci Total Environ 
505:1062-1071.  10.1016/j.scitotenv.2014.10.043.  

Kuehl DW, Haebler R.  1995.  Organochlorine, organobromine, metal and selenium residues in bottlenose 
dolphins (Tursiops truncatus) collected during an unusual mortality event in the Gulf of Mexico.  Arch 
Environ Contam Toxicol 28(4):494-499. 

Kuehl DW, Haebler R, Potter C.  1991.  Chemical residues in dolphins from the U.S. Atlantic coast 
including Atlantic bottlenose obtained during the 1987/88 mass mortality.  Chemosphere 22(11):1071
1984. 

Kumar J, Lind PM, Salihovic S, et al.  2014a.  Influence of persistent organic pollutants on the 
complement system in a population-based human sample.  Environ Int 71:94-100.  
10.1016/j.envint.2014.06.009.  



   
 

 
 
 

 
 
 
 
 

   
   

 
 

   
  

 
 

  
    

 
 

   
 

 
  

   
 

   
  

 
 

 
 

 
  

 
 

   
 

 

 
 

   
  

   
  

 
  

  
 

 
  

  
 

 
   

  
 

PBDEs 497 

9.  REFERENCES 

Kumar J, Lind PM, Salihovic S, et al.  2014b.  Persistent organic pollutants and inflammatory markers in 
a cross-sectional study of elderly Swedish people: The PIVUS cohort.  Environ Health Perspect 
122(9):977-983.  10.1289/ehp.1307613.  

Kuosmanen K, Hyotylainen T, Hartonen K, et al.  2002.  Pressurized hot water extraction coupled on-line 
with liquid chromatography-gas chromatography for the determination of brominated flame retardants in 
sediment samples.  J Chromatogr A 943(1):113-122. 

Kuriyama S, Chahoud I.  2003. Maternal exposure to low dose 2,2’,4,4’,5 pentabromo diphenyl ether 
(PBDE 99) impairs male reproductive performance in adult rat offspring.  Organohalogen Compounds 
61:92-95. 

Kuriyama SN, Talsness CE, Grote K, et al.  2005. Developmental exposure to low dose PBDE 99: 
Effects on male fertility and neurobehavior in rat offspring.  Environ Health Perspect 113(2):149-154. 

Kuriyama SN, Wanner A, Fidalgo-Neto AA, et al.  2007.  Developmental exposure to low-dose PBDE
99: Tissue distribution and thyroid hormone levels.  Toxicology 242(1-3):80-90. 

Kwan CS, Takada H, Mizukawa K, et al.  2013.  PBDEs in leachates from municipal solid waste dumping 
sites in tropical Asian countries:  Phase distribution and debromination.  Environ Sci Pollut Res Int 
20(6):4188-4204. 

Kwiecińska P, Wrobel A, Gregoraszczuk EL.  2011. Combinatory effects of PBDEs and 17β-estradiol on 
MCF-7 cell proliferation and apoptosis.  Pharmacol Rep 63(1):189-194. 

Lacorte S, Ikonomou MG.  2009. Occurrence and congener specific profiles of polybrominated diphenyl 
ethers and their hydroxylated and methoxylated derivatives in breast milk from Catalonia.  Chemosphere 
74(3):412-420. 

Ladenson P, Singer P, Ain K, et al.  2000.  American Thyroid Association guidelines for detection of 
thyroid dysfunction.  Arch Intern Med 160:1573-1575. 

LaFranchi S.  1999.  Congenital hypothyroidism:  Etiologies, diagnosis, and management.  Thyroid 
9(7):735-740. 

La Guardia MJ, Hale RC, Harvey E, et al.  2000. Endocrine disruptors (octylphenol, nonylphenol, nonyl 
phenol ethoxylates and polybrominated diphenyl ethers) in land applied sewage sludge biosolids.  In: 
Preprints of extended abstracts.  American Chemical Society, Division of Environmental Chemistry. 
220th ACS National Meeting, Washington, DC.  Vol. 40(2):97-99. 

La Guardia MJ, Hale RC, Harvey E.  2006. Detailed polybrominated diphenyl ether (PBDE) congener 
composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures.  
Environ Sci Technol 40(20):6247-6254. 

Lai Y, Cai Z.  2012. In vitro metabolism of hydroxylated polybrominated diphenyl ethers and their 
inhibitory effects on 17β-estradiol metabolism in rat liver microsomes.  Environ Sci Pollut Res Int 
19(8):3219-3227. 

Lai Y, Lu M, Gao X, et al.  2011. New evidence for toxicity of polybrominated diphenyl ethers:  DNA 
adduct formation from quinone metabolites.  Environ Sci Technol 45(24):10720-10727. 



   
 

 
 
 

 
 
 
 
 

 
  

 

 
 

   
 

 
 

 
  

 
      

   
 

 
  

  
 

  
  

  
 

    
 

 
 

   
 

 
 

 
   

  
 

  
    

 
 

 

 
 

  
 

 
 

   
 

PBDEs 498 

9.  REFERENCES 

Laird BD, Goncharov AB, Chan HM.  2013.  Body burden of metals and persistent organic pollutants 
among Inuit in the Canadian Arctic.  Environ Int 59:33-40. 

LaKind JS, Berlin CM.  2000.  PBDEs in breast milk:  Where do we go from here?  Organohalogen 
Compounds 47:241-244. 

LaKind JS, Berlin CM, Jr., Sjodin A, et al.  2009.  Do human milk concentrations of persistent organic 
chemicals really decline during lactation?  Chemical concentrations during lactation and milk/serum 
partitioning.  Environ Health Perspect 117(10):1625-1631. 

Landrigan PJ, Wilcox KR, Silva J.  1979.  Cohort study of Michigan residents exposed to polybrominated 
biphenyls:  Epidemiologic and immunologic findings.  Ann NY Acad Sci 320:284-294. 

Law RJ, Allchin CR, Bennett ME, et al. 2000.  Polybrominated diphenyl ethers in the blubber of harbour 
porpoises (Phocoena phocoena L.) stranded on the coasts of England and Wales.  Organohalogen 
Compounds 47:249-252. 

Law RJ, Herzke D, Harrad S, et al.  2008.  Levels and trends of HBCD and BDEs in the European and 
Asian environments, with some information for other BFRs.  Chemosphere 73(2):223-241. 

Lee DH, Lind PM, Jacobs DR, Jr., et al.  2011.  Polychlorinated biphenyls and organochlorine pesticides 
in plasma predict development of type 2 diabetes in the elderly. The Prospective Investigation of the 
Vasculature in Uppsala Seniors (PIVUS) study.  Diabetes Care 34(8):1778-1784.  10.2337/dc10-2116.  

Lee DH, Lind PM, Jacobs DR, Jr., et al.  2012.  Background exposure to persistent organic pollutants 
predicts stroke in the elderly.  Environ Int 47:115-120. 

Lee E, Kim TH, Choi JS, et al.  2010.  Evaluation of liver and thyroid toxicity in Sprague-Dawley rats 
after exposure to polybrominated diphenyl ether BDE-209.  J Toxicol Sci 35(4):535-545. 

Leeder JS, Kearns GL.  1997.  Pharmacogenetics in pediatrics:  Implications for practice.  Pediatr Clin 
North Am 44(1):55-77. 

Leijs MM, Koppe JG, Olie K, et al.  2009.  Effects of dioxins, PCBs, and PBDEs on immunology and 
hematology in adolescents. Environ Sci Technol 43(20):7946-7951. 

Leijs MM, ten Tusscher GW, Olie K, et al.  2012.  Thyroid hormone metabolism and environmental 
chemical exposure.  Environ Health 11(Suppl 1):S10. http://www.ehjournal.net/content/11/S1/S10. 
October 9, 2014. 

Leijs MM, van Teunenbroek T, Olie K, et al.  2008.  Assessment of current serum levels of PCDD/Fs, dl-
PCBs and PBDEs in a Dutch cohort with known perinatal PCDD/F exposure.  Chemosphere 73(2):176
181. 

Leikin JB, Pauloucek FP.  2008. Polychlorinated biphenyls. In:  Leikin JB, Pauloucek FP, eds.  
Poisoning and toxicology handbook.  4th ed.  Boca Raton, FL:  CRC Press, Taylor & Francis Group, 840. 

Lemesh KA.  1992.  Polychlorinated biphenyls:  An overview of metabolic toxicologic and health 
consequences. Vet Hum Toxicol 34:256-268. 

http://www.ehjournal.net/content/11/S1/S10


   
 

 
 
 

 
 
 
 
 

  
   

 
 

 
 

    
  

 
 

  
  

 
     

  
 

 
    

 
 

  
 

 
   

 
 

  
 

    
    

 
 

    
  

   
 

  
 

  
  

 
 

  
 

  
 

PBDEs 499 

9.  REFERENCES 

Lenoir D, Zier B, Bieniek D, et al.  1994.  The influence of water and metals on PBDD/F concentration in 
incineration of decabromobiphenyl ether in polymeric matrices.  Chemosphere 28(11):1921-1928. 

Leonetti C, Butt CM, Hoffman K, et al.  2016.  Concentrations of polybrominated diphenyl ethers 
(PBDEs) and 2,4,6-tribromophenol in human placental tissues.  Environ Int 88:23-29.  
10.1016/j.envint.2015.12.002. 

Lepom P, Berndt M, Duffek A, et al.  2010.  Oral bioavailability of PBDEs in dust using and in vitro 
gastrointestinal model.  5th International Symposium on brominated flame retardants (BFR2010), Kyoto, 
7-9 April 2010.  
http://www.researchgate.net/publication/239593679_Oral_Bioaccessibility_of_PBDEs_in_Dust_Using_a 
n_In_Vitro_Gastrointestinal_Model.  March 25, 2015. 

Leung HW.  1993. Physiologically-based pharmacokinetic modeling.  In:  Ballantine B, Marrs T, Turner 
P, eds.  General and applied toxicology.  Vol. 1.  New York, NY:  Stockton Press, 153-164. 

Li A, Rockne KJ, Sturchio N, et al.  2006.  Polybrominated diphenyl ethers in the sediments of the Great 
Lakes.  4. Influencing factors, trends, and implications.  Environ Sci Technol 40(24):7528-7534. 

Li LX, Chen L, Meng XZ, et al.  2013a.  Exposure levels of environmental endocrine disruptors in 
mother-newborn pairs in China and their placental transfer characteristics.  PLoS ONE 8(5):e62526.  
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0062526. October 9, 2014. 

Li X, Gao Y, Guo LH, et al.  2013b. Structure-dependent activities of hydroxylated polybrominated 
diphenyl ethers on human estrogen receptor.  Toxicology 309:15-22. 

Liang SX, Gao HX, Zhao YY, et al.  2010.  Effects of repeated exposure to decabrominated diphenyl 
ether (BDE-209) on mice nervous system and its self repair.  Environ Toxicol Pharmacol 29(3):297-301. 

Life Sciences Research Israel Ltd.  1987.  FR-1208:  Teratology study in the rat.  Submitted to the U.S. 
Environmental Protection Agency under TSCA Section 4/8.  OTS0513908. 

Lignell S, Aune M, Darnerud PO, et al.  2016. Maternal body burdens of PCDD/Fs and PBDEs are 
associated with maternal serum levels of thyroid hormones in early pregnancy:  A cross-sectional study. 
Environ Health 15(1):55.  10.1186/s12940-016-0139-7.  

Lignell S, Aune M, Darnerud PO, et al.  2013. Prenatal exposure to polychlorinated biphenyls (PCBs) 
and polychlorinated diphenyl ethers (PBDEs) may influence birth weight among infants in a Swedish 
cohort with background exposure:  A cross-sectional study.  Environ Health 12:44. 

Lim JS, Lee DH, Jacobs DR, Jr.  2008.  Association of brominated flame retardants with diabetes and 
metabolic syndrome in the U.S. population, 2003-2004.  Diabetes Care 31(9):1802-1807. 

Lin SM, Chen FA, Huang YF, et al.  2011.  Negative associations between PBDE levels and thyroid 
hormones in cord blood.  Int J Hyg Environ Health 214(2):115-120. 

Lind PM, van Bavel B, Salihovic S, et al.  2012. Circulating levels of persistent organic pollutants 
(POPs) and carotid atherosclerosis in the elderly.  Environ Health Perspect 120(1):38-43. 

Lind Y, Darnerud PO, Atuma S, et al.  2003.  Polybrominated diphenyl ethers in breast milk from 
Uppsala County, Sweden.  Environ Res 93(2):186-194. 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0062526
http://www.researchgate.net/publication/239593679_Oral_Bioaccessibility_of_PBDEs_in_Dust_Using_a


   
 

 
 
 

 
 
 
 
 

 
  

 
 

   
   

 
 

 
  

 
 

 
  

 
   

   
 

    
  

 
 

 

 
 

  
 

 
    

 
  

  
  

 
    

 
 

 

 
 

   
 

 
 

   
 

PBDEs 500 

9.  REFERENCES 

Lindstöm GUM.  1999. Aspects of polybrominated diphenyl ethers as indoor, occupational, and 
environmental pollutants.  Organohalogen Compounds 43:445-446. 

Lindström G, Hardell L, Van Bavel B, et al. 1998. Current level of 2,2'4,4'-tetrabrominated diphenyl 
ether in human adipose tissue in Sweden.  A risk factor for non-Hodgkin's lymphoma?  Organohalogen 
Compounds 35:431-434. 

Lindström G, Wingfors H, Dam M, et al. 1999. Identification of 19 polybrominated diphenyl ethers 
(PBDEs) in long-finned pilot whale (Globicephala melas) from the Atlantic.  Arch Environ Contam 
Toxicol 36(3):355-363. 

Lioy PJ. 2002. Residues from the world trade center disaster in lower Manhattan and potential human 
exposures.  Int J Toxicol 21(6):540. 

Liu L, Salamova A, Hites RA.  2014. Halogenated flame retardants in baby food from the United States 
and from China and the estimated dietary intakes by infants.  Environ Sci Technol 48(16):9812-9818. 

Liu LY, He K, Hites RA, et al.  2016.  Hair and nails as noninvasive biomarkers of human exposure to 
brominated and organophosphate flame retardants.  Environ Sci Technol 50(6):3065-3073.  
10.1021/acs.est.5b05073.  

Liu X, Wang J, Lu C, et al. 2015. The role of lysosomes in BDE 47-mediated activation of 
mitochondrial apoptotic pathway in HepG2 cells.  Chemosphere 124:10-21.  
10.1016/j.chemosphere.2014.10.054.  

Liu X, Zhan H, Zeng X, et al.  2012.  The PBDE-209 exposure during pregnancy and lactation impairs 
immune function in rats.  Mediators Inflamm 2012:692467. 

Livingston AL.  1978.  Forage plant estrogens. J Toxicol Environ Health 4(2-3):301-324. 

Loganathan BG, Kannn K, Watanabe, et al.  1995.  Isomer-specific determination and toxic evaluation of 
polychlorinated biphenyls, polychlorinated/brominated dibenzo-p-dioxins and dibenzofurans, 
polybrominated biphenyl ethers, and extractable organic halogen in carp from the Buffalo River, New 
York.  Environ Sci Technol 29(7):1832-1838. 

Lopez-Espinosa MJ, Costa O, Vizcaino E, et al.  2015.  Prenatal exposure to polybrominated flame 
retardants and fetal growth in the INMA Cohort (Spain).  Environ Sci Technol 49(16):10108-10116.  
10.1021/acs.est.5b01793.  

Lorber M.  2008. Exposure of Americans to polybrominated diphenyl ethers.  J Expo Sci Environ 
Epidemiol 18(1):2-19. 

Luckey F, Fowler B, Litten S.  2001. Establishing baseline levels of polybrominated diphenyl ethers in 
Lake Ontario surface waters. The second international workshop on brominated flame retardants.  BFR 
2001. Stockholm, Sweden, 337-339. 

Lundgren M, Darnerud PO, Blomberg J, et al.  2009.  Polybrominated diphenyl ether exposure suppresses 
cytokines important in the defence to coxsackievirus B3 infection in mice.  Toxicol Lett 184(2):107-113. 



   
 

 
 
 

 
 
 
 
 

  
  

 
 

 
   

 
  

 
 

 
 

 
 

  
 

 
   

     
   

 
    

  
 

 
      

  
 

 

 
 

  
 

  
 

 
 

  
 

 
    

 
 

     
  

   
 

  
 

 

PBDEs 501 

9.  REFERENCES 

Lupton SJ, McGarrigle BP, Olson JR, et al.  2009. Human liver microsome-mediated metabolism of 
brominated diphenyl ethers 47, 99, and 153 and identification of their major metabolites.  Chem Res 
Toxicol 22(11):1802-1809. 

Luross JM, Aalee M, Sergeant DB, et al.  2000.  Spatial and temporal distribution of polybrominated 
diphenyl ethers in lake trout from the Great Lakes.  Organohalogen Compounds 47:73-76. 

Luross JM, Alaee M, Sergeant DB, et al.  2002.  Spatial distribution of polybrominated diphenyl ethers 
and polybrominated biphenyls in lake trout from the Laurentain Great Lakes.  Chemosphere 46(5):665
672. 

Lyman WJ, Reehl WF, Rosenblatt, DH.  1990. Handbook of chemical properties estimation methods.  
American Chemical Society:  Washington, DC, 4-9, 15-1 to 15-29. 

Ma J, Qiu X, Zhang J, et al.  2012a.  State of polybrominated diphenyl ethers in China:  An overview.  
Chemosphere 88(7):769-778.  

Ma J, Qiu X, Ren A, et al.  2012b. Using placenta to evaluate the polychlorinated biphenyls (PCBs) and 
polybrominated diphenyl ethers (PBDEs) exposure of fetus in a region with high prevalence of neural 
tube defects.  Ecotoxicol Environ Saf 86:141-146.  10.1016/j.ecoenv.2012.09.005. 

MacPhail R, Farmer JD, Padnos BK, et al.  2003.  Lack of effect of perinatal exposure to a 
polybrominated diphenyl ether mixture (DE-71) on the habituation of motor activity in adult rats.  Toxicol 
Sci 72(S-1):123. 

Main KM, Kiviranta H, Virtanen HE, et al.  2007.  Flame retardants in placenta and breast milk and 
cryptorchidism in newborn boys.  Environ Health Perspect 115(10):1519-1526. 

Makey CM, McClean MD, Braverman LE, et al.  2016.  Polybrominated diphenyl ether exposure and 
thyroid function tests in North American adults.  Environ Health Perspect 124(4):420-425.  
10.1289/ehp.1509755.  

Malarvannan G, Isobe T, Covaci A, et al. 2013. Accumulation of brominated flame retardants and 
polychlorinated biphenyls in human breast milk and scalp hair from the Philippines:  Levels, distribution 
and profiles.  Sci Total Environ 442:366-379. 

Malmberg T, Athanasiadou M, Marsh G, et al. 2005. Identification of hydroxylated polybrominated 
diphenyl ether metabolites in blood plasma from polybrominated diphenyl ether exposed rats.  Environ 
Sci Technol 39(14):5342-5348. 

Manchester-Neesvig JB, Valters K, Sonzogni WC.  2001.  Comparison of polybrominated diphenyl ethers 
(PBDEs) and polychlorinated biphenyls (PCBs) in Lake Michigan salmonids.  Environ Sci Technol 
35(6):1072-1077. 

Maranghi F, Tassinari R, Moracci G, et al.  2013.  Dietary exposure of juvenile female mice to 
polyhalogenated seafood contaminants (HBCD, BDE-47, PCB-153, TCDD):  Comparative assessment of 
effects in potential target tissues.  Food Chem Toxicol 56:443-449. 

Marchesini GR, Meimaridou A, Haasnoot W, et al.  2008.  Biosensor discovery of thyroxine transport 
disrupting chemicals.  Toxicol Appl Pharmacol 232(1):150-160.  10.1016/j.taap.2008.06.014.  



   
 

 
 
 

 
 
 
 
 

    
   

 
 

   
 

 
 

   
  

 
  

  
   

 
  

    
 

 
  

 
  

 
 

  
  

   
  

 
    

 
 

 
    

 
  

  
 

 
 

 
 

 
   

 
 

 
        

 
 

PBDEs 502 

9.  REFERENCES 

Marchitti SA, LaKind JS, Naiman DQ, et al.  2013.  Improving infant exposure and health risk estimates: 
Using serum data to predict polybrominated diphenyl ether concentrations in breast milk.  Environ Sci 
Technol 47(9):4787-4795. 

Mariussen E, Fonnum F.  2002. The effect of pentabromodiphenyl ether, hexabromocyclododecane and 
tetrabromobisphenol-A on dopamine uptake into rat brain synaptosomes.  Organohalogen Compounds 
57:395-398. 

Mariuseen E, Fonnum F.  2003. The effect of brominated flame retardants on neurotransmitter uptake 
into rat brain synaptosomes and vesicles.  Neurochem Int 43(4-5):533-542. 

Mariussen E, Andersson PL, Olstrorn H, et al.  2003. The effect of various substituents in ortho position 
of biphenyls on respiratory burst, intracellular calcium elevation in human granulocytes, and uptake of 
dopamine into rat synaptic vesicles and synaptosomes.  Environ Toxicol Pharmacol 14(1-2):43-50. 

Markowski VP. 2007. Thyroid disruption and behavioral impairments following developmental 
exposure to PBDEs:  Correlative or causative relationship?  Neurotoxicol Teratol 29(3):413. 

Marsh G, Athanasiadou M, Athanassiadis I, et al.  2006.  Identification of hydroxylated metabolites in 
2,2',4,4'-tetrabromodiphenyl ether exposed rats.  Chemosphere 63(4):690-697. 

Marsh G, Bergman A, Bladh L-G, et al.  1998.  Synthesis of p-hydroxybromodiphenyl ethers and binding 
to the thyroid receptor.  Organohalogen Compounds 37:305-308. 

Martin PA, Mayne GJ, Bursian FS, et al.  2007.  Immunotoxicity of the commercial polybrominated 
diphenyl ether mixture DE-71 in ranch mink (Mustela vison).  Environ Toxicol Chem 26(5):988-997. 
Mayr U, Butsch A, Schneider S.  1992.  Validation of two in vitro test systems for estrogenic activities 
with zearalenone, phytoestrogens and cereal extracts.  Toxicology 74(2-3):135-149. 

Mazdai A, Dodder NG, Abernathy MP, et al.  2003.  Polybrominated diphenyl ethers in maternal and fetal 
blood samples.  Environ Health Perspect 111:1249-1252. 

McAllister D, Mazac CJ, Gorsich R, et al.  1990.  Analysis of polymers containing brominated diphenyl 
ethers as flame retardants after molding under various conditions.  Chemosphere 10-12:1537-1541. 

McConnell EE, Harris MW, Moore JA.  1980.  Studies on the use of activated charcoal and 
cholestyramine for reducing the body burden of polybrominated biphenyls.  Drug Chem Toxicol 3:277
292. 

McDonald TA.  2002.  A perspective on the potential health risks of PBDEs.  Chemosphere 46(5):745
755. 

McIntyre RL, Kenerson HL, Subramanian S, et al.  2015.  Polybrominated diphenyl ether congener, 
BDE-47, impairs insulin sensitivity in mice with liver-specific Pten deficiency.  BMC obesity 2:3. 
10.1186/s40608-014-0031-3.  

McKinney RF, Chaw SJK, Rickenbacher U, et al.  1987.  Polychlorinated biphenyls and related 
compound interactions with specific binding sites for thyroxine in rat liver nuclear extracts. J Med Chem 
30:79-86. 



   
 

 
 
 

 
 
 
 
 

  
    

 
 
 

 
 

 
 

 

   
 

   
  

 
   

    
 

 
  

 
 

 

 
 

  
 

 
 

   
 

   
  

 
    

 
 

  
 

 
   

  
 

  
 

 
  

  
 

PBDEs 503 

9.  REFERENCES 

Meeker JD, Johnson PI, Camann D, et al.  2009. Polybrominated diphenyl ether (PBDE) concentrations 
in house dust are related to hormone levels in men.  Sci Total Environ 407(10):3425-3429. 

Meerts IA, Marsh G, van Leeuwen-Bol I, et al.  1998.  Interaction of polybrominated diphenyl ether 
metabolites (PBDE-OH) with human transthyretin in vitro. Organohalogen Compounds 37:309-312. 

Meerts IA, Letcher RJ, Hoving S, et al.  2001.  In vitro estrogenicity of polybrominated diphenyl ethers, 
hydroxylated PBDEs and polybrominated bisphenol A compounds.  Environ Health Perspect 109(4):399
407. 

Meerts IA, van Zanden JJ, Luijks EA, et al.  2000.  Potent competitive interactions of some brominated 
flame retardants and related compounds with human transthyretin in vitro. Toxicol Sci 56(1):95-104. 

Meijer L, Martijn A, Melessen J, et al.  2012. Influence of prenatal organohalogen levels on infant male 
sexual development:  Sex hormone levels, testes volume and penile length.  Hum Reprod 27(3):867-872. 

Meijer L, Weiss J, Van Velzen M, et al. 2008. Serum concentrations of neutral and phenolic 
organohalogens in pregnant women and some of their infants in The Netherlands.  Environ Sci Technol 
42(9):3428-3433. 

Meironyté Guvenius D, Noren K.  1999.  Polybrominated diphenyl ethers in human liver and adipose 
tissues.  A pilot study.  Organohalogen Compounds 40:372-382. 

Meironyté Guvenius D, Noren K.  2001.  Polybrominated diphenyl ethers in Swedish human milk.  The 
follow-up study.  The second international workshop on brominated flame retardants.  BFR 2001.  
Stockholm, Sweden, 303-305. 

Meironyté Guvenius D, Bergman A, Noren K.  2001. Polybrominated diphenyl ethers in Swedish human 
liver and adipose tissue.  Arch Environ Contam Toxicol 40:564-570. 

Meironyté D, Noren K, Bergman A.  1999. Analysis of polybrominated diphenyl ethers in Swedish 
human milk.  A time related trend study, 1972-1997.  J Toxicol Environ Health A 58(6):329-341.  

Meneses M, Wingfors H, Schuhmacher M, et al.  1999.  Polybrominated diphenyl ethers detected in 
human adipose tissue from Spain.  Chemosphere 39(13):2271-2278. 

Meng G, Feng Y, Nie Z, et al.  2016.  Internal exposure levels of typical POPs and their associations with 
childhood asthma in Shanghai, China.  Environ Res 146:125-135.  10.1016/j.envres.2015.12.026.  

Mercado-Feliciano M, Bigsby RM.  2008a.  The polybrominated diphenyl ether mixture DE-71 is mildly 
estrogenic.  Environ Health Perspect 116(5):605-611. 

Mercado-Feliciano M, Bigsby RM.  2008b. Hydroxylated metabolites of the polybrominated diphenyl 
ether mixture DE-71 are weak estrogen receptor-α ligands.  Environ Health Perspect 116(10):1315-1321. 

Messer A.  2010. Mini-review:  Polybrominated diphenyl ether (PBDE) flame retardants as potential 
autism risk factors.  Physiol Behav 100(3):245-249. 

Meylan WM, Howard PH.  1993. Computer estimation of the atmospheric gas-phase reaction rate of 
organic compounds with hydroxyl radicals and ozone.  Chemosphere 26:2293-2299. 



   
 

 
 
 

 
 
 
 
 

  
 

 
  

   
    

 
  

  
 

 
   

 
 

  
 

 
  

   
 

 
  

    
 

    
 

 
 

   
 

 
     

 
 

    
 

 
 

  
 

 
 

   
 

 
   

 
 

PBDEs 504 

9.  REFERENCES 

Microbiological Associates Inc.  1996. Pentabromodiphenyloxide and octabromodiphenyl oxide.  
Maximization test in guinea pigs.  Submitted to U.S. Environmental Protection Agency under TSCA 
Section FYI.  OTS0001281.  

Miller VM, Sanchez-Morrissey S, Brosch KO, et al.  2012.  Developmental coexposure to 
polychlorinated biphenyls and polybrominated diphenyl ethers has additive effects on circulating 
thyroxine levels in rats. Toxicol Sci 127(1):76-83. 

Miranda ML, Anthopolos R, Wolkin A, et al.  2015.  Associations of birth outcomes with maternal 
polybrominated diphenyl ethers and thyroid hormones during pregnancy.  Environ Int 85:244-253.  
10.1016/j.envint.2015.09.015.  

Morck A, Klasson Wehler E.  2001. Metabolism of decabromodiphenyl ether (BDE-209) in the rat. 
Organohalogen Compounds 52:9-12. 

Morck A, Hakk H, Orn U, et al.  2003.  Decabromodiphenyl ether in the rat:  Absorption, distribution, 
metabolism, and excretion.  Drug Metab Dispos 31:900-907. 

Morreale de Escobar G, Obregon MJ, Escobar del Rey F.  2000. Is neuropsychological development 
related to maternal hypothyroidism or to maternal hypothyroxinemia? J Clin Endocrinol Metab 
85(11):3975-3987. 

Morselli PL, Franco-Morselli R, Bossi L.  1980.  Clinical pharmacokinetics in newborns and infants: 
Age-related differences and therapeutic implications. Clin Pharmacokin 5(6):485-527. 

Müller MH, Polder A, Brynildsrud OB, et al.  2016. Brominated flame retardants (BFRs) in breast milk 
and associated health risks to nursing infants in Northern Tanzania.  Environ Int 89-90:38-47.  
10.1016/j.envint.2015.12.032.  

Mumford SL, Kim S, Chen Z, et al.  2015.  Persistent organic pollutants and semen quality: The LIFE 
Study.  Chemosphere 135:427-435.  10.1016/j.chemosphere.2014.11.015.  

Nakari T, Pessala P.  2005. In vitro estrogenicity of polybrominated flame retardants.  Aquat Toxicol 
74(3):272-279. 

NAS/NRC.  1989. Report of the oversight committee.  In: Biologic markers in reproductive toxicology.  
Washington, DC:  National Academy of Sciences, National Research Council, National Academy Press, 
15-35. 

Ni K, Lu Y, Wang T, et al. 2013. Polybrominated diphenyl ethers (PBDEs) in China:  Policies and 
recommendations for sound management of plastics from electronic wastes. J Environ Manage 115:114
123. 

NIOSH.  2014. NIOSH pocket guide to chemical hazards.  Atlanta, GA:  National Institute for 
Occupational Safety and Health, Centers for Disease Control and Prevention. 
http://www.cdc.gov/niosh/npg/npgdcas.html. December 19, 2014. 

Nomiyama K, Kanbara C, Ochiai M, et al.  2014. Halogenated phenolic contaminants in the blood of 
marine mammals from Japanese coastal waters.  Mar Environ Res 93:15-22. 

http://www.cdc.gov/niosh/npg/npgdcas.html


   
 

 
 
 

 
 
 
 
 

  
  

 

  
 

    
    

 
   

    
 

 
 

   
 

     
    

 
 

   
 

 
   

     
 

 
    

  
 

 
 

  
  

 
  

  
  

 

 
 

 
 

 
 

 
 

PBDEs 505 

9.  REFERENCES 

Norén K, Meironyté D.  1998.  Contaminants in Swedish human milk.  Decreasing levels of 
organochlorine and increasing levels of organochlorine compounds.  Organohalogen Compounds 38:1-4. 

Norén K, Meironyté D.  2000.  Certain organochlorine and organobromine contaminants in Swedish 
human milk in perspective of past 20-30 years.  Chemosphere 40:1111-1123. 

Norris JM, Ehrmantraut JW, Gibbons CL, et al. 1973. Toxicological and environmental factors involved 
in the selection of decabromodiphenyl oxide as a fire retardant chemical.  Appl Polym Symp 22:195-219. 

Norris JM, Kociba RJ, Humiston CG, et al.  1975a. The toxicity of decabromo diphenyl and octabromo 
biphenyl as determined by subacute and chronic dietary feeding studies in rats. Toxicol Appl Pharmacol 
33:170. 

Norris JM, Kociba RJ, Schwetz BA, et al.  1975b.  Toxicology of octabromobiphenyl and 
decabromodiphenyl oxide. Environ Health Perspect 11:153-161. 

Norstrom RJ, Simon M, Moisey J, et al.  2002.  Geographical distribution (2000) and temporal trends 
(1981-2000) of brominated diphenyl ethers in Great Lakes herring gull eggs.  Environ Sci Technol 
36:4783-4789. 

NRC.  1993. Pesticides in the diets of infants and children.  National Research Council.  Washington, 
DC:  National Academy Press. 

NRC.  2000. Decabromodiphenyl oxide.  In:  Toxicological risks of selected flame-retardant chemicals. 
National Research Council (US):  Subcommittee on Flame-Retardant Chemicals. Washington, DC: 
National Academy Press, 72-98. 

NRC.  2002. Biosolids applied to land: Advancing standards and practices.  Washington, DC:  National 
Research Council, National Academy of Sciences, National Academy Press. 
http://www.nap.edu/catalog/10426.html. September 21, 2016. 

NTP.  1983.  NTP technical report on the toxicology and carcinogenesis studies of a polybrominated 
biphenyl mixture (Firemaster FF-1) (CAS No. 67774-32-7) in F344/N rats and B6C3F1 mice (gavage 
studies).  Research Triangle Park, NC:  National Toxicology Program. 

NTP.  1986.  NTP technical report on the toxicology and carcinogenesis studies of decabromodiphenyl 
oxide (CAS No. 1163-19-5) in F344/N rats and B6C3F1 mice (feed studies).  Research Triangle Park, 
NC:  National Toxicology Program. 

NTP.  2011.  Report on carcinogens.  12th ed.  Research Triangle Park, NC:  U.S. Department of Health 
and Human Services, Public Health Service, National Toxicology Program.  http://ntp
server.niehs.nih.gov/ntp/roc/twelfth/roc12.pdf.  September 10, 2014. 

Nylund K, Asplund L, Jansson B, et al.  1992.  Analysis of some polyhalogenated organic pollutants in 
sediment and sewage sludge.  Chemosphere 24(12):1721-1730. 

Oberg T, Warman K, Bergstrom J. 1987. Brominated aromatics from combustion.  Chemosphere 16(10
12):2451-2465. 

http://ntp
http://www.nap.edu/catalog/10426.html


   
 

 
 
 

 
 
 
 
 

  
   

 
 

   
 

 
 

   
  
 

 
     

    
 

   
  

 
  

     
 

 
 

 
 

 
  

 
 

 
   

 

 
 

    
  

 
 

 

  
 

  
   

  
 

PBDEs 506 

9.  REFERENCES 

Oberg M, Westerholm E, Fattore E, et al. 2010. Toxicity of Bromkal 70-5DE, a technical mixture of 
polybrominated diphenyl ethers, following 28 d of oral exposure in rats and impact of analysed 
impurities.  Chemosphere 80(2):137-143. 

Ochiai M, Nomiyama K, Isobe T, et al.  2013.  Accumulation of hydroxylated polychlorinated biphenyls 
(OH-PCBs) and implications for PCBs metabolic capacities in three porpoise species.  Chemosphere 
92:803-810. 

Ochiai S, Shimojo N, Yuka I, et al.  2014.  A pilot study for foetal exposure to multiple persistent organic 
pollutants and the development of infant atopic dermatitis in modern Japanese society.  Chemosphere 
94:48-52. 

O'Connor JC, Frame SR, Davis LG, et al.  1999. Detection of thyroid toxicants in a tier 1 screening 
battery and alterations in thyroid endpoints over 28 days of exposure. Toxicol Sci 51:54-70. 

Odusanya DO, Okonkwo JO, Botha B.  2009.  Polybrominated diphenyl ethers (PBDEs) in leachates 
from selected landfill sites in South Africa.  Waste Manag 29(1):96-102. 

Ohta S, Ishizuka D, Nishimura H, et al.  2000. Real situation of contamination by polybrominated 
diphenyl ethers as flame retardants in market fish and mother milk of Japan.  Organohalogen Compounds 
47:218-221. 

Ohta S, Ishizuke D, Nishimura H, et al.  2002.  Comparison of polybrominated diphenyl ethers in fish, 
vegetables, and meats and levels in human milk of nursing women in Japan.  Chemosphere 46(5):689
696. 

Oliaei F, Weber R, Watson A.  2010. PBDE contamination in Minnesota landfills, waste water treatment 
plants and sediments as PBDE sources and reservoirs.  Organohalogen Compounds 72:1346-1349. 

Olsson A, Vitnish M, Plikshs M, et al.  1999.  Halogenated environmental contaminants in perch (Perca 
fluviatilis) from Lativian coastal areas.  Sci Total Environ 239(1-3):19-30. 

Ӧrn U, Klasson-Wehler E.  1998. Metabolism of 2,2',4,4'-tetrabromodiphenyl ether in rat and mouse.  
Xenobiotica 1998:199-211. 

Oros DR, Hoover D, Rodigari F, et al. 2005. Levels and distribution of polybrominated diphenyl ethers 
in water, surface sediments, and bivalves from the San Francisco Estuary.  Environ Sci Technol 39(1):33
41. 

OSHA.  2013a.  Air contaminants.  Table Z-1-limits for air contaminants.  Occupational safety and health 
standards.  Code of Federal Regulations 29 CFR 1910.1000, Subpart Z.  http:// 
www.gpo.gov/fdsys/pkg/CFR-2013-title29-vol6/pdf/CFR-2013-title29-vol6-sec1910-1000.pdf. 
September 9, 2014. 

OSHA.  2013b. Process safety management of highly hazardous chemicals.  Appendix A to 1910.119
List of highly hazardous chemicals, toxics and reactives (mandatory).  Occupational safety and health 
standards.  Code of Federal Regulations 29 CFR 1910.119, Subpart H.  
http://www.gpo.gov/fdsys/pkg/CFR-2013-title29-vol5/pdf/CFR-2013-title29-vol5-sec1910-119.pdf. 
September 9, 2014. 

http://www.gpo.gov/fdsys/pkg/CFR-2013-title29-vol5/pdf/CFR-2013-title29-vol5-sec1910-119.pdf
www.gpo.gov/fdsys/pkg/CFR-2013-title29-vol6/pdf/CFR-2013-title29-vol6-sec1910-1000.pdf


   
 

 
 
 

 
 
 
 
 

 
 

 
 
 

 
 

 
 

  
     

 
 

     

 
 

   
  

 

    
 

 
   

  
 

  
 

 
 

 
 

 

 
 

 
 

  
 

   
     

 
 

    
 

 
 

  

PBDEs 507 

9.  REFERENCES 

Oulhote Y, Chevrier J, Bouchard MF.  2016.  Exposure to polybrominated diphenyl ethers (PBDEs) and 
hypothyroidism in Canadian women.  J Clin Endocrinol Metab 101(2):590-598.  10.1210/jc.2015-2659.  

Owen GM, Brozek J.  1966.  Influence of age, sex and nutrition on body composition during childhood 
and adolescence.  In:  Falkner F, ed.  Human development.  Philadelphia, PA:  WB Saunders, 222-238. 

Pacyniak E, Hagenbuch B, Klaassen CD, et al.  2011.  Organic anion transporting polypeptides in the 
hepatic uptake of PBDE congeners in mice.  Toxicol Appl Pharmacol 257(1):23-31. 

Pacyniak E, Roth M, Hagenbuch B, et al.  2010.  Mechanism of polybrominated diphenyl ether uptake 
into the liver:  PBDE congeners are substrates of human hepatic OATP transporters. Toxicol Sci 
115(2):344-353. 

Palha J, Fernandes R, de Escobar G, et al.  2000. Transthyretin regulates thyroid hormone levels in the 
choroid plexus, but not in the brain parenchyma:  Study in a transthyretin-null mouse model. 
Endocrinology 141(9):3267-3272. 

Palha J, Hays M, Morreale de Escobar G, et al.  1997. Transthyretin is not essential for thyroxine to reach 
the brain and other tissues in transthyretin-null mice.  Am J Physiol 272(3 Pt 1):E485-E493. 

Park HR, Loch-Caruso R.  2015. Protective effect of (+/-)alpha-tocopherol on brominated diphenyl ether-
47-stimulated prostaglandin pathways in human extravillous trophoblasts in vitro.  Toxicol in Vitro 
29(7):1309-1318.  10.1016/j.tiv.2015.05.015.  

Park JS, She J, Holden A, et al.  2011.  High postnatal exposures to polybrominated diphenyl ethers 
(PBDEs) and polychlorinated biphenyls (PCBs) via breast milk in California:  Does BDE-209 transfer to 
breast milk?  Environ Sci Technol 45(10):4579-4585. 

Parolini M, Guazzoni N, Binelli A, et al.  2012.  Polybrominated diphenyl ether contamination in soil, 
vegetation, and cow milk from a high-mountain pasture in the Italian Alps.  Arch Environ Contam 
Toxicol 63(1):29-44. 

Patterson DG, Sjodin A, Bergman A.  2000. Brominated flame retardants in serum from US blood 
donors.  Organohalogen Compounds 47:45-48. 

Pazin M, Pereira LC, Dorta DJ.  2015. Toxicity of brominated flame retardants, BDE-47 and BDE-99 
stems from impaired mitochondrial bioenergetics.  Toxicol Mech Methods 25(1):34-41.  
10.3109/15376516.2014.974233.  

Pellacani C, Buschini A, Galati S, et al.  2012. Evaluation of DNA damage induced by 2 polybrominated 
diphenyl ether flame retardants (BDE-47 and BDE-209) in SK-N-MC cells.  Int J Toxicol 31(4):372-379. 

Peltier MR, Koo HC, Getahun D, et al. 2015. Does exposure to flame retardants increase the risk for 
preterm birth? J Reprod Immunol 107:20-25.  10.1016/j.jri.2014.11.002. 

Pereira LC, Miranda LF, de Souza AO, et al.  2014.  BDE-154 induces mitochondrial permeability 
transition and impairs mitochondrial bioenergetics. J Toxicol Environ Health A 77(1-3):24-36.  
10.1080/15287394.2014.861337.  

Pessah IN, Cherednichenko G, Lein PJ.  2010.  Minding the calcium store:  Ryanodine receptor activation 
as a convergent mechanism of PCB toxicity.  Pharmacol Ther 125(2):260-285. 



   
 

 
 
 

 
 
 
 
 

 
 

 
 

   
  

 
   

 
 

  
 

 
     

     
 

 
  

 
 

 
    

 
 

 
   

  
 

  
   

 
   

  
 

 
   

  
 

  
 

 
  

   
 

   
     

 

 
 

PBDEs 508 

9.  REFERENCES 

Peters AJ, Coleman P, Jones KC.  1999.  Organochlorine pesticides in UK air.  Organohalogen 
Compounds 41:447-450. 

Petreas M, She J, Brown FR, et al.  2002.  High PBDE concentrations in California human and wildlife 
populations.  Organohalogen Compounds 58:177-180. 

Petreas M, She J, Brown FR, et al.  2003.  High body burdens of 2,2',4,4'-tetrabromodiphenyl ether 
(BDE-47) in California women.  Environ Health Perspect 111(9):1175-1179. 

Pettersson A, Karlsson M, van Bavel B, et al.  2002.  Concentrations of polybrominated diphenylethers 
and thyroid hormones in human plasma from exposed workers.  Organohalogen Compounds 58:269-272. 

Pettigrew A.  1993.  Flame retardants (halogenated).  In: Kroschwitz JI, Howe-Grant M, eds.  Kirk-
Othmer encyclopedia of chemical technology.  Explosives and propellants to flame retardants for textiles. 
Vol.  10. 4th edition.  New York, NY:  John Wiley & Sons, 960-976. 

Pharmakon Research International, Inc.  1984. Initial submission:  Acute oral toxicity in rats (14 days) of 
Saytex 115 (pentabromodiphenyloxide).  Submitted to the U.S. Environmental Protection Agency under 
TSCA Section FYI.  OTS0000972.  

Pi N, Chia SE, Ong CN, et al.  2016.  Associations of serum organohalogen levels and prostate cancer 
risk:  Results from a case-control study in Singapore.  Chemosphere 144:1505-1512.  
10.1016/j.chemosphere.2015.10.020.  

Polin D, Leavitt RA.  1984.  Colestipol and energy restriction as an approach to hasten removal of PBBs 
from chickens.  J Toxicol Environ Health 13:659-671. 

Polin D, Bursian SJ, Underwood MS, et al.  1991.  Elimination of PBBs in rats, effect of mineral oil 
and/or feed restriction.  J Toxicol Environ Health 33:197-212. 

Polin D, Lehning E, Pullen D, et al.  1985.  Procedures to enhance withdrawal of xenobiotics from 
chickens.  J Toxicol Environ Health 16:243-254. 

Poma G, Binelli A, Volta P, et al.  2014.  Evaluation of spatial distribution and accumulation of novel 
brominated flame retardants, HBCD and PBDEs in an Italian subalpine lake using zebra mussel 
(Dreissena polymorpha).  Environ Sci Pollut Res Int 21(16):9655-9664. 

Pomerantz I, Burke J, Firestone D, et al.  1978.  Chemistry of PCBs and PBBs.  Environ Health Perspect 
24:133-146. 

Poon E, Powers BE, McAlonan RM, et al.  2011. Effects of developmental exposure to polychlorinated 
biphenyls and/or polybrominated diphenyl ethers on cochlear function.  Toxicol Sci 124(1):161-168. 

Poon S, Wade MG, Aleksa K, et al.  2014.  Hair as a biomarker of systemic exposure to polybrominated 
diphenyl ethers. Environ Sci Technol 48(24):14650-14658.  10.1021/es502789h. 

Qiu X, Bigsby RM, Hites RA.  2009. Hydroxylated metabolites of polybrominated diphenyl ethers in 
human blood samples from the United States.  Environ Health Perspect 117(1):93-98. 



   
 

 
 
 

 
 
 
 
 

    
  

 
  

 
 

 
  

 
   

  
 

   
    

  
 

     
  

 
   

  
 

 
 

   
 

  
   

 
 

   
 

 
 

   
 

  
  

 
 

  
 

 

 
 

   
   

 

PBDEs 509 

9.  REFERENCES 

Qiu X, Marvin CH, Hites RA.  2007. Dechlorane plus and other flame retardants in a sediment core from 
Lake Ontario.  Environ Sci Technol 41(17):6014-6019. 

Quanrud D, Zerzghi H, Leung C, et al.  2011. Fate of endocrine disruptors following long-term land 
application of Class B biosolids and risks to public health.  Proc Water Environ Fed Residuals and 
biosolids 2011(4):420-435.  10.2175/193864711802863201. 

Rahman F, Lanford KH, Scrimshaw MD, et al.  2001.  Polybrominated diphenyl ether (PBDE) flame 
retardants.  Sci Total Environ 275(1-3):1-17. 

Rao P, Kodavanti S, Zhang P.  2003. Effects of polybrominated diphenyl ethers and polychlorinated 
biphenyls on [3H] phorbol ester binding in rat neurons.  J Neurochem 85(Suppl 1):13. 

Rasinger JD, Carroll TS, Lundebye AK, et al.  2014.  Cross-omics gene and protein expression profiling 
in juvenile female mice highlights disruption of calcium and zinc signaling in the brain following dietary 
exposure to CB-153, BDE-47, HBCD or TCDD.  Toxicology 321:1-12.  10.1016/j.tox.2014.03.006.  

Rawn DF, Ryan JJ, Sadler AR, et al.  2014.  Brominated flame retardant concentrations in sera from the 
Canadian Health Measures Survey (CHMS) from 2007 to 2009.  Environ Int 63:26-34. 

Rayne S, Ikonomou MG, Antcliffe B.  2003a.  Rapidly increasing polybrominated diphenyl ether 
concentrations in the Columbia River system from 1992 to 2000.  Environ Sci Technol 37(13):2847
2854. 

Rayne S, Ikonomou MG, Whale MD.  2003b. Anaerobic microbial and photochemical degradation of 
4,4'-dibromodiphenyl ether. Water Res 37:551-560. 

Reistad T, Mariussen E, Fonnum F.  2002. The effect of brominated flame retardants on cell death and 
free radical formation in cerebellar granule cells.  Organohalogen Compounds 57:391-394. 

Ren XM, Guo LH.  2012.  Assessment of the binding of hydroxylated polybrominated diphenyl ethers to 
thyroid hormone transport proteins using a site-specific fluorescence probe.  Environ Sci Technol 
46(8):4633-4640. 

Ren A, Qiu X, Jin L, et al.  2011. Association of selected persistent organic pollutants in the placenta 
with the risk of neural tube defects.  Proc Natl Acad Sci USA 108(31):12770-12775. 

Ren XM, Guo LH, Gao Y, et al.  2013.  Hydroxylated polybrominated diphenyl ethers exhibit different 
activities on thyroid hormone receptors depending on their degree of bromination.  Toxicol Appl 
Pharmacol 268(3):256-263.  

RePORTER.  2014.  Polybrominated diphenyl ethers (PBDE).  National Institutes of Health, Research 
Portfolio Online Reporting Tools.  http://projectreporter.nih.gov/reporter.cfm. August 13, 2014. 

RePORTER.  2016.  Polybrominatede biphenyl ethers (PBDE).  National Institutes of Health, Research 
Portfolio Online Reporting Tools.  https://projectreporter.nih.gov/reporter.cfm. September 21, 2016. 

Reverte I, Domingo JL, Colomina MT.  2014.  Neurodevelopmental effects of decabromodiphenyl ether 
(BDE-209) in APOE transgenic mice.  Neurotoxicol Teratol 46:10-17.  10.1016/j.ntt.2014.08.003.  

https://projectreporter.nih.gov/reporter.cfm
http://projectreporter.nih.gov/reporter.cfm


   
 

 
 
 

 
 
 
 
 

   
 

  
 

 
  

 
 

  
 

  
 

 
 

 
 

 
 

 
  

 
 

  
 

  
   

 
 

  
    

 
 

 
   

 
 

  
  

 
  
  

 

 
 

 
  

   
 

PBDEs 510 

9.  REFERENCES 

Reverte I, Klein AB, Domingo JL, et al.  2013.  Long term effects of murine postnatal exposure to 
decabromodiphenyl ether (BDE-209) on learning and memory are dependent upon APOE polymorphism 
and age.  Neurotoxicol Teratol 40:17-27. 

Rice CP, Chernyak SM, Begnoche L, et al. 2002. Comparisons of PBDE composition and concentration 
in fish collected from the Detroit River, MI and Des Plaines River, IL.  Chemosphere 49(7):731-737. 

Rice DC, Reeve EA, Herlihy A, et al.  2007.  Developmental delays and locomotor activity in the 
C57BL6/J mouse following neonatal exposure to the fully-brominated PBDE, decabromodiphenyl ether.  
Neurotoxicol Teratol 29(4):511-520. 

Rice DC, Thompson WD, Reeve EA, et al.  2009.  Behavioral changes in aging but not young mice after 
neonatal exposure to the polybrominated flame retardant decaBDE.  Environ Health Perspect 
117(12):1903-1911. 

Richardson VM, Staskal DF, Ross DG, et al.  2008.  Possible mechanisms of thyroid hormone disruption 
in mice by BDE 47, a major polybrominated diphenyl ether congener.  Toxicol Appl Pharmacol 
226(3):244-250. 

Rickenbacher U, McKinney JD, Oatley, SJ, et al.  1986.  Structurally specific binding of halogenated 
biphenyls to thyroxine transport protein.  J Med Chem 29:641-648. 

Riu A, Cravedi JP, Debrauwer L, et al.  2008.  Disposition and metabolic profiling of [14C]
decabromodiphenyl ether in pregnant Wistar rats.  Environ Int 34(3):318-329. 

Roberts SC, Bianco AC, Stapleton HM.  2015.  Disruption of type 2 iodothyronine deiodinase activity in 
cultured human glial cells by polybrominated diphenyl ethers.  Chem Res Toxicol 28(6):1265-1274.  
10.1021/acs.chemrestox.5b00072.  

Robledo CA, Yeung E, Mendola P, et al.  2015a.  Preconception maternal and paternal exposure to 
persistent organic pollutants and birth size: The LIFE study.  Environ Health Perspect 123(1):88-94.  
10.1289/ehp.1308016.  

Robledo CA, Yeung E, Mendola P, et al.  2015b.  Supplemental material:  Preconception maternal and 
paternal exposure to persistent organic pollutants and birth size: The LIFE study.  Environ Health 
Perspect.  10.1289/ehp.1308016.  http://ehp.niehs.nih.gov/wp
content/uploads/123/1/ehp.1308016.s001.508.pdf.  September 19, 2016. 

Roper CS, Simpson AG, Madden S, et al.  2006. Absorption of [14C]-tetrabromodiphenyl ether (TeBDE) 
through human and rat skin in vitro. Drug Chem Toxicol 29(3):289-301. 

Rosenman KD, Anderson HA, Selikoff IJ, et al.  1979.  Spermatogenesis in men exposed to 
polybrominated biphenyl (PBB).  Fertil Steril 32:209-213. 

Roze E, Meijer L, Bakker A, et al.  2009.  Prenatal exposure to organohalogens, including brominated 
flame retardants, influences motor, cognitive, and behavioral performance at school age.  Environ Health 
Perspect 117(12):1953-1958. 

Rozman KK, Rozman TA, Williams J, et al.  1982. Effect of mineral oil and/or cholestyramine in the diet 
on biliary and intestinal elimination of 2,4,5,2',4',5'-hexabromodiphenyl in the Rhesus monkey.  J Toxicol 
Environ Health 9:611-618. 

http://ehp.niehs.nih.gov/wp


   
 

 
 
 

 
 
 
 
 

 
 

 
 

 
 

 
 

  
 

 
 

 
 

 
 

  
 

 
   

 
 

    
   

 
 

   
   

 
 

 
   

 
  

 
 

 

  
 

 
    

       
 

 
   

    
 

 

 

PBDEs 511 

9.  REFERENCES 

Ryan JJ, Patry B.  2000. Determination of brominated diphenyl ethers (BDE's) and levels in Canadian 
human milks.  Organohalogen Compounds 47:57-60. 

Ryan JJ, Rawn DF.  2014. The brominated flame retardants, PBDEs and HBCD, in Canadian human 
milk samples collected from 1992 to 2005; concentrations and trends.  Environ Int 70:1-8.  
10.1016/j.envint.2014.04.020.  

Rydén A, Nestor G, Jakobsson K, et al.  2012.  Synthesis and tentative identification of novel 
polybrominated diphenyl ether metabolites in human blood.  Chemosphere 88(10):1227-1234. 

Saegusa Y, Fujimoto H, Woo GH, et al.  2012.  Transient aberration of neuronal development in the 
hippocampal dentate gyrus after developmental exposure to brominated flame retardants in rats.  Arch 
Toxicol 86(9):1431-1442. 

Safe S.  1984. Polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs):  Biochemistry, 
toxicology, and mechanism of action.  CRC Crit Rev Toxicol 13:319-395. 

Safe SH, Zacharewski T.  1997.  Organochlorine exposure and risk for breast cancer.  In:  Aldaz CM, 
Gould MN, McLachlan J, et al., eds.  Etiology of breast and gynecological cancers.  New York, NY: 
Wiley-Liss Inc., 133-145. 

Sagiv SK, Kogut K, Gaspar FW, et al.  2015.  Prenatal and childhood polybrominated diphenyl ether 
(PBDE) exposure and attention and executive function at 9-12 years of age.  Neurotoxicol Teratol 52(Pt 
B):151-161.  10.1016/j.ntt.2015.08.001.  

Sahlstrom LM, Sellstrom U, de Wit CA, et al.  2015.  Feasibility study of feces for noninvasive 
biomonitoring of brominated flame retardants in toddlers.  Environ Sci Technol 49(1):606-615.  
10.1021/es504708c.  

Sakai SI, Honda Y, Takatsuki H, et al.  2001.  Polybrominated substances in waste electrical and 
electronic plastics and their behavior in the incineration plants.  Organohalogen Compounds 52:35-38. 

Sakamoto Y, Inoue K, Takahashi M, et al. 2013. Different pathways of constitutive androstane receptor-
mediated liver hypertrophy and hepatocarcinogenesis in mice treated with piperonyl butoxide or 
decabromodiphenyl ether.  Toxicol Pathol 41(8):1078-1092. 

Sand S, von Rosen D, Eriksson P, et al.  2004.  Dose-response modeling and benchmark calculations 
from spontaneous behavior data on mice neonatally exposed to 2,2',4,4',5-pentabromodiphenyl ether.  
Toxicol Sci 81(2):491-501. 

Sanders JM, Chen LJ, Lebetkin EH, et al.  2006a.  Metabolism and disposition of 2,2',4,4'
tetrabromodiphenyl ether following administration of single or multiple doses to rats and mice. 
Xenobiotica 36(1):103-117. 

Sanders JM, Lebetkin EH, Chen LJ, et al.  2006b.  Disposition of 2,2',4,4',5,5'-hexabromodiphenyl ether 
(BDE153) and its interaction with other polybrominated diphenyl ethers (PBDEs) in rodents. 
Xenobiotica 36(9):824-837.  

Sandholm A, Emanuelsson BM, Klasson-Wehler E.  2003.  Bioavailability and half-life of 
decabromodiphenyl ether (BDE-209) in rat.  Xenobiotica 33(11):1149-1158. 



   
 

 
 
 

 
 
 
 
 

 
  

    
 

 
 

 
 

 
   

 
 

  
 

  
  

 
  

   
 

 
  

 
 

  
  

 
  

  
 

 
  

 
 

 
 

   
   

 
   

     
 

 

 
 

  
 

PBDEs 512 

9.  REFERENCES 

Saquib Q, Siddiqui MA, Ahmed J, et al.  2016.  Hazards of low dose flame-retardants (BDE-47 and BDE
32):  Influence on transcriptome regulation and cell death in human liver cells. J Hazard Mater 308:37
49. 10.1016/j.jhazmat.2016.01.025.  

Sarkar D, Chowdhury JP, Singh SK.  2015.  Effect of polybrominated diphenyl ether (BDE-209) on 
testicular steroidogenesis and spermatogenesis through altered thyroid status in adult mice.  Gen Comp 
Endocrinol.  10.1016/j.ygcen.2015.11.009.  

Saunders NR, Ek CJ, Habgood MD, et al.  2008.  Barriers in the brain:  A renaissance?  Trends Neurosci 
31(6):279-286. 

Saunders NR, Liddelow SA, Dziegielewska KM.  2012.  Barrier mechanisms in the developing brain.  
Front Pharmacol 3(10.3389/fphar.2012.00046):Article 46. 

Schang G, Robaire B, Hales BF.  2016. Organophosphate flame retardants act as endocrine-disrupting 
chemicals in MA-10 mouse tumor Leydig Cells.  Toxicol Sci 150(2):499-509.  10.1093/toxsci/kfw012.  

Schecter A, Colacino J, Sjodin A, et al.  2010.  Partitioning of polybrominated diphenyl ethers (PBDEs) 
in serum and milk from the same mothers.  Chemosphere 78(10):1279-1284. 

Schecter A, Papke O, Harris TR, et al.  2006. Polybrominated diphenyl ether (PBDE) levels in an 
expanded market basket survey of U.S. food and estimated PBDE dietary intake by age and sex.  Environ 
Health Perspect 114(10):1515-1520. 

Schecter A, Papke O, Tung KC, et al.  2005.  Polybrominated diphenyl ether flame retardants in the U.S. 
population:  Current levels, temporal trends, and comparison with dioxins, dibenzofurans, and 
polychlorinated biphenyls. J Occup Environ Med 47(3):199-211. 

Schecter A, Pavuk M, Papke O, et al.  2003. Polybrominated diphenyl ethers (PBDEs) in U.S. mother's 
milk.  Environ Health Perspect 111(14):1723-1729. 

Scheuplein R, Charnley G, Dourson M.  2002.  Differential sensitivity of children and adults to chemical 
toxicity.  I.  Biological basis.  Regul Toxicol Pharmacol 35(3):429-447. 

Schnare DW, Ben M, Shields MG.  1984.  Body burden reductions of PCBs, PBBs and chlorinated 
pesticides in human subjects.  Ambio 13:378-380. 

Schreder ED, La Guardia MJ.  2014.  Flame retardant transfers from U.S. households (dust and laundry 
wastewater) to the aquatic environment.  Environ Sci Technol 48(19):11575-11583.  10.1021/es502227h.  

Schreiber T, Gassmann K, Gotz C, et al.  2010.  Polybrominated diphenyl ethers induce developmental 
neurotoxicity in a human in vitro model:  Evidence for endocrine disruption.  Environ Health Perspect 
118(4):572-578. 

Schröter-Kermani C, Helm D, Hermann T, et al.  2000.  The German environmental specimen bank-
application in trend monitoring of polybrominated diphenyl ethers in human blood.  Organohalogen 
Compounds 47:49-52. 

Schussler GC.  2000. The thyroxine-binding proteins.  Thyroid 10:141-149. 



   
 

 
 
 

 
 
 
 
 

   
 

 
 

   
 

      
 

 
 

 
 

 
  

 
 

   
 

   
 

 
 

 
   

 
 

  
 

 
       

   
 

     
  

 
    

 
 

 
  

 
    

 
 

  
    

 

PBDEs 513 

9.  REFERENCES 

Sellström U, Jansson B.  1995. Analysis of tetrabromobisphenol A in a product and environmental 
samples.  Chemosphere 31(4):3085-3092. 

Sellström U, Jansson B, Kierkegaard A, et al.  1993.  Polybrominated diphenyl ethers (PBDE) in 
biological samples from the Swedish environment.  Chemosphere 26(9):1703-1718. 

Sellström U, Kierkegaard M, Alsberg T, et al.  1999. Brominated flame retardants in sediments from 
European estuaries, the Baltic Sea and in sewage sludge.  Organohalogen Compounds 40:383-386. 

Sellström U, Kierkkegaard A, De Wit C, et al.  1998a.  Polybrominated diphenyl ethers and 
hexabromocyclododecane in sediment and fish from a Swedish river.  Environ Toxicol Chem 17(6):1065
1072. 

Sellström U, Soderstrom G, de Wit C, et al.  1998b.  Photolytic debromination of decabromodiphenyl 
ether (DeBDE).  Organohalogen Compounds 35:447-450. 

Serme-Gbedo YK, Abdelouahab N, Pasquier JC, et al.  2016. Maternal levels of endocrine disruptors, 
polybrominated diphenyl ethers, in early pregnancy are not associated with lower birth weight in the 
Canadian birth cohort GESTE.  Environ Health 15(1):49.  10.1186/s12940-016-0134-z. 

Setchell BP, Waites GMH. 1975. The blood-testis barrier.  In:  Creep RO, Astwood EB, Geiger SR, eds.  
Handbook of physiology:  Endocrinology V.  Washington, DC:  American Physiological Society, 143
172. 

Shah A, Coburn CG, Watson-Siriboe A, et al.  2011.  Altered cardiovascular reactivity and 
osmoregulation during hyperosmotic stress in adult rats developmentally exposed to polybrominated 
diphenyl ethers (PBDEs). Toxicol Appl Pharmacol 256(2):103-113. 

Shaw SD, Berger ML, Brenner D, et al.  2009.  Bioaccumulation of polybrominated diphenyl ethers and 
hexabromocyclododecane in the northwest Atlantic marine food web.  Sci Total Environ 407(10):3323
3329. 

She J, Petreas M, Winkler J, et al.  2002.  PBDEs in the San Francisco Bay area: Measurement in harbor 
seal blubber and human breast adipose tissue.  Chemosphere 46(5):697-707. 

She J, Wrinkler J, Visita P, et al.  2000.  Analysis of PBDEs in seal blubber and human breast adipose 
tissue samples.  Organohalogen Compounds 47:53-56. 

Shi G, Yin H, Ye J, et al.  2013.  Aerobic biotransformation of decabromodiphenyl ether (PBDE-209) by 
Pseudomonas aeruginosa.  Chemosphere 93(8):1487-1493. 

Shin JY, Choi YY, Jeon HS, et al.  2010.  Low-dose persistent organic pollutants increased telomere 
length in peripheral leukocytes of healthy Koreans.  Mutagenesis 25(5):511-516. 

Shy CG, Huang HL, Chang-Chien GP, et al. 2011. Neurodevelopment of infants with prenatal exposure 
to polybrominated diphenyl ethers.  Bull Environ Contam Toxicol 87(6):643-648. 

Shy CG, Huang HL, Chao HR, et al.  2012.  Cord blood levels of thyroid hormones and IGF-1 weakly 
correlate with breast milk levels of PBDEs in Taiwan.  Int J Hyg Environ Health 215(3):345-351. 



   
 

 
 
 

 
 
 
 
 

 
 

 
  

  
  

 
   

 
 

    
   

 
    

   
 

  
  

 
 

 
  

 
 

 
  

 
  

   
 

 
   

   
 

 
 

 
 

  
   

 
 

  
 

  
 

 
  

 
 

 

PBDEs 514 

9.  REFERENCES 

Silberhorn EM, Glauert HP, Robertson LW.  1990.  Carcinogenicity of polyhalogenated biphenyls:  PCBs 
and PBBs.  Crit Rev Toxicol 20(6):439-496. 

Simpson S, Gross MS, Olson JR, et al.  2015.  Identification of polybrominated diphenyl ether 
metabolites based on calculated boiling points from COSMO-RS, experimental retention times, and mass 
spectral fragmentation patterns.  Anal Chem 87(4):2299-2305. 

Sinjari T, Damerud P, Hallgren S.  1998. Competitive inhibition of 125I-thyroxin (T4) binding to choroid 
plexus by hydroxylated PCB metabolites.  Organohalogen Compounds 37:241-244. 

Sjödin A, Carlsson H, Thuresson K, et al.  2001a.  Flame retardants in indoor air at an electronics 
recycling plant and at other work environments.  Environ Sci Technol 35(3):448-454. 

Sjödin A, Hagmar L, Klasson-Wehler E, et al.  1999a.  Flame retardant exposure:  Polybrominated 
diphenyl ethers in blood from Swedish workers.  Environ Health Perspect 107(8):643-648. 

Sjödin A, Hagmar L, Klasson-Wehler E, et al.  2000.  Influence of the consumption of fatty Baltic Sea 
fish on plasma levels of halogenated environmental contaminants in Latvian and Swedish men.  Environ 
Health Perspect 108:1035-1041. 

Sjödin A, Jakobsson E, Kierkegaard A, et al.  1998. Gas chromatographic identification and 
quantification of polybrominated diphenyl ethers in a commercial product, Bromkal 70-5DE.  J 
Chromatogr A 822(1):83-89. 

Sjödin A, Patterson DG Jr., Bergman A.  2001b. Brominated flame retardants in serum from U.S. blood 
donors.  Environ Sci Technol 35(19):3830-3833. 

Sjödin A, Thuresson K, Hagmar L, et al.  1999b.  Occupational exposure to polybrominated diphenyl 
ethers at dismantling of electrons.  Ambient air and human serum analysis.  Organohalogen Compounds 
43:447-451. 

Sjodin A, Wong LY, Jones RS, et al.  2008.  Serum concentrations of polybrominated diphenyl ethers 
(PBDEs) and polybrominated biphenyl (PBB) in the United States population: 2003-2004.  Environ Sci 
Technol 42(4):1377-1384. 

Skarman E, Darnerud PO, Ohrvik H, et al.  2005.  Reduced thyroxine levels in mice perinatally exposed 
to polybrominated diphenyl ethers.  Environ Toxicol Pharmacol 19(2):273-281. 

Slotkin TA, Card J, Infante A, et al.  2013.  BDE99 (2,2',4,4',5-pentabromodiphenyl ether) suppresses 
differentiation into neurotransmitter phenotypes in PC12 cells.  Neurotoxicol Teratol 37:13-17. 

Smarr MM, Grantz KL, Zhang C, et al.  2016.  Persistent organic pollutants and pregnancy complications.  
Sci Total Environ 1(551-552):285-291.  10.1016/j.scitotenv.2016.02.030.  

Smeds A, Saukko P.  2003.  Brominated flame retardants and phenolic endocrine disrupters in Finnish 
human adipose tissue.  Chemosphere 53:1123-1130. 

Smolnikar K, Dehnhardt M, Wiegand H.  2001. Perturbation by PBDE99 of calcium homeostasis after in 
vitro treatment.  The second international workshop on brominated flame retardants.  BFR 2001.  
Stockholm, Sweden, 273. 



   
 

 
 
 

 
 
 
 
 

  
  

 
    

   
 

 
 

 
 

  
 

  
 

 
   
 

 
 

   
  

 
 

   

 
 

   
 

 
 

   
 

 
   

 
 

  
   

 
   

   
 

  
   

 
   

   
 

  
    

PBDEs 515 

9.  REFERENCES 

Soderström G, Sellström U, De Wit CA, et al.  2004.  Photolytic debromination of decabromodiphenyl 
ether (BDE 209).  Environ Sci Technol 38:127-132. 

Song W, Li A, Ford JC, et al.  2005.  Polybrominated diphenyl ethers in the sediments of the Great Lakes.  
2. Lakes Michigan and Huron.  Environ Sci Technol 39(10):3474-3479. 

Stafford, CJ.  1983.  Halogenated diphenyl ethers identified in avian tissues and eggs by GC/MS.  
Chemosphere 12(11/12):1487-1495. 

Stanley JS, Cramer PH, Thornburg KR, et al.  1991. Mass spectral confirmation of chlorinated and 
brominated diphenyl ethers in human adipose tissues.  Chemosphere 23(8-10):1185-1186. 

Stapleton HM.  2006.  Instrumental methods and challenges in quantifying polybrominated diphenyl 
ethers in environmental extracts:  A review.  Anal Bioanal Chem 386:807-817. 

Stapleton HM, Baker JE.  2003.  Comparing polybrominated diphenyl ether and polychlorinated biphenyl 
bioaccumulation in a food web in Grand Bay, Lake Michigan.  Arch Environ Contam Toxicol 45(2):227
234. 

Stapleton HM, Alaee M, Letcher RJ, et al.  2004.  Debromination of the flame retardant 
decabromodiphenyl ether by juvenile carp (Cyprinus carpio) following dietary exposure.  Environ Sci 
Technol 38(1):112-119. 

Stapleton HM, Eagle S, Anthopolos R, et al.  2011.  Associations between polybrominated diphenyl ether 
(PBDE) flame retardants, phenolic metabolites, and thyroid hormones during pregnancy.  Environ Health 
Perspect 119(10):1454-1459. 

Stapleton HM, Kelly SM, Pei R, et al.  2009.  Metabolism of polybrominated diphenyl ethers (PBDEs) by 
human hepatocytes in vitro.  Environ Health Perspect 117(2):197-202. 

Stapleton HM, Sjodin A, Jones RS, et al.  2008.  Serum levels of polybrominated diphenyl ethers 
(PBDEs) in foam recyclers and carpet installers working in the United States.  Environ Sci Technol 
42(9):3453-3458. 

Staskal DF, Diliberto JJ, Birnbaum LS.  2006a.  Impact of repeated exposure on the toxicokinetics of 
BDE 47 in mice.  Toxicol Sci 89(2):380-385. 

Staskal DF, Diliberto JJ, DeVito MJ, et al.  2005. Toxicokinetics of BDE 47 in female mice:  Effect of 
dose, route of exposure, and time.  Toxicol Sci 83(2):215-223. 

Staskal DF, Hakk H, Bauer D, et al.  2006b.  Toxicokinetics of polybrominated diphenyl ether congeners 
47, 99, 100, and 153 in mice.  Toxicol Sci 94(1):28-37. 

Stern GA, Ikonomou MG.  2000. Temporal trends of polybrominated diphenyl ethers in SE Baffin 
beluga:  Increasing evidence of long range atmospheric transport.  Organohalogen Compounds 57:81-84. 

Stoker TE, Cooper RL, Lambright CS, et al.  2005.  In vivo and in vitro anti-androgenic effects of DE-71, 
a commercial polybrominated diphenyl ether (PBDE) mixture.  Toxicol Appl Pharmacol 207(1):78-88. 

Stoker TE, Ferrell J, Hedge JM, et al.  2003.  Assessment of SE-71, a commercial polybrominated 
diphenyl ether (PBDE) mixture, in the EDSP male pubertal protocol.  Toxicologist 72(S-1):135-136. 



   
 

 
 
 

 
 
 
 
 

 
 

    
 

 
   

  
 

  
   

 
 

  
    

 
  

 
 

 
   

 
   

 
 

     
   

 
    

   
 

 
   

   
 

 
   

   
  

 
 

  
  

 
 

   
 

  
    

 

PBDEs 516 

9.  REFERENCES 

Stoker TE, Laws SC, Crofton KM, et al.  2004.  Assessment of DE-71, a commercial polybrominated 
diphenyl ether (PBDE) mixture, in the EDSP male and female pubertal protocols.  Toxicol Sci 78(1):144
155. 

Stoker TE, Cooper RL, Lambright CS, et al.  2005.  In vivo and in vitro anti-androgenic effects of DE-71, 
a commercial polybrominated diphenyl ether (PBDE) mixture.  Toxicol Appl Pharmacol 207(1):78-88. 

Strandberg B, Dodder NG, Basu I, et al.  2001. Concentrations and spatial variations of polybrominated 
diphenyl ethers and other organohalogen compounds in Great Lakes air.  Environ Sci Technol 
35(6):1078-1083. 

Strandman T, Koistinen J, Kiviranta H, et al.  1999.  Levels of some polybrominated diphenyl ethers 
(PBDEs) in fish and human adipose tissue in Finland.  Organohalogen Compounds 40:355-358. 

Strandman T, Koistinen J, Variainen T.  2000.  Polybrominated diphenyl ethers (PBDEs) in placenta and 
human milk.  47:61-64. 

Streets SS, Henderson SA, Stoner AD, et al.  2006. Partitioning and bioaccumulation of PBDEs and 
PCBs in Lake Michigan.  Environ Sci Technol 40(23):7263-7269. 

Stross JK, Smokler IA, Isbister J, et al.  1981.  The human health effects of exposure to polybrominated 
biphenyls.  Toxicol Appl Pharmacol 58:145-150. 

Stubbings WA, Harrad S. 2014. Extent and mechanisms of brominated flame retardant emissions from 
waste soft furnishings and fabrics:  A critical review.  Environ Int 71:164-175. 

Su G, Xia J, Liu H, et al.  2012.  Dioxin-like potency of HO- and MeO- analogues of PBDEs' the 
potential risk through consumption of fish from eastern China.  Environ Sci Technol 46(19):10781
10788. 

Sutton R, Sedlak MD, Yee D, et al.  2015.  Declines in polybrominated diphenyl ether contamination of 
San Francisco Bay following production phase-outs and bans.  Environ Sci Technol 49(2):777-784. 
10.1021/es503727b. 

Swann RL, Laskowski DA, McCall PJ, et al.  1983.  A rapid method for the estimation of the 
environmental parameters octanol/water partition coefficient, soil sorption constant, water to air, and 
water solubility.  Res Rev 85:17-28. 

Szabo DT, Richardson VM, Ross DG, et al.  2009.  Effects of perinatal PBDE exposure on hepatic phase 
I, phase II, phase III, and deiodinase 1 gene expression involved in thyroid hormone metabolism in male 
rat pups.  Toxicol Sci 107(1):27-39.  10.1093/toxsci/kfn230.  

Ta TA, Koenig CM, Golub MS, et al.  2011.  Bioaccumulation and behavioral effects of 2,2',4,4'
tetrabromodiphenyl ether (BDE-47) in perinatally exposed mice.  Neurotoxicol Teratol 33(3):393-404. 

Takenaka S, Takahashi K.  1991. Enhancement of fecal excretion of polychlorinated biphenyls by the 
addition of rice bran fiber to the diet in rats.  Chemosphere 22(3-4):375-381. 



   
 

 
 
 

 
 
 
 
 

    
   

 
 

     
    

 
 

   
   

 
 

   
  

 
 

 
    

 
 

  
  

  
 

 
 

  
 

   
  

 
  

  
 

 
  

 
 

   

 
 

   
  

 
  

 
 

 
  

 

PBDEs 517 

9.  REFERENCES 

Talsness CE, Kuriyama SN, Sterner-Kock A, et al.  2008.  In utero and lactational exposures to low doses 
of polybrominated diphenyl ether-47 alter the reproductive system and thyroid gland of female rat 
offspring.  Environ Health Perspect 116(3):308-314. 

Talsness CE, Shakibaei M, Kuriyama S, et al.  2003. Ultrastructural changes in the ovaries of adult 
offspring following a single maternal exposure to low dose 2,2'4,4',5-pentabromodiphenyl ether. 
Organohalogen Compounds 61:88-91. 

Talsness CE, Shakibaei M, Kuriyama SN, et al.  2005.  Ultrastructural changes observed in rat ovaries 
following in utero and lactational exposure to low doses of a polybrominated flame retardant.  Toxicol 
Lett 157(3):189-202. 

Tan J, Loganath A, Chong YS, et al.  2009.  Exposure to persistent organic pollutants in utero and related 
maternal characteristics on birth outcomes:  A multivariate data analysis approach.  Chemosphere 
74(3):428-433. 

Tang Z, Huang Q, Cheng J, et al.  2014.  Polybrominated diphenyl ethers in soils, sediments, and human 
hair in a plastic waste recycling area:  A neglected heavily polluted area.  Environ Sci Technol 
48(3):1508-1516. 

Thomas K, Colborn T.  1992.  Organochlorine endocrine disruptors in human tissue.  In:  Colborn T, 
Clement C, eds.  Chemically induced alterations in sexual and functional development:  The 
wildlife/human connection.  Princeton, NJ:  Princeton Scientific Publishing, 365-394. 

Thomsen C, Haug LS, Stigum H, et al.  2010.  Changes in concentrations of perfluorinated compounds, 
polybrominated diphenyl ethers, and polychlorinated biphenyls in Norwegian breast-milk during twelve 
months of lactation.  Environ Sci Technol 44(24):9550-9556. 

Thomsen C, Lundanes E, Becher G.  2001.  Brominated flame retardants in plasma samples from three 
different occupational groups in Norway.  J Environ Monit 3(4):366-370. 

Thuresson K, Hoglund P, Hagmar L, et al.  2006.  Apparent half-lives of hepta- to decabrominated 
diphenyl ethers in human serum as determined in occupationally exposed workers.  Environ Health 
Perspect 114(2):176-181. 

Tittlemier SA, Halldorson T, Stern GA, et al. 2002. Vapor pressures, aqueous solubilities, and Henry's 
Law constants of some brominated flame retardants.  Environ Toxicol Chem 21(9):1804-1810. 

Toft G, Lenters V, Vermeulen R, et al. 2014. Exposure to polybrominated diphenyl ethers and male 
reproductive function in Greenland, Poland and Ukraine.  Reprod Toxicol 43:1-7.  
10.1016/j.reprotox.2013.10.002.  

Tokarz JA, Ahn MY, Leng J, et al.  2008. Reductive debromination of polybrominated diphenyl ethers in 
anaerobic sediment and a biomimetic system.  Environ Sci Technol 42(4):1157-1164. 

Toms LM, Sjodin A, Harden F, et al.  2009. Serum polybrominated diphenyl ether (PBDE) levels are 
higher in children (2-5 years of age) than in infants and adults.  Environ Health Perspect 117(9):1461
1465. 

Trabert B, Chen Z, Kannan K, et al.  2015.  Persistent organic pollutants (POPs) and fibroids:  Results 
from the ENDO study.  J Expo Sci Environ Epidemiol 25(3):278-285.  10.1038/jes.2014.31. 

http:10.1038/jes.2014.31


   
 

 
 
 

 
 
 
 
 

 
  

 
  

 
    

  
 

  
 

 
 

   
  

 
 

   
  

 
 

   
 

 
    

   
 

 
  

 
 

  
  

 
 

  
 

 

  
 

 
 

 
 

   
   

 
 

PBDEs 518 

9.  REFERENCES 

TRI14 2016.  TRI explorer:  Providing access to EPA's toxics release inventory data.  U.S. Environmental 
Protection Agency, Office of Environmental Information.  Toxics Release Inventory.  
http://www.epa.gov/triexplorer/.  September 19, 2016. 

Trudel D, Scheringer M, von Goetz N, et al.  2011. Total consumer exposure to polybrominated diphenyl 
ethers in North America and Europe.  Environ Sci Technol 45(6):2391-2397. 

Tseng LH, Hsu PC, Lee CW, et al.  2013.  Developmental exposure to decabrominated diphenyl ether 
(BDE-209):  Effects on sperm oxidative stress and chromatin DNA damage in mouse offspring. Environ 
Toxicol 28(7):380-389. 

Tseng LH, Li MH, Hsu PC, et al.  2006.  Effects of in utero exposure to decabrominated diphenyl ether 
(PBDE 209) on developmental toxicity and liver enzyme activities in male mice.  Organohalogen 
Compounds 68:1561-1564. 

Tseng LH, Li MH, Tsai SS, et al.  2008.  Developmental exposure to decabromodiphenyl ether (PBDE 
209):  Effects on thyroid hormone and hepatic enzyme activity in male mouse offspring.  Chemosphere 
70(4):640-647. 

Tullo A. 2003. Great Lakes to phase out two flame retardants.  Chemical & Engineering News 
81(45):13. 

Turyk M, Fantuzzi G, Persky V, et al.  2015. Persistent organic pollutants and biomarkers of diabetes risk 
in a cohort of Great Lakes sport caught fish consumers.  Environ Res 140:335-344.  
10.1016/j.envres.2015.03.037.  

Turyk ME, Persky VW, Imm P, et al.  2008.  Hormone disruption by PBDEs in adult male sport fish 
consumers.  Environ Health Perspect 116(12):1635-1641. 

Ueno D, Kajiwara N, Tanaka H, et al. 2003. Global pollution monitoring of polybrominated diphenyl 
ethers (PBDEs) using skipjack tuna as a bioindicator.  Organohalogen Compounds 61:37-40. 

USGS.  2012.  Reconnaissance of contaminants in selected wastewater-treatment-plant effluent and 
stormwater runoff entering the Columbia River, Columbia River Basin, Washington and Oregon, 2008
10. Scientific Investigations Report 2012-5068.  U.S. Geological Survey, U.S. Department of the 
Interior.  http://pubs.usgs.gov/sir/2012/5068/pdf/sir20125068.pdf. September 22, 2016. 

Vagi SJ, Azziz-Baumgartner E, Sjodin A, et al.  2014.  Exploring the potential association between 
brominated diphenyl ethers, polychlorinated biphenyls, organochlorine pesticides, perfluorinated 
compounds, phthalates, and bisphenol A in polycystic ovary syndrome:  A case-control study.  BMC 
endocrine disorders 14:86.  10.1186/1472-6823-14-86.  

van Bavel B, Dam M, Tysklind M, et al.  2001.  Levels of polybrominated diphenyl ethers in marine 
mammals.  Organohalogen Compounds 52:99-103. 

van Bavel B, Sundelin E, Lillback J, et al.  1999.  Supercritical fluid extraction of polybrominated 
diphenyl ethers PBDEs from long-finned pilot whale (Globicephala melas) from the Atlantic. 
Organohalogen Compounds 40:359-362. 

http://pubs.usgs.gov/sir/2012/5068/pdf/sir20125068.pdf
http://www.epa.gov/triexplorer


   
 

 
 
 

 
 
 
 
 

   
 

 
 

  
 

 
     

  
 

 
   

     
 

 

 
 

  

 
 

 
 

 

 
 

 
   

    
 

 
 

 
   

  
 

 
  

      
 

 
 

 
   

 
 

  
 

PBDEs 519 

9.  REFERENCES 

van den Dungen MW, Rijk JC, Kampman E, et al.  2015.  Steroid hormone related effects of marine 
persistent organic pollutants in human H295R adrenocortical carcinoma cells. Toxicol in Vitro 
29(4):769-778.  10.1016/j.tiv.2015.03.002.  

van den Hove MF, Beckers C, Devlieger H, et al.  1999.  Hormone synthesis and storage in the thyroid of 
human preterm and term newborns:  Effect of thyroxine treatment.  Biochimie 81:563-570. 

Van der Ven LT, van de Kuil T, Leonards PE, et al.  2008a.  A 28-day oral dose toxicity study in Wistar 
rats enhanced to detect endocrine effects of decabromodiphenyl ether (decaBDE).  Toxicol Lett 179(1):6
14. 

van der Ven LT, van de Kuil T, Verhoef A, et al.  2008b.  A 28-day oral dose toxicity study enhanced to 
detect endocrine effects of a purified technical pentabromodiphenyl ether (pentaBDE) mixture in Wistar 
rats.  Toxicology 245(1-2):109-122. 

Van Vliet G.  1999.  Merck AG thyroid symposium.  Neonatal hypothyroidism:  Treatment and outcome.  
Thyroid 9:79-84. 

Venkatesan AK, Halden RU.  2014. Brominated flame retardants in U.S. biosolids from the EPA national 
sewage sludge survey and chemical persistence in outdoor soil mesocosms.  Water Res 55:133-142.  
10.1016/j.watres.2014.02.021. 

Verma P, Gupta RK, Gandhi BS, et al.  2015.  CDRI-08 Attenuates REST/NRSF-mediated expression of 
NMDAR1 Gene in PBDE-209-exposed mice brain.  eCAM 2015:403840.  10.1155/2015/403840.  

Viberg H.  2009a.  Exposure to polybrominated diphenyl ethers 203 and 206 during the neonatal brain 
growth spurt affects proteins important for normal neurodevelopment in mice.  Toxicol Sci 109(2):306
311. 

Viberg H.  2009b.  Neonatal ontogeny and neurotoxic effect of decabrominated diphenyl ether (PBDE 
209) on levels of synaptophysin and tau.  Int J Dev Neurosci 27(5):423-429. 

Viberg H, Eriksson P.  2011.  Differences in neonatal neurotoxicity of brominated flame retardants, 
PBDE 99 and TBBPA, in mice.  Toxicology 289(1):59-65. 

Viberg H, Fredriksson A, Eriksson P.  2002. Neonatal exposure to the brominated flame retardant 
2,2',4,4',4-pentabromodiphenyl ether causes altered susceptibility if the cholinergic transmitter system in 
the adult mouse.  Toxicol Sci 67:104-107. 

Viberg H, Fredrickson A, Eriksson P.  2003a.  Neonatal PBDE 99 exposure causes dose-response related 
behavioural derangements that are not sex or strain specific in mice. Toxicol Sci 72(S-1):126. 

Viberg H, Fredriksson A, Eriksson P.  2003b.  Neurotoxicity of different polybrominated diphenyl ethers, 
including PBDE 209.  Organohalogen Compounds 65:9-11. 

Viberg H, Fredriksson A, Eriksson P.  2004a.  Investigations of strain and/or gender differences in 
developmental neurotoxic effects of polybrominated diphenyl ethers in mice.  Toxicol Sci 81(2):344-353. 

Viberg H, Fredriksson A, Eriksson P.  2004b.  Neonatal exposure to the brominated flame-retardant, 
2,2',4,4',5-pentabromodiphenyl ether, decreases cholinergic nicotinic receptors in hippocampus and 
affects spontaneous behaviour in the adult mouse.  Environ Toxicol Pharmacol 17(2):61-65. 



   
 

 
 
 

 
 
 
 
 

 
 

 
   

 
 

  
    

   
 

    
 

    
 

  
   

 
 

    
   

 
     

 
 

     
 

 
   

  
 

 
   

    
 

 
   

 
 

 
 

 
  

   
 

 
   

   
 

 

PBDEs 520 

9.  REFERENCES 

Viberg H, Fredriksson A, Eriksson P.  2005. Deranged spontaneous behaviour and decrease in 
cholinergic muscarinic receptors in hippocampus in the adult rat, after neonatal exposure to the 
brominated flame-retardant, 2,2',4,4',5-pentabromodiphenyl ether (PBDE 99).  Environ Toxicol 
Pharmacol 20(2):283-288. 

Viberg H, Fredriksson A, Eriksson P.  2007. Changes in spontaneous behaviour and altered response to 
nicotine in the adult rat, after neonatal exposure to the brominated flame retardant, decabrominated 
diphenyl ether (PBDE 209).  Neurotoxicology 28(1):136-142. 

Viberg H, Johansson N, Fredriksson A, et al.  2006. Neonatal exposure to higher brominated diphenyl 
ethers, hepta-, octa-, or nonabromodiphenyl ether, impairs spontaneous behavior and learning and 
memory functions of adult mice.  Toxicol Sci 92(1):211-218. 

Viberg H, Mundy W, Eriksson P.  2008.  Neonatal exposure to decabrominated diphenyl ether (PBDE 
209) results in changes in BDNF, CaMKII and GAP-43, biochemical substrates of neuronal survival, 
growth, and synaptogenesis.  Neurotoxicology 29(1):152-159. 

Vieira I, Sonnier M, Cresteil T.  1996.  Developmental expression of CYP2E1 in the human liver: 
Hypermethylation control of gene expression during the neonatal period.  Eur J Biochem 238(2):476-483. 

Villeneuve DL, Kannan K, Priest BT, et al. 2002. In vitro assessment of potential mechanism-specific 
effects of polybrominated diphenyl ethers.  Environ Toxicol Chem 21(11):2431-2433. 

Vizcaino E, Grimalt JO, Lopez-Espinosa MJ, et al.  2011.  Polybromodiphenyl ethers in mothers and their 
newborns from a non-occupationally exposed population (Valencia, Spain).  Environ Int 37(1):152-157. 

von Meyerinck L, Hufnagel B, Schmoldt A, et al.  1990.  Inductions of rat liver microsomal cytochrome 
P-450 by the pentabromo diphenyl ether bromkal 70 and half-lives of its components in the adipose 
tissue.  Toxicology 61(2):259-274. 

Vulsma T, Gons MH, DeVijder JJM.  1989.  Maternal-fetal transfer of thyroxine in congenital 
hypothyroidism due to a total organification defect or thyroid agenesis.  N Eng J Med 321:13-16. 

Vuong AM, Yolton K, Webster GM, et al.  2016a.  Prenatal polybrominated diphenyl ether and 
perfluoroalkyl substance exposures and executive function in school-age children. Environ Res 147:556
564. 10.1016/j.envres.2016.01.008.  

Vuong AM, Braun JM, Sjodin A, et al.  2016b.  Prenatal polybrominated diphenyl ether exposure and 
body mass index in children up to 8 years of age.  Environ Health Perspect 124(12):1891-1897.  
10.1289/EHP139.  

Wainman BC, Kesner JS, Martin ID, et al.  2016.  Menstrual cycle perturbation by organohalogens and 
elements in the Cree of James Bay, Canada. Chemosphere 149:190-201.  
10.1016/j.chemosphere.2015.12.056.  

Wan Y, Choi K, Kim S, et al.  2010.  Hydroxylated polybrominated diphenyl ethers and bisphenol A in 
pregnant women and their matching fetuses:  Placental transfer and potential risks.  Environ Sci Technol 
44(13):5233-5239. 



   
 

 
 
 

 
 
 
 
 

  
  

 
 

  
 

    
  

   
 

   
  

 
   

 
 

   
 

 
  

 
 

 
  

 
   

  
 

   
 

 
 

  
 

 
  

 
 

  
  

 
 

   
 

 
  

 
 

 

PBDEs 521 

9.  REFERENCES 

Wan Y, Wiseman S, Chang H, et al.  2009.  Origin of hydroxylated brominated diphenyl ethers:  Natural 
compounds or man-made flame retardants?  Environ Sci Technol 43(19):7536-7542. 

Wang F, Liu W, Jin Y, et al.  2011a.  Interaction of PFOS and BDE-47 co-exposure on thyroid hormone 
levels and TH-related gene and protein expression in developing rat brains.  Toxicol Sci 121(2):279-291. 

Wang F, Wang J, Dai J, et al.  2010.  Comparative tissue distribution, biotransformation and associated 
biological effects by decabromodiphenyl ethane and decabrominated diphenyl ether in male rats after a 
90-day oral exposure study.  Environ Sci Technol 44(14):5655-5660. 

Wang F, Wang J, Hu G, et al.  2011b.  Tissue distribution and associated toxicological effects of 
decabrominated diphenyl ether in subchronically exposed male rats.  ISRN Toxicology 2011:989251. 

Wang KL, Hsia SM, Mao IF, et al.  2011c.  Effects of polybrominated diphenyl ethers on steroidogenesis 
in rat Leydig cells.  Hum Reprod 26(8):2209-2217. 

Wang Y, Shi J, Li L, et al.  2013. Adverse effects of 2,2',4,4'-tetrabromodiphenyl ether on semen quality 
and spermatogenesis in male mice.  Bull Environ Contam Toxicol 90(1):51-54. 

Wang Z, Na G, Ma X, et al.  2015. Characterizing the distribution of selected PBDEs in soil, moss and 
reindeer dung at Ny-Alesund of the Arctic.  Chemosphere 137:9-13.  
10.1016/j.chemosphere.2015.04.030. 

Warembourg C, Debost-Legrand A, Bonvallot N, et al.  2016. Exposure of pregnant women to persistent 
organic pollutants and cord sex hormone levels.  Hum Reprod 31(1):190-198.  10.1093/humrep/dev260.  

Watanabe I.  1988. Behaviour of organobrominated compounds at the sediment phase in the 
environment.  Koshu Eisei Hen 26:129-133. 

Watanabe I, Kashimoto T, Tatsukawa R.  1986.  Confirmation of the presence of the flame retardant 
decabromodiphenyl ether in river sediment from Osaka, Japan.  Bull Environ Contam Toxicol 36(6):839
842. 

Watanabe I, Kashimoto T, Tatsukawa R.  1987.  Polybrominated biphenyl ethers in marine fish, shellfish 
and river and marine sediments in Japan.  Chemosphere 16(10-12):2389-2396. 

Watanabe I, Kawano M, Tatsukawa R.  1995.  Polybrominated and mixed polybromo/chlorinated 
dibenzo-p-dioxins and -dibenzofurans in the Japanese environment.  Organohalogen Compounds 24:337
340. 

Watanabe W, Shimizu T, Hino A, et al.  2008.  Effects of decabrominated diphenyl ether (DBDE) on 
developmental immunotoxicity in offspring mice.  Environ Toxicol Pharmacol 26(3):315-319. 

Watanabe W, Shimizu T, Sawamura R, et al.  2010a.  Effects of tetrabromobisphenol A, a brominated 
flame retardant, on the immune response to respiratory syncytial virus infection in mice.  Int 
Immunopharmacol 10(4):393-397. 

Watanabe W, Shimizu T, Sawamura R, et al.  2010b.  Functional disorder of primary immunity 
responding to respiratory syncytial virus infection in offspring mice exposed to a flame retardant, 
decabrominated diphenyl ether, perinatally.  J Med Virol 82(6):1075-1082. 



   
 

 
 
 

 
 
 
 
 

    
 

 
 

 
  

 
 

     
   

 
  

      
 

 
  

   
 

  
  

 
 

 
 

 
   

 
 

  
 

 
 

 
 

 
  

 
 

    
 

 
 

 
        

 
 

PBDEs 522 

9.  REFERENCES 

Watkins DJ, McClean MD, Fraser AJ, et al.  2011. Exposure to PBDEs in the office environment: 
Evaluating the relationships between dust, handwipes, and serum.  Environ Health Perspect 119(9):1247
1252. 

Weiss J, Wallin E, Axmon A, et al.  2006.  Hydroxy-PCBs, PBDEs, and HBCDDs in serum from an 
elderly population of Swedish fishermen's wives and associations with bone density.  Environ Sci 
Technol 40(20):6282-6289. 

West JR, Smith HW, Chasis H.  1948. Glomerular filtration rate, effective renal blood flow, and maximal 
tubular excretory capacity in infancy.  J Pediatr 32:10-18. 

Wester RC, Maibach HI, Bucks DA, et al.  1990.  Percutaneous absorption and skin decontamination of 
PCBs: In vitro studies with human skin and in vivo studies in the Rhesus monkey.  J Toxicol Environ 
Health 31:235-246. 

Whitehead TP, Crispo Smith S, Park JS, et al.  2015a.  Concentrations of persistent organic pollutants in 
California women's serum and residential dust.  Environ Res 136:57-66.  10.1016/j.envres.2014.10.009. 

Whitehead TP, Crispo Smith S, Park JS, et al.  2015b.  Concentrations of persistent organic pollutants in 
California children's whole blood and residential dust.  Environ Sci Technol 49(15):9331-9340.  
10.1021/acs.est.5b02078.  

WHO.  1994a.  Brominated diphenyl ethers.  International programme on chemical safety.  
Environmental Health Criteria 162.  World Health Organization.  
http://www.inchem.org/documents/ehc/ehc/ehc162.htm. December 17, 2014. 

WHO. 1994b.  Brominated biphenyls.  International programme on chemical safety.  Environmental 
Health Criteria 152.  World Health Organization.  
http://www.inchem.org/documents/ehc/ehc/ehc152.htm. December 17, 2014. 

WHO.  1998. Polybrominated dibenzo-p-dioxins and dibenzofurans.  International Programme on 
Chemical Safety.  Environmental Health Criteria.  World Health Organization. 
http://www.inchem.org/documents/ehc/ehc/ehc205.htm. December 17, 2014 

WHO.  2006. Evaluation of certain food contaminants.  Sixty-fourth report of the Joint/FAO/Who Expert 
Committee on Food Additives.  Geneva, Switzerland:  World Health Organization.  
http://whqlibdoc.who.int/trs/WHO_TRS_930_eng.pdf. December 17, 2014 

WHO.  2010. Guidelines for indoor air quality:  Selected pollutants.  Geneva, Switzerland:  World Health 
Organization.  http://www.euro.who.int/__data/assets/pdf_file/0009/128169/e94535.pdf. September 9, 
2014. 

WHO.  2011. Guidelines for drinking-water quality. 4th ed.  Geneva, Switzerland:  World Health 
Organization.  http://whqlibdoc.who.int/publications/2011/9789241548151_eng.pdf?ua=1. September 9, 
2014. 

Widdowson EM, Dickerson JWT.  1964.  Chemical composition of the body.  In:  Comar CL, Bronner F, 
eds. Mineral metabolism: An advanced treatise.  Volume II:  The elements Part A.  New York, NY: 
Academic Press, 1-247. 

http://whqlibdoc.who.int/publications/2011/9789241548151_eng.pdf?ua=1
http://www.euro.who.int/__data/assets/pdf_file/0009/128169/e94535.pdf
http://whqlibdoc.who.int/trs/WHO_TRS_930_eng.pdf
http://www.inchem.org/documents/ehc/ehc/ehc205.htm
http://www.inchem.org/documents/ehc/ehc/ehc152.htm
http://www.inchem.org/documents/ehc/ehc/ehc162.htm


   
 

 
 
 

 
 
 
 
 

  
    
 

 
 

 
 

 
 

  
 

 
   

 
 

   

 
 

   
  

 
 

 
   

 
   

    
 

   
    

 
 

 
 

 
  

 
 

  
 

   
  

  
 

  
   

 

PBDEs 523 

9.  REFERENCES 

Wiegand H, Desaiah D, Dehnhardt M, et al.  2001.  Polyhalogenated hydrocarbon induced perturbation of 
intracellular calcium homeostasis:  From astrocytes to human macrophages.  Organohalogen Compounds 
53:182-184. 

WIL Research Laboratories.  1984. 90-Day dietary study in rats with pentabromodiphenyl oxide (DE-71) 
(Final Report).  Submitted to the U.S. Environmental Protection Agency under TSCA Section 8D.  
OTS0524336. 

WIL Research Laboratories.  1986. A range-finding teratology study in rats with DE-79.  Submitted to 
U.S. Environmental Protection Agency under TSCA Section 8D.  OTS0522298.  

Windham GC, Pinney SM, Voss RW, et al.  2015a.  Brominated flame retardants and other persistent 
organohalogenated compounds in relation to timing of puberty in a longitudinal study of girls.  Environ 
Health Perspect 123(10):1046-1052.  10.1289/ehp.1408778.  

Windham GC, Pinney SM, Voss RW, et al.  2015b.  Supplemental material.  Brominated flame retardants 
and other persistent organohalogenated compounds in relation to timing of puberty in a longitudinal study 
of girls.  Environ Health Perspect.  10.1289/ehp.1408778.  http://ehp.niehs.nih.gov/wp
content/uploads/123/10/ehp.1408778.s001.acco.pdf.  September 19, 2016. 

Witt KL, Livanos E, Kissling GE, et al.  2008. Comparison of flow cytometry- and microscopy-based 
methods for measuring micronucleated reticulocyte frequencies in rodents treated with nongenotoxic and 
genotoxic chemicals.  Mutat Res 649(1-2):101-113. 

Wolfe NL, Jeffers PM.  2000.  Hydrolysis.  In:  Boethling SB, Mackay D, eds.  Handbook of property 
estimation methods for chemicals.  Boca Raton, FL: CRC Press LLC, 311-334. 

Wolff MS, Anderson HA, Camper F, et al.  1979a.  Analysis of adipose tissue and serum from PBB 
(polybrominated biphenyl)-exposed workers. J Environ Pathol Toxicol 2:1397-1411. 

Wolff MS, Anderson HA, Rosenman KD, et al.  1979b.  Equilibrium of polybrominated biphenyl (PBB) 
residues in serum and fat of Michigan residents. Bull Environ Contam Toxicol 21:775-781. 

Wolff MS, Anderson HA, Selikoff IJ.  1982.  Human tissue burdens of halogenated aromatic chemicals in 
Michigan.  JAMA 247(15):2112-2116. 

Wong F, Cousins IT, Macleod M.  2013. Bounding uncertainties in intrinsic human elimination half-lives 
and intake of polybrominated diphenyl ethers in the North American population.  Environ Int 59:168-174. 

Woods R, Vallero RO, Golub MS, et al.  2012.  Long-lived epigenetic interactions between perinatal 
PBDE exposure and Mecp2308 mutation.  Hum Mol Genet 21(11):2399-2411. 

Wu CC, Bao LJ, Tao S, et al.  2016.  Dermal uptake from airborne organics as an important route of 
human exposure to e-waste combustion fumes.  Environ Sci Technol 50(13):6599-6605.  
10.1021/acs.est.5b05952. 

Wu K, Xu X, Liu J, et al.  2010.  Polybrominated diphenyl ethers in umbilical cord blood and relevant 
factors in neonates from Guiyu, China.  Environ Sci Technol 44(2):813-819. 

http://ehp.niehs.nih.gov/wp


   
 

 
 
 

 
 
 
 
 

      
   

 
 

 

 
 

 
       

 
 

  
  

   
 

 

 
 

   
     

 
 

   
     

 
 

 
   

 
    

 
 

  
 

 
 

   
      

 
 

    
   

 
 

  
  

 
   

 

PBDEs 524 

9.  REFERENCES 

Xing T, Chen L, Tao Y, et al.  2009.  Effects of decabrominated diphenyl ether (PBDE 209) exposure at 
different developmental periods on synaptic plasticity in the dentate gyrus of adult rats in vivo.  Toxicol 
Sci 110(2):401-410. 

Xu L, Huo X, Zhang Y, et al.  2015b.  Polybrominated diphenyl ethers in human placenta associated with 
neonatal physiological development at a typical e-waste recycling area in China.  Environ Pollut 196:414
422. 10.1016/j.envpol.2014.11.002.  

Xu P, Lou X, Ding G, et al.  2014a.  Association of PCB, PBDE and PCDD/F body burdens with 
hormone levels for children in an e-waste dismantling area of Zhejiang Province, China.  Sci Total 
Environ 499:55-61.  10.1016/j.scitotenv.2014.08.057.  

Xu P, Lou X, Ding G, et al.  2015a.  Effects of PCBs and PBDEs on thyroid hormone, lymphocyte 
proliferation, hematology and kidney injury markers in residents of an e-waste dismantling area in 
Zhejiang, China.  Sci Total Environ 536:215-222.  10.1016/j.scitotenv.2015.07.025.  

Xu X, Liu J, Zeng X, et al. 2014b. Elevated serum polybrominated diphenyl ethers and alteration of 
thyroid hormones in children from Guiyu, China.  PLoS ONE 9(11):e113699.  
10.1371/journal.pone.0113699.  

Yamamoto H, Okumura T, Nishkawa Y, et al.  1997. Determination of decabromodiphenyl ether in water 
and sediment samples by gas chromatography with electron capture detection. J AOAC Int 
80(1):102-106. 

Yan T, Xiang L, Xuejun J, et al.  2012.  Spatial learning and memory deficit of low level polybrominated 
diphenyl ethers-47 in male adult rat is modulated by intracellular glutamate receptors. J Toxicol Sci 
37(2):223-233. 

Yang C, Harrad S, M Abdallah, MAE et al.  2014.  Polybrominated diphenyl ethers (PBDEs) in English 
freshwater lakes, 2008–2012.  Chemosphere 110:41-47. 

Yang F, Alonso Aguirre A, Jin S, et al.  2008. Detection of polybrominated diphenyl ethers in tilapia 
(Oreochromis mossambicus) from O'ahu, Hawai'i.  J Environ Monit 10(4):432-434. 

Yeh A, Kruse SE, Marcinek DJ, et al. 2015. Effect of omega-3 fatty acid oxidation products on the 
cellular and mitochondrial toxicity of BDE 47.  Toxicol in Vitro 29(4):672-680.  
10.1016/j.tiv.2015.01.015.  

Yu YX, Li JL, Zhang XY, et al.  2010b.  Assessment of the bioaccessibility of polybrominated diphenyl 
ethers in foods and the correlations of the bioaccessibility with nutrient contents. J Agric Food Chem 
58(1):301-308.  

Yu Z, Zheng K, Ren G, et al.  2010a.  Identification of hydroxylated octa- and nona-bromodiphenyl ethers 
in human serum from electronic waste dismantling workers.  Environ Sci Technol 44(10):3979-3985.  

Yuan J, Chen L, Chen D, et al.  2008.  Elevated serum polybrominated diphenyl ethers and thyroid-
stimulating hormone associated with lymphocytic micronuclei in Chinese workers from an E-waste 
dismantling site.  Environ Sci Technol 42(6):2195-2200. 

Zegers BN, Lewis WE, Boon JP.  2000.  Levels of some polybrominated diphenyl ether (PBDE) flame 
retardants in dated sediment cores.  Organohalogen Compounds 47:229-232. 



   
 

 
 
 

 
 
 
 
 

 
   

   
 

   
 

 
  
  

   
 

 
  

 
 

  
 

 
 

 
 

 
  

    
 

  
  

   
 

   
  

 
 

  

 
 

  

 
 

  
  

 
    

   
 

     
     

 
 

PBDEs 525 

9.  REFERENCES 

Zennegg M, Kohker M, Gerecke AC, et al.  2003. Polybrominated diphenyl ethers in whitefish from 
Swiss lakes and farmed rainbow trout.  Chemosphere 51(7):545-553. 

Zennegg M, Munoz M, Schmid P, et al.  2013. Temporal trends of persistent organic pollutants in 
digested sewage sludge (1993-2012).  Environ Int 60:202-208. 

Zhang S, Bursian SJ, Martin PA, et al.  2009.  Reproductive and developmental toxicity of a 
pentabrominated diphenyl ether mixture, DE-71, to ranch mink (Mustela vison) and hazard assessment 
for wild mink in the Great Lakes region.  Toxicol Sci 110(1):107-116. 

Zhang S, Kuang G, Zhao G, et al.  2013c.  Involvement of the mitochondrial p53 pathway in PBDE-47
induced SH-SY5Y cells apoptosis and its underlying activation mechanism.  Food Chem Toxicol 62:699
706. 

Zhang W, Cai Y, Sheng G, et al.  2011.  Tissue distribution of decabrominated diphenyl ether (BDE-209) 
and its metabolites in sucking rat pups after prenatal and/or postnatal exposure.  Toxicology 283(1):49-54. 

Zhang X, Feng M, Liu F, et al.  2014.  Subacute oral toxicity of BDE-15, CDE-15, and HODE-15 in ICR 
male mice:  Assessing effects on hepatic oxidative stress and metals status and ascertaining the protective 
role of vitamin E.  Environ Sci Pollut Res Int 21(3):1924-1935. 

Zhang Z, Sun ZZ, Xiao X, et al.  2013a.  Mechanism of BDE209-induced impaired glucose homeostasis 
based on gene microarray analysis of adult rat liver.  Arch Toxicol 87(8):1557-1567. 

Zhang Z, Zhang X, Sun Z, et al.  2013b.  Cytochrome P450 3A1 mediates 2,2',4,4'-tetrabromodiphenyl 
ether-induced reduction of spermatogenesis in adult rats.  PLoS ONE 8(6):e66301.  
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0066301. August 14, 2014. 

Zhang ZF, Shan Q, Zhuang J, et al.  2015a.  Troxerutin inhibits 2,2',4,4'-tetrabromodiphenyl ether (BDE
47)-induced hepatocyte apoptosis by restoring proteasome function.  Toxicol Lett 233(3):246-257.  
10.1016/j.toxlet.2015.01.017.  

Zhang ZF, Zhang YQ, Fan SH, et al.  2015b.  Troxerutin protects against 2,2',4,4'-tetrabromodiphenyl 
ether (BDE-47)-induced liver inflammation by attenuating oxidative stress-mediated NAD(+)-depletion.  
J Hazard Mater 283:98-109.  10.1016/j.jhazmat.2014.09.012.  

Zhao W, Cheng J, Gu J, et al.  2014.  Assessment of neurotoxic effects and brain region distribution in rat 
offspring prenatally co-exposed to low doses of BDE-99 and methylmercury.  Chemosphere 112:170
176. 10.1016/j.chemosphere.2014.04.011.  

Zhao Y, Ao H, Chen L, et al.  2011.  Effect of brominated flame retardant BDE-47 on androgen 
production of adult rat Leydig cells.  Toxicol Lett 205(2):209-214. 

Zheng J, Luo XJ, Yuan JG, et al.  2011.  Levels and sources of brominated flame retardants in human hair 
from urban, e-waste, and rural areas in south China.  Environ Pollut 159(12):3706-3713. 

Zhou T, Ross DG, De Vito MJ, et al.  2001.  Effects of short-term in vivo exposure to polybrominated 
diphenyl ethers on thyroid hormones and hepatic enzyme activities in weaning rats.  Toxicol Sci 61:76
82. 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0066301


   
 

 
 
 

 
 
 
 
 

  
 

 
  

 
 

  
 

 
   

  
 

  
   

 
   

  
 

PBDEs 526 

9.  REFERENCES 

Zhou T, Taylor MM, DeVito MJ, et al.  2002.  Developmental exposure to brominated diphenyl ethers 
results in thyroid hormone disruption.  Toxicol Sci 66:105-116. 

Zhu LY, Hites RA.  2005.  Brominated flame retardants in sediment cores from Lakes Michigan and Erie. 
Environ Sci Technol 39(10):3488-3494. 

Ziegler EE, Edwards BB, Jensen RL, et al.  1978. Absorption and retention of lead by infants.  Pediatr 
Res 12(1):29-34. 

Zier B, Lenoir D, Lahaniatis ES, et al.  1991. Surface catalyzed halogenation-dehalogenation reactions of 
aromatic bromine compounds adsorbed on fly ash.  Chemosphere 22(12):1121-1129. 

Zoeller RT, Crofton RM.  2000.  Thyroid hormone action in fetal brain development and potential for 
distribution by environmental chemicals.  Neurotoxicology 21(6):935-946. 

Zweidinger R, Cooper SD, Erickson MD, et al.  1979. Sampling and analysis for semivolatile brominated 
organics in ambient air.  Am Chem Soc Abstr Pap 94:217-231. 



   
 
 
 
 

 
 
 
 
 

 
 
 

   
 

    
 

 
   

  
 

    
    

 
   

    
   

 
 

     
     

    
    

 
 

  
  

 
   

     
  

 
  

    
 

   
     

 
 

  
 

 
 

 
 

   
   

 
   

      

PBDEs 527 

10.  GLOSSARY 

Absorption—The taking up of liquids by solids, or of gases by solids or liquids. 

Acute Exposure—Exposure to a chemical for a duration of 14 days or less, as specified in the 
Toxicological Profiles. 

Adsorption—The adhesion in an extremely thin layer of molecules (as of gases, solutes, or liquids) to the 
surfaces of solid bodies or liquids with which they are in contact. 

Adsorption Coefficient (Koc)—The ratio of the amount of a chemical adsorbed per unit weight of 
organic carbon in the soil or sediment to the concentration of the chemical in solution at equilibrium. 

Adsorption Ratio (Kd)—The amount of a chemical adsorbed by sediment or soil (i.e., the solid phase) 
divided by the amount of chemical in the solution phase, which is in equilibrium with the solid phase, at a 
fixed solid/solution ratio.  It is generally expressed in micrograms of chemical sorbed per gram of soil or 
sediment. 

Benchmark Dose (BMD)—Usually defined as the lower confidence limit on the dose that produces a 
specified magnitude of changes in a specified adverse response.  For example, a BMD10 would be the 
dose at the 95% lower confidence limit on a 10% response, and the benchmark response (BMR) would be 
10%.  The BMD is determined by modeling the dose response curve in the region of the dose response 
relationship where biologically observable data are feasible. 

Benchmark Dose Model—A statistical dose-response model applied to either experimental toxicological 
or epidemiological data to calculate a BMD. 

Bioconcentration Factor (BCF)—The quotient of the concentration of a chemical in aquatic organisms 
at a specific time or during a discrete time period of exposure divided by the concentration in the 
surrounding water at the same time or during the same period. 

Biomarkers—Broadly defined as indicators signaling events in biologic systems or samples. They have 
been classified as markers of exposure, markers of effect, and markers of susceptibility. 

Cancer Effect Level (CEL)—The lowest dose of chemical in a study, or group of studies, that produces 
significant increases in the incidence of cancer (or tumors) between the exposed population and its 
appropriate control. 

Carcinogen—A chemical capable of inducing cancer. 

Case-Control Study—A type of epidemiological study that examines the relationship between a 
particular outcome (disease or condition) and a variety of potential causative agents (such as toxic 
chemicals).  In a case-controlled study, a group of people with a specified and well-defined outcome is 
identified and compared to a similar group of people without outcome. 

Case Report—Describes a single individual with a particular disease or exposure.  These may suggest 
some potential topics for scientific research, but are not actual research studies. 

Case Series—Describes the experience of a small number of individuals with the same disease or 
exposure. These may suggest potential topics for scientific research, but are not actual research studies. 
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Ceiling Value—A concentration of a substance that should not be exceeded, even instantaneously. 

Chronic Exposure—Exposure to a chemical for 365 days or more, as specified in the Toxicological 
Profiles. 

Cohort Study—A type of epidemiological study of a specific group or groups of people who have had a 
common insult (e.g., exposure to an agent suspected of causing disease or a common disease) and are 
followed forward from exposure to outcome.  At least one exposed group is compared to one unexposed 
group. 

Cross-sectional Study—A type of epidemiological study of a group or groups of people that examines 
the relationship between exposure and outcome to a chemical or to chemicals at one point in time. 

Data Needs—Substance-specific informational needs that if met would reduce the uncertainties of human 
health assessment. 

Developmental Toxicity—The occurrence of adverse effects on the developing organism that may result 
from exposure to a chemical prior to conception (either parent), during prenatal development, or 
postnatally to the time of sexual maturation.  Adverse developmental effects may be detected at any point 
in the life span of the organism. 

Dose-Response Relationship—The quantitative relationship between the amount of exposure to a 
toxicant and the incidence of the adverse effects. 

Embryotoxicity and Fetotoxicity—Any toxic effect on the conceptus as a result of prenatal exposure to 
a chemical; the distinguishing feature between the two terms is the stage of development during which the 
insult occurs.  The terms, as used here, include malformations and variations, altered growth, and in utero 
death. 

Environmental Protection Agency (EPA) Health Advisory—An estimate of acceptable drinking water 
levels for a chemical substance based on health effects information.  A health advisory is not a legally 
enforceable federal standard, but serves as technical guidance to assist federal, state, and local officials. 

Epidemiology—Refers to the investigation of factors that determine the frequency and distribution of 
disease or other health-related conditions within a defined human population during a specified period.  

Genotoxicity—A specific adverse effect on the genome of living cells that, upon the duplication of 
affected cells, can be expressed as a mutagenic, clastogenic, or carcinogenic event because of specific 
alteration of the molecular structure of the genome. 

Half-life—A measure of rate for the time required to eliminate one half of a quantity of a chemical from 
the body or environmental media. 

Immediately Dangerous to Life or Health (IDLH)—The maximum environmental concentration of a 
contaminant from which one could escape within 30 minutes without any escape-impairing symptoms or 
irreversible health effects. 

Immunologic Toxicity—The occurrence of adverse effects on the immune system that may result from 
exposure to environmental agents such as chemicals. 
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Immunological Effects—Functional changes in the immune response. 

Incidence—The ratio of individuals in a population who develop a specified condition to the total 
number of individuals in that population who could have developed that condition in a specified time 
period. 

Intermediate Exposure—Exposure to a chemical for a duration of 15–364 days, as specified in the 
Toxicological Profiles. 

In Vitro—Isolated from the living organism and artificially maintained, as in a test tube. 

In Vivo—Occurring within the living organism. 

Lethal Concentration(LO) (LCLO)—The lowest concentration of a chemical in air that has been reported 
to have caused death in humans or animals. 

Lethal Concentration(50) (LC50)—A calculated concentration of a chemical in air to which exposure for 
a specific length of time is expected to cause death in 50% of a defined experimental animal population. 

Lethal Dose(LO) (LDLo)—The lowest dose of a chemical introduced by a route other than inhalation that 
has been reported to have caused death in humans or animals. 

Lethal Dose(50) (LD50)—The dose of a chemical that has been calculated to cause death in 50% of a 
defined experimental animal population. 

Lethal Time(50) (LT50)—A calculated period of time within which a specific concentration of a chemical 
is expected to cause death in 50% of a defined experimental animal population. 

Lowest-Observed-Adverse-Effect Level (LOAEL)—The lowest exposure level of chemical in a study, 
or group of studies, that produces statistically or biologically significant increases in frequency or severity 
of adverse effects between the exposed population and its appropriate control. 

Lymphoreticular Effects—Represent morphological effects involving lymphatic tissues such as the 
lymph nodes, spleen, and thymus. 

Malformations—Permanent structural changes that may adversely affect survival, development, or 
function. 

Minimal Risk Level (MRL)—An estimate of daily human exposure to a hazardous substance that is 
likely to be without an appreciable risk of adverse noncancer health effects over a specified route and 
duration of exposure. 

Modifying Factor (MF)—A value (greater than zero) that is applied to the derivation of a Minimal Risk 
Level (MRL) to reflect additional concerns about the database that are not covered by the uncertainty 
factors. The default value for a MF is 1. 

Morbidity—State of being diseased; morbidity rate is the incidence or prevalence of disease in a specific 
population. 

Mortality—Death; mortality rate is a measure of the number of deaths in a population during a specified 
interval of time. 
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Mutagen—A substance that causes mutations.  A mutation is a change in the DNA sequence of a cell’s 
DNA.  Mutations can lead to birth defects, miscarriages, or cancer. 

Necropsy—The gross examination of the organs and tissues of a dead body to determine the cause of 
death or pathological conditions. 

Neurotoxicity—The occurrence of adverse effects on the nervous system following exposure to a 
chemical. 

No-Observed-Adverse-Effect Level (NOAEL)—The dose of a chemical at which there were no 
statistically or biologically significant increases in frequency or severity of adverse effects seen between 
the exposed population and its appropriate control.  Effects may be produced at this dose, but they are not 
considered to be adverse. 

Octanol-Water Partition Coefficient (Kow)—The equilibrium ratio of the concentrations of a chemical 
in n-octanol and water, in dilute solution. 

Odds Ratio (OR)—A means of measuring the association between an exposure (such as toxic substances 
and a disease or condition) that represents the best estimate of relative risk (risk as a ratio of the incidence 
among subjects exposed to a particular risk factor divided by the incidence among subjects who were not 
exposed to the risk factor).  An OR of greater than 1 is considered to indicate greater risk of disease in the 
exposed group compared to the unexposed group. 

Organophosphate or Organophosphorus Compound—A phosphorus-containing organic compound 
and especially a pesticide that acts by inhibiting cholinesterase. 

Permissible Exposure Limit (PEL)—An Occupational Safety and Health Administration (OSHA) 
allowable exposure level in workplace air averaged over an 8-hour shift of a 40-hour workweek. 

Pesticide—General classification of chemicals specifically developed and produced for use in the control 
of agricultural and public health pests. 

Pharmacokinetics—The dynamic behavior of a material in the body, used to predict the fate 
(disposition) of an exogenous substance in an organism.  Utilizing computational techniques, it provides 
the means of studying the absorption, distribution, metabolism, and excretion of chemicals by the body. 

Pharmacokinetic Model—A set of equations that can be used to describe the time course of a parent 
chemical or metabolite in an animal system.  There are two types of pharmacokinetic models:  data-based 
and physiologically-based. A data-based model divides the animal system into a series of compartments, 
which, in general, do not represent real, identifiable anatomic regions of the body, whereas the 
physiologically-based model compartments represent real anatomic regions of the body. 

Physiologically Based Pharmacodynamic (PBPD) Model—A type of physiologically based dose-
response model that quantitatively describes the relationship between target tissue dose and toxic end 
points.  These models advance the importance of physiologically based models in that they clearly 
describe the biological effect (response) produced by the system following exposure to an exogenous 
substance. 

Physiologically Based Pharmacokinetic (PBPK) Model—Comprised of a series of compartments 
representing organs or tissue groups with realistic weights and blood flows. These models require a 
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variety of physiological information: tissue volumes, blood flow rates to tissues, cardiac output, alveolar 
ventilation rates, and possibly membrane permeabilities.  The models also utilize biochemical 
information, such as air/blood partition coefficients, and metabolic parameters.  PBPK models are also 
called biologically based tissue dosimetry models. 

Prevalence—The number of cases of a disease or condition in a population at one point in time. 

Prospective Study—A type of cohort study in which the pertinent observations are made on events 
occurring after the start of the study.  A group is followed over time. 

q1*—The upper-bound estimate of the low-dose slope of the dose-response curve as determined by the 
multistage procedure.  The q1* can be used to calculate an estimate of carcinogenic potency, the 
incremental excess cancer risk per unit of exposure (usually μg/L for water, mg/kg/day for food, and 
μg/m3 for air). 

Recommended Exposure Limit (REL)—A National Institute for Occupational Safety and Health 
(NIOSH) time-weighted average (TWA) concentration for up to a 10-hour workday during a 40-hour 
workweek. 

Reference Concentration (RfC)—An estimate (with uncertainty spanning perhaps an order of 
magnitude) of a continuous inhalation exposure to the human population (including sensitive subgroups) 
that is likely to be without an appreciable risk of deleterious noncancer health effects during a lifetime. 
The inhalation reference concentration is for continuous inhalation exposures and is appropriately 
expressed in units of mg/m3 or ppm. 

Reference Dose (RfD)—An estimate (with uncertainty spanning perhaps an order of magnitude) of the 
daily exposure of the human population to a potential hazard that is likely to be without risk of deleterious 
effects during a lifetime.  The RfD is operationally derived from the no-observed-adverse-effect level 
(NOAEL, from animal and human studies) by a consistent application of uncertainty factors that reflect 
various types of data used to estimate RfDs and an additional modifying factor, which is based on a 
professional judgment of the entire database on the chemical. The RfDs are not applicable to 
nonthreshold effects such as cancer. 

Reportable Quantity (RQ)—The quantity of a hazardous substance that is considered reportable under 
the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA).  Reportable 
quantities are (1) 1 pound or greater or (2) for selected substances, an amount established by regulation 
either under CERCLA or under Section 311 of the Clean Water Act.  Quantities are measured over a 
24-hour period. 

Reproductive Toxicity—The occurrence of adverse effects on the reproductive system that may result 
from exposure to a chemical. The toxicity may be directed to the reproductive organs and/or the related 
endocrine system.  The manifestation of such toxicity may be noted as alterations in sexual behavior, 
fertility, pregnancy outcomes, or modifications in other functions that are dependent on the integrity of 
this system. 

Retrospective Study—A type of cohort study based on a group of persons known to have been exposed 
at some time in the past.  Data are collected from routinely recorded events, up to the time the study is 
undertaken.  Retrospective studies are limited to causal factors that can be ascertained from existing 
records and/or examining survivors of the cohort. 

Risk—The possibility or chance that some adverse effect will result from a given exposure to a chemical. 



   
 

  
 
 

 
 
 
 
 

 
  

    
  

 
  

   
 

 
 

   
     

  
  

 

  
 

  

   
 

    
 

    
  

 
 

  
 

 
  

     
 

   
 

   
  

    
   

 
   

    
     

 
 

     

 

PBDEs 532 

10. GLOSSARY 

Risk Factor—An aspect of personal behavior or lifestyle, an environmental exposure, or an inborn or 
inherited characteristic that is associated with an increased occurrence of disease or other health-related 
event or condition. 

Risk Ratio—The ratio of the risk among persons with specific risk factors compared to the risk among 
persons without risk factors.  A risk ratio greater than 1 indicates greater risk of disease in the exposed 
group compared to the unexposed group. 

Short-Term Exposure Limit (STEL)—The American Conference of Governmental Industrial 
Hygienists (ACGIH) maximum concentration to which workers can be exposed for up to 15 minutes 
continually.  No more than four excursions are allowed per day, and there must be at least 60 minutes 
between exposure periods.  The daily Threshold Limit Value-Time Weighted Average (TLV-TWA) may 
not be exceeded. 

Standardized Mortality Ratio (SMR)—A ratio of the observed number of deaths and the expected 
number of deaths in a specific standard population. 

Target Organ Toxicity—This term covers a broad range of adverse effects on target organs or 
physiological systems (e.g., renal, cardiovascular) extending from those arising through a single limited 
exposure to those assumed over a lifetime of exposure to a chemical. 

Teratogen—A chemical that causes structural defects that affect the development of an organism. 

Threshold Limit Value (TLV)—An American Conference of Governmental Industrial Hygienists 
(ACGIH) concentration of a substance to which most workers can be exposed without adverse effect.  
The TLV may be expressed as a Time Weighted Average (TWA), as a Short-Term Exposure Limit 
(STEL), or as a ceiling limit (CL). 

Time-Weighted Average (TWA)—An allowable exposure concentration averaged over a normal 8-hour 
workday or 40-hour workweek. 

Toxic Dose(50) (TD50)—A calculated dose of a chemical, introduced by a route other than inhalation, 
which is expected to cause a specific toxic effect in 50% of a defined experimental animal population. 

Toxicokinetic—The absorption, distribution, and elimination of toxic compounds in the living organism. 

Uncertainty Factor (UF)—A factor used in operationally deriving the Minimal Risk Level (MRL) or 
Reference Dose (RfD) or Reference Concentration (RfC) from experimental data.  UFs are intended to 
account for (1) the variation in sensitivity among the members of the human population, (2) the 
uncertainty in extrapolating animal data to the case of human, (3) the uncertainty in extrapolating from 
data obtained in a study that is of less than lifetime exposure, and (4) the uncertainty in using lowest-
observed-adverse-effect level (LOAEL) data rather than no-observed-adverse-effect level (NOAEL) data. 
A default for each individual UF is 10; if complete certainty in data exists, a value of 1 can be used; 
however, a reduced UF of 3 may be used on a case-by-case basis, 3 being the approximate logarithmic 
average of 10 and 1. 

Xenobiotic—Any chemical that is foreign to the biological system. 
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APPENDIX A.  ATSDR MINIMAL RISK LEVELS AND WORKSHEETS 

The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) [42 U.S.C. 

9601 et seq.], as amended by the Superfund Amendments and Reauthorization Act (SARA) [Pub. L. 99– 

499], requires that the Agency for Toxic Substances and Disease Registry (ATSDR) develop jointly with 

the U.S. Environmental Protection Agency (EPA), in order of priority, a list of hazardous substances most 

commonly found at facilities on the CERCLA National Priorities List (NPL); prepare toxicological 

profiles for each substance included on the priority list of hazardous substances; and assure the initiation 

of a research program to fill identified data needs associated with the substances. 

The toxicological profiles include an examination, summary, and interpretation of available toxicological 

information and epidemiologic evaluations of a hazardous substance.  During the development of 

toxicological profiles, Minimal Risk Levels (MRLs) are derived when reliable and sufficient data exist to 

identify the target organ(s) of effect or the most sensitive health effect(s) for a specific duration for a 

given route of exposure.  An MRL is an estimate of the daily human exposure to a hazardous substance 

that is likely to be without appreciable risk of adverse noncancer health effects over a specified duration 

of exposure.  MRLs are based on noncancer health effects only and are not based on a consideration of 

cancer effects. These substance-specific estimates, which are intended to serve as screening levels, are 

used by ATSDR health assessors to identify contaminants and potential health effects that may be of 

concern at hazardous waste sites.  It is important to note that MRLs are not intended to define clean-up or 

action levels. 

MRLs are derived for hazardous substances using the no-observed-adverse-effect level/uncertainty factor 

approach.  They are below levels that might cause adverse health effects in the people most sensitive to 

such chemical-induced effects. MRLs are derived for acute (1–14 days), intermediate (15–364 days), and 

chronic (365 days and longer) durations and for the oral and inhalation routes of exposure.  Currently, 

MRLs for the dermal route of exposure are not derived because ATSDR has not yet identified a method 

suitable for this route of exposure.  MRLs are generally based on the most sensitive chemical-induced end 

point considered to be of relevance to humans.  Serious health effects (such as irreparable damage to the 

liver or kidneys, or birth defects) are not used as a basis for establishing MRLs.  Exposure to a level 

above the MRL does not mean that adverse health effects will occur. 

MRLs are intended only to serve as a screening tool to help public health professionals decide where to 

look more closely.  They may also be viewed as a mechanism to identify those hazardous waste sites that 
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are not expected to cause adverse health effects.  Most MRLs contain a degree of uncertainty because of 

the lack of precise toxicological information on the people who might be most sensitive (e.g., infants, 

elderly, nutritionally or immunologically compromised) to the effects of hazardous substances.  ATSDR 

uses a conservative (i.e., protective) approach to address this uncertainty consistent with the public health 

principle of prevention.  Although human data are preferred, MRLs often must be based on animal studies 

because relevant human studies are lacking. In the absence of evidence to the contrary, ATSDR assumes 

that humans are more sensitive to the effects of hazardous substance than animals and that certain persons 

may be particularly sensitive. Thus, the resulting MRL may be as much as 100-fold below levels that 

have been shown to be nontoxic in laboratory animals. 

Proposed MRLs undergo a rigorous review process:  Health Effects/MRL Workgroup reviews within the 

Division of Toxicology and Human Health Sciences, expert panel peer reviews, and agency-wide MRL 

Workgroup reviews, with participation from other federal agencies and comments from the public.  They 

are subject to change as new information becomes available concomitant with updating the toxicological 

profiles.  Thus, MRLs in the most recent toxicological profiles supersede previously published levels. 

For additional information regarding MRLs, please contact the Division of Toxicology and Human 

Health Sciences, Agency for Toxic Substances and Disease Registry, 1600 Clifton Road NE, Mailstop 

F-57, Atlanta, Georgia 30329-4027. 
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MINIMAL RISK LEVEL (MRL) WORKSHEET 

Chemical Name: Polybrominated Diphenyl Ethers (PBDEs) 
[lower-brominated diphenyl ethers] 

CAS Numbers: 32536-52-0 (octaBDE) 
Date: March 2017 
Profile Status: Final 
Route: [X] Inhalation [ ] Oral 
Duration: [ ] Acute [X] Intermediate [ ] Chronic 
Graph Key: 2 
Species: Rat 

Minimal Risk Level: 0.006 [ ] mg/kg/day [ ] ppm [X] mg/m3 

Reference: Great Lakes Chemical Corporation.  2000.  A 90-day inhalation toxicity study of 
octabromodiphenyl oxide in albino rats, dated 04/04/02.  Submitted to the U.S. Environmental Protection 
Agency under TSCA Section 8E.  OTS0574171-1. 

Experimental design:  This is an unpublished study in which a commercial octaBDE product (Lot No. 
9525DA23B, bromine content 78.7%, composition and purity not otherwise specified) was administered 
to groups of 10 male and 10 female Crl:CD(SD)IGS BR rats, via nose-only inhalation as a dust aerosol, in 
measured concentrations of 0 (filtered air-only), 1.1, 16, or 202 mg/m3 for 6 hours/day, 5 days/week, for 
13 weeks.  The mean MMADs in the low to high level groups were 2.0, 2.7, and 2.8 microns; the 
corresponding mean GSDs were 3.37, 3.72, and 3.01.  Clinical and physical signs, body weight, food 
consumption, and survival were evaluated throughout the study.  Ophthalmic, hematology (11 indices), 
serum chemistry (18 indices), and serum thyroid hormone (TSH, total T3, and total T4) evaluations were 
performed near the end of the exposure period.  Urinalyses were not conducted. Comprehensive 
necropies, organ weight measurements, and histological examinations (including respiratory tract and 
thyroids) were performed following exposure termination.  

Effects noted in study and corresponding doses:  Hepatic, nasal, lung, thyroid, and ovarian effects were 
observed. The liver was affected in both sexes as shown by dose-related increases in centrilobular 
hepatocellular hypertrophy at ≥16 mg/m3 and liver weight (absolute and relative) at 202 mg/m3. Total 
incidences of centrilobular hepatocellular hypertrophy in the 0, 1.1, 16, and 202 mg/m3 groups were 
1/10 (minimal), 0/10, 3/10 (all minimal), and 10/10 (6 minimal, 2 mild, 2 moderate) in males, and 0/10, 
0/10, 3/10 (all minimal), and 6/10 (3 minimal, 3 mild) in females.  Changes in nasal goblet cells were 
increased at 202 mg/m3, but showed no clear dose-related increasing trends for incidence or severity. 
Total incidences of goblet cell hypertrophy (minimal or mild) were slightly increased in nasal level II of 
both sexes at ≥1.1 mg/m3; incidences in 0, 1.1, 16, and 202 mg/m3 exposure groups were 4/10 (all 
minimal), 9/10 (7 minimal, 2 mild), 6/10 (all minimal), and 10/10 (9 minimal, 1 mild) in males, and 
2/10 (all minimal), 6/10 (all minimal), 4/10 (all minimal), and 8/10 (all minimal) in females.  Goblet cell 
hypertrophy was also slightly increased in nasal level IV in males at 202 mg/m3 (4/10, 0/10, 1/10, and 
8/10, all minimal severity, not increased in females). Histological changes in the lungs included alveolar 
histiocytosis and chronic active inflammation that were only clearly induced at 202 mg/m3. Total 
incidences of alveolar histiocytosis at 0, 1.1, 16, and 202 mg/m3 were 3/10 (2 mild, 1 minimal), 5/10 (all 
minimal), 5/10 (all minimal), and 10/10 (5 minimal, 3 mild, 2 moderate) in males, and 0/10, 5/10 (all 
minimal), 2/10 (all minimal), and 10/10 (1 minimal, 7 mild, 2 moderate) in females.  Corresponding total 
incidences of chronic active lung inflammation were 0/10, 0/10, 2/10 (both minimal), and 
10/10 (5 minimal, 4 mild, 1 moderate) in males, and 0/10, 1/10 (minimal), 1/10 (minimal), and 
10/10 (2 minimal, 5 mild, 3 moderate) in females.  Gross lung changes also occurred in both sexes at 
202 mg/m3; these included lung firmness and white discoloration and/or enlargement in the bronchial 



   
 

 
 
 

 
 
 
 
 

   
   

  
     

     
   

  
 

    
      

 
 

   
  

   
  

     
 

    
  

 
 

 
    

 
   

   
  

    
   

 
   

 
    
   
     

 
      

 
       

         
 

  

  
 
       

 
      

      

 

PBDEs A-4 

APPENDIX A 

and/or mediastinal lymph nodes.  The lymph node effects correlated with the histological finding of 
granulomatous inflammation.  There were no exposure-related gross or histopathological changes in the 
spleen, bone marrow, thymus, or other tissues, including thyroid.  Thyroid hormone assessments, 
however, showed exposure-related decreases in mean thyroxine (total T4) at ≥16 mg/m3 in both sexes and 
increases in TSH at ≥16 mg/m3 in males and 202 mg/m3 in females.  The changes were usually 
statistically significant (p<0.05 or p<0.01) compared to controls and were considered to be consistent 
with chemical-induced hypothyroidism.  There were no serum T3 changes.  Qualitative histological 
evaluations of step sections of ovaries showed an absence of corpora lutea in 3/10 females at 202 mg/m3, 
compared to 0/10 in the control and lower exposure groups.  This 30% incidence was interpreted to be a 
treatment-related effect because an absence of corpora lutea was considered unusual in rats at 20 weeks of 
age. 

Other findings included some hematological alterations in 202 mg/m3 females that were not considered to 
be exposure-related (slightly increased mean activated partial thromboplastin time, and decreased mean 
corpuscular hemoglobin and mean corpuscular hemoglobin concentration without effects on red blood 
cell counts, hematocrit, or hemoglobin levels).  Serum chemistry evaluations showed that cholesterol was 
significantly increased (66.2% more than controls, p<0.01) in 202 mg/m3 females, but the magnitude of 
the elevation was not considered toxicologically significant.  Some other statistically significant serum 
chemistry alterations (increased mean globulin and total protein, decreased albumin/globulin ratio) also 
occurred in the 202 mg/m3 females, but were not considered exposure-related due to small magnitudes of 
changes and lack of similar findings in the males. 

Dose and end point used for MRL derivation:  1.1 mg/m3 

[X] NOAEL  [ ] LOAEL 

Considering the unclear adversity of minimal severity goblet cell hypertrophy, lack of clear dose-related 
increasing trends for incidence and severity of this nasal effect, identification of both a NOAEL 
(1.1 mg/m3) and LOAEL (16 mg/m3) for changes in thyroid hormones, and abundant evidence for thyroid 
effects of PBDEs in oral studies, the NOAEL for effects on thyroid hormones is the most appropriate 
basis for derivation of the MRL. 

Uncertainty factors used in MRL derivation: 

[X] 3 for extrapolation from animals to humans with dosimetric adjustments 
[X] 10 for human variability 
[X] 3 modifying factor for incomplete database 

Was a conversion factor used from ppm in food or water to a mg/body weight dose? Not applicable. 

Was a conversion used from intermittent to continuous exposure? The NOAEL was adjusted to 
continuous exposure as follows:  1.1 mg/m3 x 6 hours/24 hours x 5 days/7 days = 0.196 mg/m3 

If an inhalation study in animals, list conversion factors used in determining human equivalent dose:  The 
human equivalent NOAEL (NOAELHEC) was calculated from the duration-adjusted NOAEL (NOAELADJ) 
using EPA RfC methodology as follows: 

NOAELHEC = NOAELADJ x RDDR = 0.196 mg/m3 x 2.7 = 0.53 mg/m3 

The RDDR for the extrathoracic region was used to extrapolate deposited doses in rats to deposited doses 
in humans.  The following parameters were used to calculate the RDDR of 2.7:  MMAD of 2.0 μm with a 
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mean GSD (sigma g) of 3.37; default human body weight of 70 kg, and a default female F344 rat body 
weight of 180 g. 

Based on these values, the MRL for lower brominated diphenyl ethers is derived as follows: 

MRL = NOAELHEC ÷ (UF x MF) = 0.53 ÷ (30 x 3) = 0.006 mg/m3 

Other additional studies or pertinent information that lend support to this MRL:  This is the only 
intermediate-duration inhalation study of PBDEs. 

The thyroid is a sensitive target of lower-brominated BDEs in orally exposed animals.  A LOAEL for 
reduced serum T4 hormone levels in rat dams that were exposed to 2,2’,4,4’,5-pentaBDE (BDE 99) 
(Kuriyama et al. 2007) was used as a co-critical end point for the basis for the acute oral MRL for lower
brominated BDEs.  This study is supported by numerous studies that report reduced serum T4 levels in 
adult, nonpregnant mice and rats following acute exposure to commercial pentaBDE mixtures 
(Bromkal 70, Bromkal 70-5 DE, DE-71), and the commercial octaBDE mixture DE-79, or 
2,2’,4,4’-tetraBDE (BDE 47), indicating significant reductions of 19–92% following gavage exposure at 
doses ≥10 and ≥0.8 mg/kg/day in rats and mice, respectively, for 1–14 days (Darnerud and Sinjari 1996; 
Fowles et al. 1994; Hallgren and Darnerud 1998, 2002; Hallgren et al. 2001;Hoppe and Carey 2007; 
Richardson et al. 2008; Stoker et al. 2004, 2005; Zhou et al. 2001).  In developing animals, numerous 
studies have reported decreased serum T4 and/or T3 levels in pups after gestational and lactational 
exposure to commercial pentaBDE mixtures (DE-71, Bromkal 70-5 DE), BDE 99, or BDE 47 at doses as 
low as 0.3 mg/kg/day in rats and 452 mg/kg/day in mice (Blanco et al. 2013; Bondy et al. 2011, 2013; 
Ellis-Hutchings et al. 2006; Kodavanti et al. 2010; Kuriyama et al. 2007; Miller et al. 2012; Poon et al. 
2011; Shah et al. 2011; Skarman et al. 2005; Szabo et al. 2009; Wang et al. 2011a; Zhou et al. 2002). 

Hepatic effects observed in critical study also support the selected point of departure (POD), as a dose-
related increased centrilobular hepatocellular hypertrophy was observed in males and females exposed to 
octaBDE at concentrations ≥16 mg/m3; however, this end point was not selected as a co-critical effect, as 
the increase in incidence was only significant at 202 mg/m3 (Great Lakes Chemical Corporation 2000). 

Hydroxylated metabolites (OH-PBDEs) may be responsible for the toxic action of PBDEs.  There is some 
evidence that the CYPs involved in metabolism of PBDEs, as well as the OH-PBDEs formed, are 
different in rats and humans (Erratico et al. 2011, 2012, 2013)—see Section 3.4.3 for more information.  
However, there is no available evidence indicating that the complement of OH-PBDEs formed in humans 
is any more or less potent than the complement of OH-PBDEs formed in rats. Therefore, the current use 
of an animal-to-human uncertainty factor is appropriate for calculating an MRL based on effects observed 
in rats. 

Agency Contact (Chemical Manager):  Hana Pohl 
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MINIMAL RISK LEVEL (MRL) WORKSHEET 

Chemical Name: Polybrominated Diphenyl Ethers (PBDEs) 
[lower-brominated diphenyl ethers] 

CAS Numbers: 60348-60-9 (2,2’,4,4’,5-pentaBDE) 
Date: March 2017 
Profile Status: Final 
Route: [ ] Inhalation [X] Oral 
Duration: [X] Acute [ ] Intermediate [ ] Chronic 
Graph Key: 24, 60, 63 
Species: Rat 

Minimal Risk Level: 0.00006 (6x10-5) [X] mg/kg/day [ ] ppm [ ] mg/m3 

References:  Kuriyama SN, Talsness CE, Grote K, et al.  2005. Developmental exposure to low dose 
PBDE 99: effects on male fertility and neurobehavior in rat offspring.  Environ Health Perspect 
113(2):149-154.  

Talsness CE, Shakibaei M, Kuriyama SN, et al.  2005. Ultrastructural changes observed in rat ovaries 
following in utero and lactational exposure to low doses of a polybrominated flame retardant.  Toxicol 
Lett 157(3):189-202. 

Kuriyama SN, Wanner A, Fidalgo-Neto AA, et al. 2007.  Developmental exposure to low-dose PBDE
99: Tissue distribution and thyroid hormone levels.  Toxicology 242(1-3):80-90. 

Experimental design:  In the first study (Kuriyama et al. 2005), pregnant rats (16–20/group) were given a 
single dose of 2,2’,4,4’,5-pentaBDE (BDE 99, 98% purity) at 0, 0.06, or 0.3 mg/kg via gavage in peanut 
oil vehicle on GD 6.  Dams were allowed to deliver, and litter size was not artificially altered.  Emergence 
of postnatal reflexes and developmental landmarks (eruption of incisors, fur development, eye opening, 
and testes descent) was evaluated in all pups (163–200/group).  Locomotor activity was evaluated over 
24-hour periods on PNDs 36 and 71 in one male and female per litter (16–20 litters/group).  F1 male 
offspring were sacrificed as adults (~PND 140, 12 males/group) and the thymus, spleen, liver, testis, 
epididymis, seminal vesicle, and ventral prostate were weighed. The right testis and caudal epididymis 
were retained for spermatid and sperm counts and morphology, respectively.  Additionally, blood was 
collected for analysis of testosterone and LH levels.  In 15–19 F1 males/group, reproductive function was 
assessed at ~PND 150.  F1 males were mated with untreated females in a 1:1 ratio for 14 days.  The 
ability of males to impregnate unexposed females was assessed, and pregnant dams were sacrificed on 
GD 21 for assessment of the number of implantations, resorptions, and fetuses in the F2 generation.  
Uterine and fetal weight was recorded, and fetuses were sexed and examined for external anomalies.  In a 
separate group of F1 males, male sexual behavior was assessed in 20 males/group at ~PND 160.  F1 
males were mated with untreated females in estrus (1:1) and the sexual behavior of each mating was 
recorded for 20 minutes. 

In the second study (Talsness et al. 2005), pregnant rats (14–17/group) were exposed to BDE 99 
according to the exposure protocol for Study 1.  The F1 offspring were weaned on PND 22.  The female 
offspring were necropsied in estrus (based on vaginal cytology) on approximately PND 90.  Histological 
evaluation of the ovary (10/group), uterus (5–7/group), and vagina (5–9/group) was performed.  Ovarian 
follicles were counted in 10 ovaries from each group.  One ovary from one female offspring in each group 
was analyzed by transmission electron microscopy.  Twenty virgin F1 females per group were mated with 
non-exposed males to evaluate fertility. The F1 dams were sacrificed on GD 21 and the uterus was 
excised.  The uterine and F2 fetal weights and the number of implantations, resorptions, and fetuses were 
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determined.  The F2 fetuses were examined for external anomalies and when present, they were stained 
and examined for skeletal anomalies. 

In the third study (Kuriyama et al. 2007), pregnant rats (15–20/group) were exposed to BDE 99 according 
to the exposure protocol for Study 1.  On PND 1, approximately half of the dams (8–10/group) and their 
offspring were sacrificed. Liver samples were collected for enzyme activity (EROD, UDPGT) and blood 
was collected for determination of thyroid hormones (T3, free-T3, T4, free-T4).  In pups, blood and liver 
tissue were pooled by gender on a litter basis.  On PND 14, 2 pups/sex/litter (7–11 litters/group) were 
sacrificed, and liver samples and blood were collected for analysis.  On PND 22, remaining dams (7– 
11/group) and 2 pups/sex/litter were sacrificed, and liver samples and blood were collected for analysis. 

Effects noted in study and corresponding doses: 

Study 1 (Kuriyama et al. 2005): No exposure-related effects were observed for the age at fur development 
or eye opening, testes descent, or the ability to master the rotating rod test.  However, significant delays in 
the eruption of incisors in F1 pups and the development of the cliff-drop aversion reflex were observed in 
F1 males in the 0.3 mg/kg group, compared with controls.  Total activity, time spent active, the duration 
of activity per active phase, and the total activity per active phase were all significantly increased in F1 
offspring on PND 36 in the 0.3 mg/kg group, compared with controls.  On PND 71, the increased total 
activity and time spent active persisted in the 0.3 mg/kg group, and was also significantly increased in the 
0.06 mg/kg group.  In the group sacrificed on PND 140, no exposure-related changes were observed in 
body weight, liver weight, or thymus weight; however, absolute spleen weight was significantly increased 
by 9% in the 0.06 and 0.3 mg/kg groups, and relative spleen weight was significantly increased by 12% in 
the 0.06 mg/kg group.  Compared with controls, significantly altered male reproductive organ weights at 
PND 140 included a 10 and 11% decrease in relative testes and epididymis weight, respectively, in the 
0.3 mg/kg group and a 5% decrease in relative epididymis weight in the 0.06 mg/kg group; no significant 
changes were observed in absolute organ weights.  In both dose groups, the number of spermatids and 
sperm and daily sperm production were significantly decreased, compared with controls.  No exposure-
related effects were observed for sperm morphology.  No changes were observed in serum testosterone or 
LH levels.  Despite sperm alterations, no significant exposure-related effects were observed in male 
reproductive function or the majority of male sexual behaviors. The only significantly altered male 
sexual behavior was a 32% decrease in the percent of males with two or more ejaculations. 

Study 2 (Talsness et al. 2005): No statistically significant, exposure-related histological changes were 
observed at the light microscopic level in the ovary, uterus, or vagina of female offspring, and no 
exposure-related effects were observed in the number of ovarian follicles.  However, multiple 
ultrastructural changes were noted in the ovaries of PND 90 female offspring from dams exposed to 
0.06 or 0.3 mg/kg, including destruction of the surface of the serosal epithelial cells, necrosis, and 
numerous vesicular structures with dense granular material within the cytoplasm.  Additional changes 
observed in the 0.3 mg/kg group included degenerative changes and aggregates of small and large 
vesicles filled with homogeneously dense granular material in the cytoplasm and clumped chromatin 
within the condensed nucleus.  No exposure-related changes were found for F1 female pregnancy rate, 
total implantation sites, implantation sites/dam, F2 fetuses/gravid dam, or total number of live F2 fetuses.  
However, the resorption rates were 12 and 15% in the 0.06 and 0.3 mg/kg groups, respectively, compared 
with the control rate of 9%.  Statistics were not reported; however, the resorption rates in the exposed rats 
were also reportedly increased compared with historical controls (average control resorption rate=5.4%, 
with rates up to 10% considered to be within normal limits).  In addition, the percentage of litters with 
resorptions was higher in the exposed females, being 47% in the control group and 69 and 72% in the 
0.06 and 0.3 mg/kg groups, respectively.  In F2 pups, mean fetal weight was significantly increased by 
5% in the 0.06 mg/kg group, but not in the 0.3 mg/kg group, compared with controls.  Three fetuses from 
different litters in the 0.3 mg/kg/day group showed skeletal anomalies (tail, skull, vertebrae); however, 
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this incidence of anomalies in 3/18 litters is not significantly elevated compared with the control 
incidence of 0/19 (Fisher’s exact test, performed for this review). 

Study 3 (Kuriyama et al. 2007): Serum T4 levels were significantly decreased by 23–33% in the 0.06 and 
0.3 mg/kg dams, sacrificed on PND 1.  No changes were observed in T3, free-T3, or free-T4 at PND 1 or 
any thyroid hormone levels at PND 22 in dams.  In pups, no dose-related changes were observed at 
PND 1 or 14.  At PND 22, serum T4 was significantly decreased by in F1 males and females and serum 
free-T4 was significantly decreased in F1 females from the 0.3 mg/kg group (19–23% reductions).  
Hepatic EROD activity was significantly decreased in PND 22 dams from the 0.3 mg/kg group; no other 
changes in hepatic enzyme activity were observed in dams. In F1 offspring, hepatic UDPGT activity was 
significantly increased in females at PND 1 and EROD activity was significantly elevated in males at 
PND 22; no other changes in hepatic enzyme activity were observed in F1 offspring. 

Dose and end point used for MRL derivation: 0.06 mg/kg 

[   ] NOAEL  [X] LOAEL 

Collectively, these studies indicate a LOAEL of 0.06 mg/kg for endocrine effects in F0 dams (reduced 
serum T4) and reproductive and neurobehavioral effects in F1 adult offspring (impaired spermatogenesis, 
ultrastructural changes in ovaries, increased resorptions in F1 females mated to unexposed males, and 
increased spontaneous motor activity).  A NOAEL was not identified. 

Uncertainty factors used in MRL derivation: 

[X] 10 for extrapolation from a LOAEL to a NOAEL 
[X] 10 for extrapolation from animals to humans 
[X] 10 for human variability 

Was a conversion factor used from ppm in food or water to a mg/body weight dose? Not applicable 
(gavage studies). 

Was a conversion used from intermittent to continuous exposure? Not applicable (single exposure 
studies). 

If an inhalation study in animals, list conversion factors used in determining human equivalent dose: Not 
applicable. 

Other additional studies or pertinent information that lend support to this MRL: 

Support for reproductive effects in F1 animals as a co-critical end point: In a companion study to the 
critical studies described above, pregnant rats (8/group) were administered 2,2´,4,4´-tetrabromodiphenyl 
ether (BDE 47, 98% purity) at 0, 0.14, or 0.7 mg/kg via gavage in peanut oil vehicle on GD 6 (Talsness et 
al. 2008).  As observed in pentaBDE-exposed F1 females, ultrastructural changes (accumulation of 
vesicular structures with homogeneously dense granular material in the cytoplasm of the stromal cells, 
large vacuoles) were observed in the ovaries of F1 females from both dose groups on PND 100.  No 
exposure-related changes were observed in F1 female fertility or F2 litter parameters.  F1 males were not 
evaluated for developmental reproductive effects following tetraBDE exposure. 

Support for altered open-field activity in F1 animals as a co-critical end point: Alterations in open-field 
activity have been consistently reported in mice exposed to BDE 99 at doses ≥0.8 mg/kg on PND 3 or 10 
and evaluated at 2–8 months of age, characterized by decreased activity during the first 20-minute period 
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followed by increased activity during the third 20-minute period (Eriksson et al. 2002b, 2006; Fischer et 
al. 2008; Sand et al. 2004; Viberg et al. 2002, 2004a, 2004b). These findings indicate an initial decrease 
in activity, but also a lack of habituation to new surroundings.  The study authors noted that this 
nonhabituating behavior profile (i.e., decreased activity early in the test period and increased activity late 
in the test period) has also been reported in adult mice neonatally exposed to certain PCB congeners.  
Several other 1-day exposure studies have reported similar findings in rats and mice following exposure 
to various lower-brominated PBDEs.  Decreased spontaneous activity and/or impaired habituation was 
observed in rats exposed to BDE 99 at 8 mg/kg on PND 10, mice exposed to 2,2’,4,4’,5,5’-hexaBDE 
(BDE 153) at ≥0.45 mg/kg on PND 10, mice exposed to BDE 47 at 10.5 mg/kg on PND 10, mice exposed 
to the 2,2’,3,4,4’,5’,6-heptaBDE (BDE 183) at 15.2 mg/kg on PND 3, and mice exposed to the 
2,2’,3,4,4’,5,5’,6-octaBDE (BDE 203) at 16.8 mg/kg on PND 3 or 10 (Eriksson et al. 2001; Viberg et al. 
2003a, 2005, 2006).  Increased vertical activity was significantly increased at 4 months, but not at 
2 months, in mice exposed to BDE 47 at ≥1 mg/kg on PND 10; no changes were observed in horizontal 
activity or habituation (Gee and Moser 2008).  No changes in open-field behavior were observed in mice 
exposed to BDE 183 at 15.2 mg/kg or 2,2’,3,3’,4,4’,5,5’,6-nonaBDE (BDE 206) at 18.5 on PND 10 
(Viberg et al. 2006). 

Additional neurobehavioral changes observed in the studies described above included learning and 
memory impairments in the Morris water maze or radial arm maze in mice exposed to BDE 99 at 
0.8 mg/kg on PND 10, mice exposed to BDE 153 at ≥0.9 mg/kg on PND 10, and mice exposed to 
BDE 203 at 16.8 mg/kg on PND 10, and in rats exposed to BDE 47 at ≥1 mg/kg on PND 10 (Fischer et al. 
2008; He et al. 2009, 2011; Viberg et al. 2003a, 2006). 

Support for decreased serum T4 in F0 dams as a co-critical end point: Numerous studies report reduced 
serum T4 levels in adult, nonpregnant mice and rats following acute exposure to commercial pentaBDE 
mixtures (Bromkal 70, Bromkal 70-5 DE, DE-71), the commercial octaBDE mixture DE-79, or BDE 47.  
Significant reductions of 19–92% have been reported following gavage exposure at doses ≥10 and 
≥0.8 mg/kg/day in rats and mice, respectively, for 1–14 days (Darnerud and Sinjari 1996; Fowles et al. 
1994; Hallgren and Darnerud 1998, 2002; Hallgren et al. 2001;Hoppe and Carey 2007; Richardson et al. 
2008; Stoker et al. 2004, 2005; Zhou et al. 2001).  

Toxicokinetic considerations: Hydroxylated metabolites (OH-PBDEs) may be responsible for the toxic 
action of PBDEs. There is some evidence that the CYPs involved in metabolism of PBDEs, as well as the 
OH-PBDEs formed, are different in rats and humans (Erratico et al. 2011, 2012, 2013)—see Section 3.4.3 
for more information.  However, there is no available evidence indicating that the complement of 
OH-PBDEs formed in humans is any more or less potent than the complement of OH-PBDEs formed in 
rats. Therefore, the current use of an animal-to-human uncertainty factor is appropriate for calculating an 
MRL based on effects observed in rats. 

Agency Contact (Chemical Manager):  Hana Pohl 
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MINIMAL RISK LEVEL (MRL) WORKSHEET 

Chemical Name: Polybrominated Diphenyl Ethers (PBDEs) 
[lower-brominated diphenyl ethers] 

CAS Numbers: 5436-43-1 (2,2’,4,4’-tetraBDE) 
Date: March 2017 
Profile Status: Final 
Route: [ ] Inhalation [X] Oral 
Duration: [ ] Acute [X] Intermediate [ ] Chronic 
Graph Key: 164 
Species: Rat 

Minimal Risk Level: 0.000003 (3x10-6) [X] mg/kg/day [ ] ppm [ ] mg/m3 

Reference:  Zhang Z, Zhang X, Sun Z, et al. 2013b. Cytochrome P450 3A1 mediates 

2,2',4,4'-tetrabromodiphenyl ether-induced reduction of spermatogenesis in adult rats. PLoS ONE 

8(6):e66301.  http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0066301. 

August 14, 2014. 


Experimental design:  Male rats (20/group) were administered 2,2’,4,4’-tetrabromodiphenyl ether
 
(BDE 47; ≥98.7%) at 0, 0.001, 0.03, or 1 mg/kg/day via gavage in corn oil 6 days/week for 8 weeks.  

Twenty-four hours after the final BDE 47 treatment, rats were sacrificed.  Testes were fixed for
 
histological analysis and labeling of apoptotic cells or prepared for analysis of sperm production.  Daily
 
sperm production was estimated by dividing the total number of mature spermatids per testis by 6.1 (i.e., 

the days of the seminiferous cycle that the spermatids are present in the seminiferous epithelium).
 
Testicular samples were examined for ROS and mRNA expression of apoptosis related proteins (ser15,
 
ser473, p53, PTEN, AKT, BAD, caspase 3, FAS, FASL).  Serum levels of E2, FSH, LH, and testosterone
 
were measured.
 

Effects noted in study and corresponding doses:  Histological examination of the testes showed a 

significant increase in the number of multinucleated giant cells (arising from spermatocytes that aborted 

meiosis) at ≥0.03 mg/kg/day and abundant vacuolar spaces in the seminiferous epithelium at 1 mg/kg/day 
(quantitative data not reported).  Additionally, the number of apoptotic cells was significantly increased 
by 1.9- and 3-fold in the testes of rats from the 0.03 and 1 mg/kg/day groups, respectively, and the mRNA 
levels of several apoptosis genes were elevated in a dose-related manner.  Daily sperm production was 
significantly decreased by 23% in the 1 mg/kg/day group, compared with controls.  Serum testosterone 
was significantly decreased by ~34, 53, and 62% in the 0.001, 0.03, and 1 mg/kg/day groups, 
respectively, compared with controls.  No exposure-related changes were observed in serum E2, FSH, or 
LH levels. Testicular ROS levels were significantly elevated at 1 mg/kg/day, compared with controls. 

Dose and end point used for MRL derivation:  0.001 mg/kg/day 

[ ] NOAEL  [X ] LOAEL  [ ] BMDL1SD 

BMD modeling was performed on the serum testosterone data to assess suitability of this approach for 
determining the POD.  Since testosterone data were presented graphically, GrabIt! software was used to 
extract the means and standard deviations. The data are shown in Table A-1.  

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0066301
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Table A-1.  Digitally Extracted Serum Testosterone Levels Following Exposure to
 
BDE 47 (Zhang et al. 2013b)
 

Dose (mg/kg) Mean testosterone level (ng/mL) Standard deviation (ng/mL) 
0 9.8 0.8 
0.001 6.5 1.6 
0.03 4.6 1.1 
1 3.7 1.5 

Modeling was performed using the reference benchmark response (BMR) of 1 standard deviation change 
from the mean (1SD).  Results are shown in Table A-2 and Figure A-1. 

Table A-2.  Modeling Results for Decreased Serum Testosterone Levels 

Following Exposure to BDE 47 (Zhang et al. 2013b)
 

Test for Scaled residualsc 

Model 

significant 
difference 
p-valuea 

Variance 
p-valueb 

Means 
p-valueb 

Dose 
below 
BMD 

Dose 
above 
BMD AIC 

Overall 
largest 

BMD1SD 

(mg/kg) 
BMDL1SD 

(mg/kg) 
Constant variance 

Exponential 
(model 2)d 

<0.0001 0.14 <0.0001 -3.34 0.20 3.96 108.73 0.54 0.32 

Exponential 
(model 3)d 

<0.0001 0.14 <0.0001 -3.34 0.20 3.96 108.73 0.54 0.32 

Exponential 
(model 4)d 

<0.0001 0.14 0.11 0.00 0.00 1.13 66.79 0.0003 0.0002 

Exponential 
(model 5)d 

<0.0001 0.14 N/A 0.00 0.00 1.13 68.79 0.0003 0.0002 

Hilld <0.0001 0.14 0.18 0.02 -0.10 1.00 66.09 0.0002 0.0001 
Lineare <0.0001 0.14 <0.0001 -3.34 0.10 3.99 109.09 0.65 0.45 
Polynomial 
(2-degree)e 

<0.0001 0.14 <0.0001 -3.34 0.10 3.99 109.09 0.65 0.45 

Polynomial 
(3-degree)e 

<0.0001 0.14 <0.0001 -3.34 0.10 3.99 109.09 0.65 0.45 

Powerd,e <0.0001 0.14 <0.0001 -3.34 0.10 3.99 109.09 0.65 0.45 

aValues >0.05 fail to meet conventional goodness-of-fit criteria.

bValues <0.10 fail to meet conventional goodness-of-fit criteria.
 
cScaled residuals at doses immediately below and above the BMD; also the largest residual at any dose.
 
dPower restricted to ≥1. 
eCoefficients restricted to be negative. 

AIC = Akaike Information Criterion; BDE = brominated diphenyl ether; BMD = maximum likelihood estimate of the 
exposure concentration associated with the selected benchmark response; BMDL = 95% lower confidence limit on 
the BMD (subscripts denote benchmark response: i.e., 10 = exposure concentration associated with 10% extra risk); 
NA = not applicable (BMDL computation failed or the BMD was higher than the highest dose tested); SD = standard 
deviation 
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Hill Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL 

11

 10

 9

 8

 7

 6

 5

 4

 3

 2 

dose 
10:58 09/18 2014 

Figure A-1.  Fit of Hill Model to Data for Decreased Serum Testosterone Levels 
Following Exposure to BDE 47 (Zhang et al. 2013b) 

Goodness-of-fit statistics indicate inadequate fit to the data for all models except the Exponential 4 and 
Hill models, which were considered unsuitable for use in MRL derivation because they did not provide 
reliable information about the shape of the dose-response curve.  For example, using the BMR of 1SD, 
the BMD, which should be within the range of the data points for best model performance, is a full order 
of magnitude lower than the lowest dose used in the study.  When an alternate BMR of 50% change from 
the mean (50RD) was used in order to get the BMD within the range of observation, the BMDL 
calculation failed (data not shown).  The observed instability in the BMD and BMDL calculations 
indicates that the model is not suitable for use in MRL derivation. 

In the absence of a suitable model, the minimal LOAEL of 0.001 mg/kg/day for decreased serum 
testosterone was chosen as the POD for MRL derivation; no NOAEL was identified. The change in 
testosterone is considered a minimal LOAEL because it is unclear if the magnitude of change represents a 
biologically adverse effect; however, this statistically significant reduction in serum testosterone is 
considered an early indication of damage to the male reproductive system, considering the additional 
effects observed at ≥0.03 mg/kg/day (histological lesions in testes, sperm effects). 
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Uncertainty factors used in MRL derivation: 

[X] 3 for use of a minimal LOAEL 
[X] 10 for extrapolation from animals to humans 
[X] 10 for human variability 

Was a conversion factor used from ppm in food or water to a mg/body weight dose? Not applicable 
(gavage study). 

Was a conversion used from intermittent to continuous exposure? Not applicable. 

If an inhalation study in animals, list conversion factors used in determining human equivalent dose: Not 
applicable. 

Other additional studies or pertinent information that lend support to this MRL: One additional rat study 
and a mouse study reported histopathological changes in the testes following intermediate-duration 
exposure to tetraBDE at ≥0.03 mg/kg/day; neither study evaluated serum testosterone levels (Huang et al. 
2015; Wang et al. 2013).  In the rat study, a NOAEL of 0.001 mg/kg/day and a LOAEL of 
0.03 mg/kg/day were identified for increased epithelial thickness and spermatocyte apoptosis in the testes 
of males exposed to BDE 47 for 8 weeks via gavage (Huang et al. 2015).  In the mouse study, a NOAEL 
of 0.0015 mg/kg/day and a LOAEL of 0.045 mg/kg/day were identified for germ cell loss and increased 
apoptosis in the testes of males exposed to BDE 47 for 30 days via gavage (Wang et al. 2013). Testis 
sections in control and 0.0015 mg/kg/day groups were normal.  In the 0.045, 0.15, and 30 mg/kg/day 
groups, “some” seminiferous tubules exhibited complete germ cell loss and had a Sertoli cell-only 
phenotype (no incidence data reported).  No exposure-related changes were observed in Leydig cells. 
The TUNEL assay showed a significant, dose-related increase in the number of apoptotic cells. 
Quantitative data were not reported; however, from the qualitative figures, it appears that apoptotic cells 
were observed at doses ≥0.045 mg/kg/day.  

No other study evaluated testicular histopathology or serum testosterone levels in male laboratory animals 
following exposure to tetraBDE (BDE47).  Following intermediate exposure to other congeners, no 
changes in testicular histology were observed in rats exposed to commercial pentaBDE mixtures 
(Bromkal 70-5 DE; DE-71) at gavage doses up to 250 mg/kg/day for 15–28 days (Becker et al. 2012; 
Oberg et al. 2010), commercial penta- or octaBDE mixtures (DE-71, unspecified octa mixture) at dietary 
doses up to 750 mg/kg/day for 28–90 days (IRDC 1976, 1977; WIL Research Laboratories 1984), or a 
dietary PBDE mixture containing 52.1% pentaBDE (DE-71), 44.2% decaBDE (BDE 209), and 0.4% 
octaBDE (DE-79) at doses up to 20 mg/kg/day for 70 days (Ernest et al. 2012).  However, testicular 
apoptosis was not evaluated in any of these studies.  Serum testosterone was significantly decreased by 
40–45% in rats exposed once to BDE 99 at 0.06 or 1.2 mg/kg (Alonso et al. 2010).  Other studies 
evaluating serum testosterone levels after intermediate-duration exposure to lower-brominated PBDEs 
mixtures (DE-71, dietary PBDE mixture described above) did not report exposure-related decreases 
(Becker et al. 2012; Ernest et al. 2012; Stoker et al. 2005).  These data suggest that individual congeners 
(BDE 47, BDE 99) may have a greater capacity to alter serum testosterone levels than PBDE mixtures. 

One-generation studies of the BDE 47 congener reported developmental effects at ≥0.03 mg/kg/day, 
including: 

•	 Impaired spatial learning in the Barnes maze in PNW 8 offspring of mouse dams fed cornflakes 
dosed with BDE 47 from pre-mating day 28 through PND 21 (Koenig et al. 2012). 
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•	 Decreased center-field activity in an open field (indicating increased anxiety) in PND 60 female 
offspring from mouse dams fed cornflakes dosed with BDE 47 from pre-mating day 28 through 
PND 21 (Ta et al. 2011). 

•	 Decreased pre-weaning weight, decreased pup vocalizations on PNDs 8–10, and decreased 
sociability on PND 72 in female offspring of mouse dams exposed to BDE 47 via gavage from 
pre-mating day 28 through PND 21 (Woods et al. 2012) 

Hydroxylated metabolites (OH-PBDEs) may be responsible for the toxic action of PBDEs.  There is some 
evidence that the CYPs involved in metabolism of PBDEs, as well as the OH-PBDEs formed, are 
different in rats and humans (Erratico et al. 2011, 2012, 2013)—see Section 3.4.3 for more information.  
However, there is no available evidence indicating that the complement of OH-PBDEs formed in humans 
is any more or less potent than the complement of OH-PBDEs formed in rats. Therefore, the current use 
of an animal-to-human uncertainty factor is appropriate for calculating an MRL based on effects observed 
in rats. 

Agency Contact (Chemical Manager):  Hana Pohl 
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MINIMAL RISK LEVEL (MRL) WORKSHEET 

Chemical Name: Polybrominated Diphenyl Ethers (PBDEs) 
[decabromodiphenyl ether (decaBDE)] 

CAS Numbers: 1163-19-5 
Date: February 2017 
Profile Status: Final 
Route: [ ] Inhalation [X] Oral 
Duration: [X] Acute [ ] Intermediate [ ] Chronic 
Graph Key: 12 
Species: Mouse 

Minimal Risk Level:  0.01 [X] mg/kg/day [ ] ppm [ ] mg/m3 

References: Johansson N, Viberg H, Fredriksson A, et al.  2008.  Neonatal exposure to deca-brominated 
diphenyl either (PBDE 209) causes dose-response changes in spontaneous behavior and cholinergic 
susceptibility in adult mice.  Neurotoxicology 29:911-919. 

Buratovic S, Viberg H, Fredriksson A, et al. 2014. Developmental exposure to the polybrominated 
diphenyl ether PBDE 209: Neurobehavioural and neuroprotein analysis in adult male and female mice. 
Environ Toxicol Pharmacol 38(2):570-585. 

Experimental design: In the first study (Johansson et al. 2008), neonatal male mice (3–4 litters/group) 
were given single doses of 2,2’,3,3’,4,4’,5,5’,6,6’-decaBDE (BDE 209, 98% purity) at 0, 1.34, 2.22, 13.4, 
or 20.1 mg/kg via gavage in a 20% fat emulsion vehicle (1:10 mixture egg lecithin and peanut oil) on 
PND 3.  Mice were observed for clinical signs of toxicity and body weight was measured at PND 3 and 
PNW 4.  Spontaneous motor behavior (locomotion, rearing, total activity) was evaluated in an open field 
at 2 months (10 mice/group) and 4 months (16 mice/group).  Motor activity was measured during a 60
minute period, divided into three 20-minute intervals.  Nicotine-induced behavior was evaluated at 4 
months following single subcutaneous injections of 80 µg nicotine/kg (8/group) or 10 mL 0.9% NaCl/kg 
(8/group).  Anxiety was assessed at 4 months using the elevated plus maze. 

In the second study (Buratovic et al. 2014), neonatal male mice (6 litters/group; 31–40 males and 23– 
34 females per group) were administered 2,2’,3,3’,4,4’,5,5’,6,6’-decaBDE (BDE 209, >95% purity) at 
doses of 0, 1.34, 5.76, or 13.4 mg/kg via gavage in a 20% fat emulsion vehicle (1:10 mixture egg lecithin 
and peanut oil) on PND 3.  Mice were observed for clinical signs of toxicity and body weight changes 
throughout the study (no further details were provided).  Spontaneous motor behavior (locomotion, 
rearing, total activity) was evaluated in an open field at 2 months (18/sex/group).  Motor activity was 
measured during a 60-minute period, divided into three 20-minute intervals.  Directly after spontaneous 
motor evaluation, 9/sex/group were injected with a cholinergic agent (0.25 mg/kg paraoxon in males, 
80 µg/kg nicotine in females), while the other 9/sex/group were injected with 0.9% saline, for evaluation 
of cholinergic-induced locomotion.  At 4 months, spontaneous behavior was assessed again in the saline-
injected animals only (9 males/group at all doses and 9 females/group in the control and high-dose group 
only).  Learning and memory was assessed using the Morris water maze at 5 and 7 months in 13– 
15 males from the 0, 5.76, and 13.4 mg/kg groups only (the same mice were evaluated at each time point).  
Male and female mice were sacrificed at 7 months. The cerebral cortex and hippocampus from control 
and high-dose males and females were removed and processed for neuroprotein analysis using Western 
blot. 
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Effects noted in study and corresponding doses: 

Study 1 (Johansson et al. (2008): No clinical signs of toxicity or body weight effects were observed.  At 
2 months, significantly decreased locomotion, rearing, and total activity were observed during the first 
20-minute interval of the open field assessment in mice exposed to ≥2.22 mg/kg, compared with controls.  
However, during the third 20-minute interval, when activity should decrease due to habituation, 
locomotion, rearing, and total activity were significantly increased in mice exposed to ≥13.4 mg/kg.  
None of the end points measured were significantly altered at 1.34 mg/kg.  At 4 months, significantly 
decreased locomotion, rearing, and total activity were observed during the first interval of the open field 
assessment in mice exposed to ≥2.22 mg/kg, compared with controls.  During the third interval, 
significantly increased locomotion, rearing, and total activity were observed in mice exposed to 
≥2.22 mg/kg.  Additionally, total activity, but not rearing or locomotion, was significantly decreased 
during the first 20-mintue interval in the 1.34 mg/kg group; no significant changes were observed during 
the third interval in the 1.34 mg/kg group.  Statistical analysis shows that habituation ability declined in 
mice exposed to ≥2.22 mg/kg from 2 to 4 months of age.  At 4 months, nicotine exposure caused 
significantly decreased activity during the first interval in mice exposed to ≥13.4 mg/kg, compared with 
saline-injected mice from the same decaBDE exposure group.  This finding is the opposite of the 
expected increase in activity due to nicotine exposure, which was observed in controls and lower dose 
decaBDE groups.  During third interval, mice exposed to ≥13.4 mg/kg and nicotine showed impaired 
habituation.  No exposure-related effects were observed in the elevated plus maze assessment. 

Study 2 (Buratovic et al. 2014): No clinical signs of toxicity or body weight effects were observed.  In 
spontaneous activity assessment, a dose-related decrease in locomotion, rearing, and total activity was 
observed during the first 20 minutes of open field testing in a novel environment at 2 months.  Decreases 
were significant at all doses tested in both sexes; however, findings were only dose-related for total 
activity.  However, during the third 20-minute interval, when activity should decrease due to habituation, 
locomotion, rearing, and total activity were significantly increased in males and females at ≥5.76 mg/kg. 
At 2 months, cholinergic agents caused decreased activity during the first interval in mice exposed to 
≥5.76 mg/kg, compared with saline-injected mice from the same decaBDE exposure group. This finding 
is the opposite of the expected increase in activity due to paraoxon or nicotine exposure, which was 
observed in controls and low-dose decaBDE groups.  During the third interval, mice exposed to 
≥5.76 mg/kg and cholinergic agent showed impaired habituation.  At 4 months, total activity during the 
first 20 minutes was still significantly decreased at all doses in males, and locomotion and rearing were 
significantly decreased in males in the mid- and high-dose groups only; all three parameters were 
significantly decreased in high-dose females (other doses not evaluated).  All three parameters were 
significantly increased in high-dose males and females during the third 20-minute period, indicating 
decreased habituation; locomotion and rearing were also slightly, but significantly, increased in mid-dose 
males.  In the Morris water maze, initial learning was comparable between exposed and control mice at 
5 and 7 months.  However, latencies to find the escape platform during the reversal learning phase 
(learning to find the escape platform in a new location after initial training) were significantly longer in 
mid- and high-dose males at 5 and 7 months (other exposure groups not assessed).  After sacrifice, 
significant increases in protein levels of CaMKII, Gap-43, and Tau were observed in the cortex and 
hippocampus in male mice and increased levels of Tau were observed in the cortex and hippocampus of 
female mice.  No changes in synaptophysin were observed. 

Dose and end point used for MRL derivation:  1.34 mg/kg 

[X] NOAEL  [ ] LOAEL 

In the first study (Johansson et al. 2008), a NOAEL of 1.34 mg/kg and a LOAEL of 2.22 mg/kg were 
determined for the nonhabituating profile (i.e., decreased activity early in the test period and increased 
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activity late in the test period). The singular finding of decreased total activity during the first 20-minute 
interval at 4 months in the 1.34 mg/kg group was not considered sufficient to establish a LOAEL of 
1.34 mg/kg.  The nonhabituating profile, which is a common effect observed with developmental PBDE 
exposure (Eriksson et al. 2002b, 2006; Fischer et al. 2008; Sand et al. 2004; Viberg et al. 2002, 2003a, 
2004a, 2004b), was considered to be a stronger basis for a NOAEL/LOAEL determination. BMD 
modeling was performed on the habituation ratio (activity during the last 20-minute interval/activity 
during the first 20-minute interval) at 2 and 4 months reported by Johansson et al. (2008) to assess 
suitability of this approach for determining the POD.  However, none of the models provided an adequate 
fit with constant or nonconstant variance. 

In the second study (Buratovic et al. 2014), a NOAEL of 1.34 mg/kg and a LOAEL of 5.76 mg/kg were 
determined for the nonhabituating profile (i.e., decreased activity early in the test period and increased 
activity late in the test period).  Similar to the Johansson et al. (2008) study, the finding of decreased total 
activity during the first 20-minute interval at 2 and 4 months in the 1.34 mg/kg group was not considered 
sufficient to establish a LOAEL of 1.34 mg/kg.  The nonhabituating profile was considered to be a 
stronger basis for a NOAEL/LOAEL determination, and additional neurological effects (impaired 
learning, altered response to cholinergic agents) support a LOAEL of 5.76 mg/kg. The quantitative 
habituation ratio was not reported by Buratovic et al. (2014); therefore, BMD modeling was not 
performed for this study. 

Uncertainty factors used in MRL derivation: 

[X] 10 for extrapolation from animals to humans 
[X] 10 for human variability 

Was a conversion factor used from ppm in food or water to a mg/body weight dose? Not applicable 
(gavage study). 

Was a conversion used from intermittent to continuous exposure? Not applicable (single exposure study). 

If an inhalation study in animals, list conversion factors used in determining human equivalent dose: Not 
applicable. 

Other additional studies or pertinent information that lend support to this MRL:  In a similar study, 
decreased spontaneous activity and impaired habituation were also observed in 2- and 6-month-old mice 
exposed to BDE 209 at doses ≥2.22 mg/kg on PND 3 (lowest dose tested) (Viberg et al. 2003b). These 
effects were not observed if exposure was on PND 10 or 19 at doses up to 20.1 mg/kg (Viberg et al. 
2003b).  Additionally, decreased spontaneous activity was observed in 2-month-old rats following 
exposure to BDE 209 doses ≥6.7 mg/kg on PND 3 (lowest dose tested) (Viberg et al. 2007).  At 
20.1 mg/kg, impaired habituation and decreased nicotine-induced behavior were also observed.  This 
nonhabituating behavior profile (i.e., decreased activity early in the test period and increased activity late 
in the test period) is consistent with neurobehavioral alterations observed following early postnatal 
exposure to lower-brominated PBDEs and has been reported in adult mice neonatally exposed to certain 
PCB congeners (see Acute MRL Worksheet for lower-brominated PBDEs for more details). 

Additional neurodevelopmental effects observed in mice following acute exposure to BDE 209 from 
PND 2 to 15 at 20 mg/kg/day via micropipette include delayed ontogeny of reflexes, increased 
locomotion in males at PND 70, and learning impairment and impulsivity at 16 months, but not at 
3 months (Rice et al. 2007, 2009). In rats, impaired learning was observed in Morris water maze in 
PND 25 rat offspring of dams exposed to BDE 209 from GD 1 to 14 at doses ≥30 mg/kg/day via gavage 
(Chen et al. 2014). 
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Hydroxylated metabolites (OH-PBDEs) may be responsible for the toxic action of PBDEs.  There is some 
evidence that the CYPs involved in metabolism of PBDEs, as well as the OH-PBDEs formed, are 
different in rats and humans (Erratico et al. 2011, 2012, 2013)—see Section 3.4.3 for more information.  
However, there is no available evidence indicating that the complement of OH-PBDEs formed in humans 
is any more or less potent than the complement of OH-PBDEs formed in rats. Therefore, the current use 
of an animal-to-human uncertainty factor is appropriate for calculating an MRL based on effects observed 
in rats. 

Agency Contact (Chemical Manager):  Hana Pohl 
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MINIMAL RISK LEVEL (MRL) WORKSHEET 

Chemical Name: Polybrominated Diphenyl Ethers (PBDEs) 
[decabromodiphenyl ether (decaBDE)] 

CAS Numbers: 1163-19-5 
Date: March 2017 
Profile Status: Final 
Route: [ ] Inhalation [X] Oral 
Duration: [ ] Acute [X] Intermediate [ ] Chronic 
Graph Key: 29 
Species: Rat 

Minimal Risk Level: 0.0002 (2x10-4) [X] mg/kg/day [ ] ppm [ ] mg/m3 

Reference:  Zhang Z, Sun ZZ, Xiao X, et al. 2013a. Mechanism of BDE 209-induced impaired glucose 
homeostasis based on gene microarray analysis of adult rat liver. Arch Toxicol 87(8):1557-1567. 

Experimental design: Adult male rats were administered 2,2′,3,3′,4,4′,5,5′,6,6′-decabromodiphenyl ether 
(BDE 209) at 0, 0.05, 1, or 20 mg/kg/day daily via gavage in corn oil for 8 weeks.  Rats were observed 
for clinical signs of toxicity and body weights were measured every 3 days.  Rats were fasted for 24 hours 
after the final gavage treatment, and then sacrificed.  Body weights and heart, spleen, lung, kidney, and 
liver weights were recorded.  Blood was collected for clinical chemistry analysis (serum total cholesterol, 
triglycerides, glucose, insulin, and TNF-α) and determination of plasma markers of oxidative stress 
(MDE, GSH, and SOD).  Liver samples from three rats in the control and low-dose (0.05 mg/kg/day) 
groups were collected for microarray analysis (Affymetrix GeneChip), and gene ontogeny category, 
pathway, gene-act-network and gene co-expression analyses were conducted.  Quantitative real-time-PCR 
was performed to quantitate gene expression to validate the gene expression data obtained from 
microarray analysis. 

Effects noted in study and corresponding doses:  No clinical signs of toxicity or body weight effects were 
observed. The relative liver weight was significantly decreased at 1 and 20 mg/kg/day by 9% (absolute 
liver weights were not reported).  No changes were observed in relative weights of heart, spleen, lung, or 
kidney.  No exposure-related changes were reported in serum cholesterol or triglyceride levels.  Serum 
glucose levels were significantly increased by 12, 18, and 21% in 0.05, 1, and 20 mg/kg/day groups, 
compared with controls.  Serum insulin was significantly decreased by 50–60% at 1 and 20 mg/kg/day.  
Subsequent to this finding, the pancreas was evaluated histologically.  Consistent with the insulin 
findings, morphological changes at 1 and 20 mg/kg/day included blurred boundaries among pancreatic 
islet cells (quantitative data not reported).  Plasma SOD activity was significantly decreased in all 
exposed groups and plasma GSH was significantly decreased at 1 and 20 mg/kg/day.  Serum TNF-α was 
significantly increased at 1 and 20 mg/kg/day. 

BDE 209 induced 1,257 liver gene transcript changes, and 18 canonical pathways were significantly 
enriched.  Four of them were involved in immune diseases, including autoimmune thyroid disease, graft
versus-host disease, allograft rejection, and T1DM.  Subsequently, gene act network and gene 
coexpression network found that some major histocompatibility complex molecules and TNF-α were 
involved in the T1DM pathway. 

Dose and end point used for MRL derivation:  0.05 mg/kg/day 

[ ] NOAEL  [X] LOAEL  [ ] BMDL1SD 
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BMD modeling was performed on the serum glucose data to assess suitability of this approach for 
determining the POD. Modeling was performed using the reference BMR of one standard deviation 
change from the mean (1SD), as well as an alternate BMR of 20% change from the mean (RD20).  The 
alternate BMR of RD20 was identified by the reference value range for rat glucose levels, which varies 
~20% around the mean (reference mean [range] = 118.1 mg/dL [77–141 mg/dL]; Charles River 
Laboratories 1998).  Results are shown in Table A-3 and Figure A-2. 

Table A-3.  Modeling Results for Increased Serum Glucose Levels Following 
Exposure to BDE 209 (Zhang et al. 2013a) 

Test for Scaled residualsc 

Model 

significant 
difference 
p-valuea 

Variance 
p-valueb 

Means 
p-valueb 

Dose 
below 
BMD 

Dose 
above 
BMD 

Overall 
largest AIC 

BMD1SD 

(mg/kg) 
BMDL1SD 

(mg/kg) 
Constant variance 
Exponential 
(model 2)d 

0.0006 0.71 0.0009 2.09 -0.10 -2.66 46.79 18.09 11.79 

Exponential 
(model 3)d 

0.0006 0.71 0.0009 2.09 -0.10 -2.66 46.79 18.09 11.79 

Exponential 
(model 4)d 

0.0006 0.71 0.33 0.00 0.00 0.68 35.65 0.04 0.01 

Exponential 
(model 5)d 

0.0006 0.71 N/A 0.00 0.00 0.68 37.65 0.04 0.01 

Hilld,e 0.0006 0.71 0.41 -0.01 0.08 -0.61 35.37 0.03 0.006 
Linearf 0.0006 0.71 0.0009 2.09 -0.11 -2.65 46.75 17.89 11.35 
Polynomial 
(2-degree)f 

0.0006 0.71 0.0009 2.09 -0.11 -2.65 46.75 17.89 11.35 

Polynomial 
(3-degree)f 

0.0006 0.71 0.0009 2.09 -0.11 -2.65 46.75 17.89 11.35 

Powerd,e 0.0006 0.71 0.0009 2.09 -0.11 -2.65 46.75 17.89 11.35 
BMDRD20 

(mg/kg) 
BMDLRD20 

(mg/kg) 
Hilld,f 0.0006 0.71 0.41 0.54 NA -0.61 35.37 21.84 0.05 

aValues >0.05 fail to meet conventional goodness-of-fit criteria.

bValues <0.10 fail to meet conventional goodness-of-fit criteria.
 
cScaled residuals at doses immediately below and above the BMD; also the largest residual at any dose.
 
dPower restricted to ≥1. 
eSelected model. With constant variance model applied, the only models that provided adequate fit to the means
 
were the Exponential (model 4) and the Hill models.  BMDLs for models providing adequate fit were sufficiently close
 
(differed by <2–3-fold), so the model with the lowest AIC was selected (Hill model).
 
fCoefficients restricted to be positive.
 

AIC = Akaike Information Criterion; BDE = brominated diphenyl ether; BMD = maximum likelihood estimate of the 

exposure concentration associated with the selected benchmark response; BMDL = 95% lower confidence limit on 

the BMD (subscripts denote benchmark response: i.e., 10 = exposure concentration associated with 10% extra risk);
 
NA = not applicable (BMDL computation failed or the BMD was higher than the highest dose tested); RD = relative 

deviation; SD = standard deviation
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Hill Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL 
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Figure A-2.  Fit of Hill Model to Data for Increased Serum Glucose Levels 

Following Exposure to DecaBDE (Zhang et al. 2013a)
 

Goodness-of-fit statistics indicate inadequate fit to the data for all models except the Exponential 4 and 
Hill models, which were considered unsuitable for use in MRL derivation because they did not provide 
reliable information about the shape of the dose-response curve.  For example, using the reference BMR 
of 1SD change from the mean, the ratio of BMD:BMDL is 5 for the Hill model (0.03/0.006) and 4 for the 
Exponential Model 4 (0.04/0.01). These values are quite high and suggest that the data do not permit 
accurate estimation of the BMDL. Using the BMR of RD20 for the Hill model, the ratio was much 
higher still (21.84/0.05=437). The fact that this ratio changes so much with BMR underscores the 
instability in the BMDL estimates using this model. 

In the absence of a suitable model, the minimal LOAEL of 0.05 mg/kg/day based on a 12% increase in 
serum glucose was chosen as the POD for MRL derivation. The change in glucose is considered a 
minimal LOAEL because it is unclear if the magnitude of change represents a biologically adverse effect; 
however, the increase in serum glucose is considered to be part of a spectrum of effects indicative of 
altered insulin homeostasis and toxicity to the pancreas, including decreased serum insulin and 
morphological changes in pancreatic islet cells observed at ≥1 mg/kg/day, following BDE 209 exposure. 

http:0.04/0.01
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Uncertainty factors used in MRL derivation: 

[X] 3 for use of a minimal LOAEL 
[X] 10 for extrapolation from animals to humans 
[X] 10 for human variability 

Was a conversion factor used from ppm in food or water to a mg/body weight dose? Not applicable 
(gavage study). 

Was a conversion used from intermittent to continuous exposure? Not applicable (doses administered 
daily). 

If an inhalation study in animals, list conversion factors used in determining human equivalent dose: Not 
applicable. 

Other additional studies or pertinent information that lend support to this MRL: The association between 
PBDE-exposure and diabetes has been evaluated in a few human studies.  An analysis of cross-sectional 
NHANES data showed a significant increase in risk of diabetes associated with serum levels of BDE 153 
(but not BDE 28, BDE 47, BDE 99, or BDE 100; BDE 209 was not assessed), although the risk was 
higher with exposure to 50–75th percentile BDE 153 levels than >75th percentile BDE 153 levels (Lim et 
al. 2008).  Serum BDE 153 concentrations (but not BDE 28, BDE 47, BDE 85, BDE 99, BDE 100, or 
BDE 154) were also shown to be significantly associated with increased odds of developing gestational 
diabetes in a cohort of 258 pregnant women; again, BDE 209 was not assessed (Smarr et al. 2016).  
However, other cross-sectional and prospective studies found no relationship between serum PBDE 
concentrations and diabetes in an adult cohort from Wisconsin (Turyk et al. 2015), an elderly cohort in 
Finland (Airaksinen et al. 2011), or an elderly cohort in Sweden (Lee et al. 2011). 

Only one other animal study evaluated the pancreas following decaBDE exposure.  In rats exposed to 
BDE 209 via gavage for 28 days at doses of 0, 0.27, 0.82, 2.47, 7.4, 22.2, 66.7, or 200 mg/kg/day, slight 
or moderate insulitis was observed in the Langerhan’s islets of the “majority of samples,” but findings 
were not exposure-related (Van der ven et al. 2008a).  Similarly, no exposure-related effects were 
observed for serum glucose levels (Van der ven et al. 2008a). The only other study evaluating serum 
glucose levels after decaBDE exposure instead reported reduced serum glucose levels in male rats 
exposed to 20 mg/kg/day of a dietary PBDE mixture containing 52.1% pentaBDE (DE-71), 44.2% 
decaBDE (BDE 209), and 0.4% octaBDE (DE-79) for 70 days (Ernest et al. 2012).  The observed 
decreased glucose levels could be due to the pentaBDE component, as male rats exposed to the 
commercial pentaBDE mixture DE-71 at doses of 0.27–200 mg/kg/day for 28 days also showed 
decreased glucose levels; study authors did not report the lowest dose at which glucose levels were 
significantly lower in male rats, but they reported a BMD10RD of 179.55 mg/kg/day and a BMDL10RD of 
66.7 mg/kg/day (Van der ven et al. 2008b).  Other effects occurred at doses 4–40-fold higher than the 
observed pancreatic and related effects: 

•	 A LOAEL of 2 mg/kg/day was identified for transient histopathological effects in the liver of 
male offspring and kidney of female offspring of rat dams exposed to BDE 209 from GD 10 to 
PND 21 (no NOAEL identified) (Fujimoto et al. 2011). 

•	 A LOAEL of 10 mg/kg/day was identified for hepatocytic swelling in the liver, vacuolization in 
the interstitial cells of testes, and sperm damage in PND 71 male offspring of mouse dams 
exposed to BDE 209 from GD 0 to 17 (no NOAEL identified) (Tseng et al. 2008, 2013). 
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•	 A LOAEL of 20 mg/kg/day was identified for decreased anxiety in mice treated with BDE 209 by 
daily gavage for 15 days (no NOAEL identified) (Heredia et al. 2012). 

•	 A LOAEL of 20.1 mg/kg/day was identified for altered hippocampal electrophysiology in rats 
exposed to BDE 209 from GD 1 to PND 41, PNDs 1–21, or PNDs 22–41 (no NOAEL identified) 
(Xing et al. 2009). 

Hydroxylated metabolites (OH-PBDEs) may be responsible for the toxic action of PBDEs.  There is some 
evidence that the CYPs involved in metabolism of PBDEs, as well as the OH-PBDEs formed, are 
different in rats and humans (Erratico et al. 2011, 2012, 2013)—see Section 3.4.3 for more information.  
However, there is no available evidence indicating that the complement of OH-PBDEs formed in humans 
is any more or less potent than the complement of OH-PBDEs formed in rats. Therefore, the current use 
of an animal-to-human uncertainty factor is appropriate for calculating an MRL based on effects observed 
in rats. 

Agency Contact (Chemical Manager):  Hana Pohl 
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APPENDIX B.  USER'S GUIDE 

Chapter 1 

Public Health Statement 

This chapter of the profile is a health effects summary written in non-technical language. Its intended 
audience is the general public, especially people living in the vicinity of a hazardous waste site or 
chemical release.  If the Public Health Statement were removed from the rest of the document, it would 
still communicate to the lay public essential information about the chemical. 

The major headings in the Public Health Statement are useful to find specific topics of concern. The 
topics are written in a question and answer format. The answer to each question includes a sentence that 
will direct the reader to chapters in the profile that will provide more information on the given topic. 

Chapter 2 

Relevance to Public Health 

This chapter provides a health effects summary based on evaluations of existing toxicologic, 
epidemiologic, and toxicokinetic information.  This summary is designed to present interpretive, weight
of-evidence discussions for human health end points by addressing the following questions: 

1.	 What effects are known to occur in humans? 

2.	 What effects observed in animals are likely to be of concern to humans? 

3.	 What exposure conditions are likely to be of concern to humans, especially around hazardous 
waste sites? 

The chapter covers end points in the same order that they appear within the Discussion of Health Effects 
by Route of Exposure section, by route (inhalation, oral, and dermal) and within route by effect.  Human 
data are presented first, then animal data.  Both are organized by duration (acute, intermediate, chronic).  
In vitro data and data from parenteral routes (intramuscular, intravenous, subcutaneous, etc.) are also 
considered in this chapter. 

The carcinogenic potential of the profiled substance is qualitatively evaluated, when appropriate, using 
existing toxicokinetic, genotoxic, and carcinogenic data.  ATSDR does not currently assess cancer 
potency or perform cancer risk assessments. Minimal Risk Levels (MRLs) for noncancer end points (if 
derived) and the end points from which they were derived are indicated and discussed. 

Limitations to existing scientific literature that prevent a satisfactory evaluation of the relevance to public 
health are identified in the Chapter 3 Data Needs section. 

Interpretation of Minimal Risk Levels 

Where sufficient toxicologic information is available, ATSDR has derived MRLs for inhalation and oral 
routes of entry at each duration of exposure (acute, intermediate, and chronic). These MRLs are not 
meant to support regulatory action, but to acquaint health professionals with exposure levels at which 
adverse health effects are not expected to occur in humans. 
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MRLs should help physicians and public health officials determine the safety of a community living near 
a chemical emission, given the concentration of a contaminant in air or the estimated daily dose in water.  
MRLs are based largely on toxicological studies in animals and on reports of human occupational 
exposure. 

MRL users should be familiar with the toxicologic information on which the number is based.  Chapter 2, 
"Relevance to Public Health," contains basic information known about the substance.  Other sections such 
as Chapter 3 Section 3.9, "Interactions with Other Substances,” and Section 3.10, "Populations that are 
Unusually Susceptible" provide important supplemental information. 

MRL users should also understand the MRL derivation methodology.  MRLs are derived using a 
modified version of the risk assessment methodology that the Environmental Protection Agency (EPA) 
provides (Barnes and Dourson 1988) to determine reference doses (RfDs) for lifetime exposure.  

To derive an MRL, ATSDR generally selects the most sensitive end point which, in its best judgement, 
represents the most sensitive human health effect for a given exposure route and duration.  ATSDR 
cannot make this judgement or derive an MRL unless information (quantitative or qualitative) is available 
for all potential systemic, neurological, and developmental effects.  If this information and reliable 
quantitative data on the chosen end point are available, ATSDR derives an MRL using the most sensitive 
species (when information from multiple species is available) with the highest no-observed-adverse-effect 
level (NOAEL) that does not exceed any adverse effect levels.  When a NOAEL is not available, a 
lowest-observed-adverse-effect level (LOAEL) can be used to derive an MRL, and an uncertainty factor 
(UF) of 10 must be employed.  Additional uncertainty factors of 10 must be used both for human 
variability to protect sensitive subpopulations (people who are most susceptible to the health effects 
caused by the substance) and for interspecies variability (extrapolation from animals to humans).  In 
deriving an MRL, these individual uncertainty factors are multiplied together.  The product is then 
divided into the inhalation concentration or oral dosage selected from the study. Uncertainty factors used 
in developing a substance-specific MRL are provided in the footnotes of the levels of significant exposure 
(LSE) tables. 

Chapter 3 

Health Effects 

Tables and Figures for Levels of Significant Exposure (LSE) 

Tables and figures are used to summarize health effects and illustrate graphically levels of exposure 
associated with those effects. These levels cover health effects observed at increasing dose 
concentrations and durations, differences in response by species, MRLs to humans for noncancer end 
points, and EPA's estimated range associated with an upper- bound individual lifetime cancer risk of 1 in 
10,000 to 1 in 10,000,000.  Use the LSE tables and figures for a quick review of the health effects and to 
locate data for a specific exposure scenario. The LSE tables and figures should always be used in 
conjunction with the text. All entries in these tables and figures represent studies that provide reliable, 
quantitative estimates of NOAELs, LOAELs, or Cancer Effect Levels (CELs). 

The legends presented below demonstrate the application of these tables and figures.  Representative 
examples of LSE Table 3-1 and Figure 3-1 are shown.  The numbers in the left column of the legends 
correspond to the numbers in the example table and figure. 
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LEGEND 
See Sample LSE Table 3-1 (page B-6) 

(1)	 Route of Exposure.  One of the first considerations when reviewing the toxicity of a substance 
using these tables and figures should be the relevant and appropriate route of exposure. Typically 
when sufficient data exist, three LSE tables and two LSE figures are presented in the document.  
The three LSE tables present data on the three principal routes of exposure, i.e., inhalation, oral, 
and dermal (LSE Tables 3-1, 3-2, and 3-3, respectively).  LSE figures are limited to the inhalation 
(LSE Figure 3-1) and oral (LSE Figure 3-2) routes.  Not all substances will have data on each 
route of exposure and will not, therefore, have all five of the tables and figures. 

(2)	 Exposure Period. Three exposure periods—acute (less than 15 days), intermediate (15– 
364 days), and chronic (365 days or more)—are presented within each relevant route of exposure. 
In this example, an inhalation study of intermediate exposure duration is reported.  For quick 
reference to health effects occurring from a known length of exposure, locate the applicable 
exposure period within the LSE table and figure. 

(3)	 Health Effect. The major categories of health effects included in LSE tables and figures are 
death, systemic, immunological, neurological, developmental, reproductive, and cancer.  
NOAELs and LOAELs can be reported in the tables and figures for all effects but cancer. 
Systemic effects are further defined in the "System" column of the LSE table (see key number 
18). 

(4)	 Key to Figure. Each key number in the LSE table links study information to one or more data 
points using the same key number in the corresponding LSE figure.  In this example, the study 
represented by key number 18 has been used to derive a NOAEL and a Less Serious LOAEL 
(also see the two "18r" data points in sample Figure 3-1). 

(5)	 Species. The test species, whether animal or human, are identified in this column.  Chapter 2, 
"Relevance to Public Health," covers the relevance of animal data to human toxicity and 
Section 3.4, "Toxicokinetics," contains any available information on comparative toxicokinetics.  
Although NOAELs and LOAELs are species specific, the levels are extrapolated to equivalent 
human doses to derive an MRL. 

(6)	 Exposure Frequency/Duration. The duration of the study and the weekly and daily exposure 
regimens are provided in this column.  This permits comparison of NOAELs and LOAELs from 
different studies.  In this case (key number 18), rats were exposed to “Chemical x” via inhalation 
for 6 hours/day, 5 days/week, for 13 weeks.  For a more complete review of the dosing regimen, 
refer to the appropriate sections of the text or the original reference paper (i.e., Nitschke et al. 
1981). 

(7)	 System.  This column further defines the systemic effects. These systems include respiratory, 
cardiovascular, gastrointestinal, hematological, musculoskeletal, hepatic, renal, and 
dermal/ocular. "Other" refers to any systemic effect (e.g., a decrease in body weight) not covered 
in these systems.  In the example of key number 18, one systemic effect (respiratory) was 
investigated. 

(8)	 NOAEL.  A NOAEL is the highest exposure level at which no harmful effects were seen in the 
organ system studied.  Key number 18 reports a NOAEL of 3 ppm for the respiratory system, 
which was used to derive an intermediate exposure, inhalation MRL of 0.005 ppm (see 
footnote "b"). 
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(9)	 LOAEL. A LOAEL is the lowest dose used in the study that caused a harmful health effect.  
LOAELs have been classified into "Less Serious" and "Serious" effects. These distinctions help 
readers identify the levels of exposure at which adverse health effects first appear and the 
gradation of effects with increasing dose.  A brief description of the specific end point used to 
quantify the adverse effect accompanies the LOAEL.  The respiratory effect reported in key 
number 18 (hyperplasia) is a Less Serious LOAEL of 10 ppm.  MRLs are not derived from 
Serious LOAELs. 

(10)	 Reference. The complete reference citation is given in Chapter 9 of the profile. 

(11)	 CEL.  A CEL is the lowest exposure level associated with the onset of carcinogenesis in 
experimental or epidemiologic studies.  CELs are always considered serious effects. The LSE 
tables and figures do not contain NOAELs for cancer, but the text may report doses not causing 
measurable cancer increases. 

(12)	 Footnotes.  Explanations of abbreviations or reference notes for data in the LSE tables are found 
in the footnotes.  Footnote "b" indicates that the NOAEL of 3 ppm in key number 18 was used to 
derive an MRL of 0.005 ppm. 

LEGEND 
See Sample Figure 3-1 (page B-7) 

LSE figures graphically illustrate the data presented in the corresponding LSE tables.  Figures help the 
reader quickly compare health effects according to exposure concentrations for particular exposure 
periods. 

(13)	 Exposure Period. The same exposure periods appear as in the LSE table.  In this example, health 
effects observed within the acute and intermediate exposure periods are illustrated. 

(14)	 Health Effect. These are the categories of health effects for which reliable quantitative data 
exists. The same health effects appear in the LSE table. 

(15)	 Levels of Exposure.  Concentrations or doses for each health effect in the LSE tables are 
graphically displayed in the LSE figures.  Exposure concentration or dose is measured on the log 
scale "y" axis.  Inhalation exposure is reported in mg/m3 or ppm and oral exposure is reported in 
mg/kg/day. 

(16)	 NOAEL. In this example, the open circle designated 18r identifies a NOAEL critical end point in 
the rat upon which an intermediate inhalation exposure MRL is based.  The key number 18 
corresponds to the entry in the LSE table.  The dashed descending arrow indicates the 
extrapolation from the exposure level of 3 ppm (see entry 18 in the table) to the MRL of 
0.005 ppm (see footnote "b" in the LSE table). 

(17)	 CEL. Key number 38m is one of three studies for which CELs were derived.  The diamond 
symbol refers to a CEL for the test species-mouse.  The number 38 corresponds to the entry in the 
LSE table. 
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(18)	 Estimated Upper-Bound Human Cancer Risk Levels. This is the range associated with the upper-
bound for lifetime cancer risk of 1 in 10,000 to 1 in 10,000,000.  These risk levels are derived 
from the EPA's Human Health Assessment Group's upper-bound estimates of the slope of the 
cancer dose response curve at low dose levels (q1*). 

(19)	 Key to LSE Figure. The Key explains the abbreviations and symbols used in the figure. 



 
 

 
 

 
         

 

     
 

 
 

 

    

  
 

 

 

 

 

 

    
      

    

 

 
 

 

 

 

 

 
 

 
 

  
 

 
 

 

   

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 
 

 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 

 

   

 
 
 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 


 

	

	

	 

	 

SAMPLE
 

P
B
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Es 

B
-6
 

A
PP

E
N

D
IX B


 

1 →	 Table 3-1.  Levels of Significant Exposure to [Chemical x] – Inhalation 

LOAEL (effect) Exposure 
Less serious Serious (ppm) Key to 	 frequency/ NOAEL 
(ppm) figurea Species duration System (ppm)	 Reference 

2 

3 

4 

→ INTERMEDIATE EXPOSURE 

5 

→ Systemic ↓ 

18 Rat 
→ 

CHRONIC EXPOSURE 

Cancer 

38 Rat 

39 Rat 

40 Mouse 

6 

↓ 

13 wk 
5 d/wk 
6 hr/d 

18 mo 
5 d/wk 
7 hr/d 

89–104 wk 
5 d/wk 
6 hr/d 

79–103 wk 
5 d/wk 
6 hr/d 

7 8 9 

↓ ↓ ↓ 

Resp 3b 10 (hyperplasia) 

11 

↓ 

20	 (CEL, multiple 
organs) 

10	 (CEL, lung tumors, 
nasal tumors) 

10	 (CEL, lung tumors, 
hemangiosarcomas) 

10 

↓ 

Nitschke et al. 1981 

Wong et al. 1982 

NTP 1982 

NTP 1982 

12 →	 a The number corresponds to entries in Figure 3-1. 
b Used to derive an intermediate inhalation Minimal Risk Level (MRL) of 5x10-3 ppm; dose adjusted for intermittent exposure and divided 
by an uncertainty factor of 100 (10 for extrapolation from animal to humans, 10 for human variability). 
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Chronic (≥ 365 days) Intermediate (15-364 days) 
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APPENDIX C. ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

ACGIH American Conference of Governmental Industrial Hygienists 
ACOEM American College of Occupational and Environmental Medicine 
ADI acceptable daily intake 
ADME absorption, distribution, metabolism, and excretion 
AED atomic emission detection 
AFID alkali flame ionization detector 
AFOSH Air Force Office of Safety and Health 
ALT alanine aminotransferase 
AML acute myeloid leukemia 
AOAC Association of Official Analytical Chemists 
AOEC Association of Occupational and Environmental Clinics 
AP alkaline phosphatase 
APHA American Public Health Association 
AST aspartate aminotransferase 
atm atmosphere 
ATSDR Agency for Toxic Substances and Disease Registry 
AWQC Ambient Water Quality Criteria 
BAT best available technology 
BCF bioconcentration factor 
BEI Biological Exposure Index 
BMD/C benchmark dose or benchmark concentration 
BMDX dose that produces a X% change in response rate of an adverse effect 
BMDLX 95% lower confidence limit on the BMDX 

BMDS Benchmark Dose Software 
BMR benchmark response 
BSC Board of Scientific Counselors 
C centigrade 
CAA Clean Air Act 
CAG Cancer Assessment Group of the U.S. Environmental Protection Agency 
CAS Chemical Abstract Services 
CDC Centers for Disease Control and Prevention 
CEL cancer effect level 
CELDS Computer-Environmental Legislative Data System 
CERCLA Comprehensive Environmental Response, Compensation, and Liability Act 
CFR Code of Federal Regulations 
Ci curie 
CI confidence interval 
CL ceiling limit value 
CLP Contract Laboratory Program 
cm centimeter 
CML chronic myeloid leukemia 
CPSC Consumer Products Safety Commission 
CWA Clean Water Act 
DHEW Department of Health, Education, and Welfare 
DHHS Department of Health and Human Services 
DNA deoxyribonucleic acid 
DOD Department of Defense 
DOE Department of Energy 
DOL Department of Labor 
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DOT Department of Transportation 
DOT/UN/ Department of Transportation/United Nations/ 

NA/IMDG North America/Intergovernmental Maritime Dangerous Goods Code 
DWEL drinking water exposure level 
ECD electron capture detection 
ECG/EKG electrocardiogram 
EEG electroencephalogram 
EEGL Emergency Exposure Guidance Level 
EPA Environmental Protection Agency 
F Fahrenheit 
F1 first-filial generation 
FAO Food and Agricultural Organization of the United Nations 
FDA Food and Drug Administration 
FEMA Federal Emergency Management Agency 
FIFRA Federal Insecticide, Fungicide, and Rodenticide Act 
FPD flame photometric detection 
fpm feet per minute 
FR Federal Register 
FSH follicle stimulating hormone 
g gram 
GC gas chromatography 
gd gestational day 
GLC gas liquid chromatography 
GPC gel permeation chromatography 
HPLC high-performance liquid chromatography 
HRGC high resolution gas chromatography 
HSDB Hazardous Substance Data Bank 
IARC International Agency for Research on Cancer 
IDLH immediately dangerous to life and health 
ILO International Labor Organization 
IRIS Integrated Risk Information System 
Kd adsorption ratio 
kg kilogram 
kkg metric ton 
Koc organic carbon partition coefficient 
Kow octanol-water partition coefficient 
L liter 
LC liquid chromatography 
LC50 lethal concentration, 50% kill 
LCLo lethal concentration, low 
LD50 lethal dose, 50% kill 
LDLo lethal dose, low 
LDH lactic dehydrogenase 
LH luteinizing hormone 
LOAEL lowest-observed-adverse-effect level 
LSE Levels of Significant Exposure 
LT50 lethal time, 50% kill 
m meter 
MA trans,trans-muconic acid 
MAL maximum allowable level 
mCi millicurie 
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MCL maximum contaminant level 
MCLG maximum contaminant level goal 
MF modifying factor 
MFO mixed function oxidase 
mg milligram 
mL milliliter 
mm millimeter 
mmHg millimeters of mercury 
mmol millimole 
mppcf millions of particles per cubic foot 
MRL Minimal Risk Level 
MS mass spectrometry 
NAAQS National Ambient Air Quality Standard 
NAS National Academy of Science 
NATICH National Air Toxics Information Clearinghouse 
NATO North Atlantic Treaty Organization 
NCE normochromatic erythrocytes 
NCEH National Center for Environmental Health 
NCI National Cancer Institute 
ND not detected 
NFPA National Fire Protection Association 
ng nanogram 
NHANES National Health and Nutrition Examination Survey 
NIEHS National Institute of Environmental Health Sciences 
NIOSH National Institute for Occupational Safety and Health 
NIOSHTIC NIOSH's Computerized Information Retrieval System 
NLM National Library of Medicine 
nm nanometer 
nmol nanomole 
NOAEL no-observed-adverse-effect level 
NOES National Occupational Exposure Survey 
NOHS National Occupational Hazard Survey 
NPD nitrogen phosphorus detection 
NPDES National Pollutant Discharge Elimination System 
NPL National Priorities List 
NR not reported 
NRC National Research Council 
NS not specified 
NSPS New Source Performance Standards 
NTIS National Technical Information Service 
NTP National Toxicology Program 
ODW Office of Drinking Water, EPA 
OERR Office of Emergency and Remedial Response, EPA 
OHM/TADS Oil and Hazardous Materials/Technical Assistance Data System 
OPP Office of Pesticide Programs, EPA 
OPPT Office of Pollution Prevention and Toxics, EPA 
OPPTS Office of Prevention, Pesticides and Toxic Substances, EPA 
OR odds ratio 
OSHA Occupational Safety and Health Administration 
OSW Office of Solid Waste, EPA 
OTS Office of Toxic Substances 
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OW Office of Water 
OWRS Office of Water Regulations and Standards, EPA 
PAH polycyclic aromatic hydrocarbon 
PBPD physiologically based pharmacodynamic 
PBPK physiologically based pharmacokinetic 
PCE polychromatic erythrocytes 
PEL permissible exposure limit 
pg picogram 
PHS Public Health Service 
PID photo ionization detector 
pmol picomole 
PMR proportionate mortality ratio 
ppb parts per billion 
ppm parts per million 
ppt parts per trillion 
PSNS pretreatment standards for new sources 
RBC red blood cell 
REL recommended exposure level/limit 
RfC reference concentration 
RfD reference dose 
RNA ribonucleic acid 
RQ reportable quantity 
RTECS Registry of Toxic Effects of Chemical Substances 
SARA Superfund Amendments and Reauthorization Act 
SCE sister chromatid exchange 
SGOT serum glutamic oxaloacetic transaminase 
SGPT serum glutamic pyruvic transaminase 
SIC standard industrial classification 
SIM selected ion monitoring 
SMCL secondary maximum contaminant level 
SMR standardized mortality ratio 
SNARL suggested no adverse response level 
SPEGL Short-Term Public Emergency Guidance Level 
STEL short term exposure limit 
STORET Storage and Retrieval 
TD50 toxic dose, 50% specific toxic effect 
TLV threshold limit value 
TOC total organic carbon 
TPQ threshold planning quantity 
TRI Toxics Release Inventory 
TSCA Toxic Substances Control Act 
TWA time-weighted average 
UF uncertainty factor 
U.S. United States 
USDA United States Department of Agriculture 
USGS United States Geological Survey 
VOC volatile organic compound 
WBC white blood cell 
WHO World Health Organization 
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> greater than 
≥ greater than or equal to 
= equal to 
< less than 
≤ less than or equal to 
% percent 
α alpha 
β beta 
γ gamma 
δ delta 
μm micrometer 
μg microgram 
q1

* cancer slope factor 
– negative 
+ positive 
(+) weakly positive result 
(–) weakly negative result 
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